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This talk lies at the intersection of several topics.

Geometry of

Quantum qguantum state space

computing Statistics

Compressed
sensing
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Characterizing the behavior of noisy, intermediate-scale
guantum information processors can be hard.

Suppose we have an n-qubit NISQ device.

The number of parameters to be estimated in
various tomographic protocols scales poorly:

State tomography - p = O(4")
Process tomography - p = O(16")
Gate set tomography - p = O(M * 16™)

How do we reduce the number of parameters
necessary to characterize the device?



In practice, we usually impose constraints on
the estimates to reduce the number of parameters.

State tomography - p = O(4™)

NB. “State has known rank”: p = O(r*2™) 7

Process tomography - p = O(16") Our work: identify
" how to use
“Process is unitary”: p = O(4™) statistical model
selection to choose
Gate set tomography - p = O(M * 16™) a good model.

B “Error generators act on
one or two qubits”: p = O (M (12n + 120n2))



State tomographers have been doing
model selection all along!

For tomography, a model is a set of density matrices.

Trivial model selection:

Pick a Hilbert space by fiat.
(“Of course it's a qubit!”)
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State tomographers have been doing
model selection all along!

For tomography, a model is a set of density matrices.

Non-trivial model selection:

Restrict estimate to a
subspace.
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Model selection is used to identify which model
fits the data well, and is also usetul for prediction.
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A modelis a parameterized tamily of probability distributions.

Common model for state tomography:

My =A{p|peBH), Tr(p)=1, p>0;§

Probabilities via the Born rule: p; = Tr(pE})

Changing the state changes the probability!
POVM = {]0)(0], [1){1[}

11)

po = 10){0] = Pr(07) =1

po = [+)(+] = Pr(07) = 172
po = |1)(1] = Pr(“0”) =0




Maximum likelihood estimation is a common way to infer
which parameters of a model can explain your data best.

Given data, likelihood is

L(p) = Pr(Datalp)

The maximum likelihood estimate
IS computed as

) — max L
PML.M = Max (p)



Quantum state space has boundaries,
posing some challenges for tomography & model selection.

Easy to reason about
(many known results)

Hard to reason about
(known results don't

apply!)

Tomography:
Boundaries distort the distribution of maximum likelihood estimates
(makes reasoning about their properties hard).

Model selection:
Common technigues (Wilks theorem, information criteria) cannot be used!



Quantum state space has boundaries,
posing some challenges for tomography & model selection.

Easy to reason about
(many known results)

that the models used In bn about
B tomography do not satisfy s on!

Local Asymptotic Normality (LAN).

Tomography:
Boundaries distort the distribution of maximum likelihood estimates
(makes reasoning about their properties hard).

Model selection:
Common technigues (Wilks theorem, information criteria) cannot be used!



In classical statistics, models often satisty
local asymptotic normality (LAN).

Local = fix a value for the parameters 6,
Asymptotic = the number of samples goes to infinity

Normality = the probability distribution function can
be approximated by a Gaussian
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(P90+u/ﬁ U € R’") & (N(u, Ip'):u € Rm) have similar statistical properties

Le Cam L., Yang G.L. (2000) Local Asymptotic Normality. In: Asymptotics in Statistics.
Springer Series in Statistics. Springer, New York, NY



It LAN is satisfied by a model, then several
oroperties follow.

It LAN is satisfied, then asymptotically:

Likelihoods are Gaussian:
L(p) = Pr(Datalp)

N — o0

1 . .
x Exp —§Tr(,0 — ,OML,M)F(P — PML,M)

Maximum likelihood (ML) estimates
are normally distributed:

pair i = argmax £(p) :
peEM

g N(p()vf_l)

Key implication: M satisfies LAN = pyvpoav ~ N (po, F7 1)



We know ML estimates in state tomography are
not always normally distributed, implying LAN is not satisfied.

Key issue: purp o % N(po, F~1) = M does not satisfy LAN

Because LAN is not satisfied, the assumptions
necessary for many model selection tools are violated!!

How do we fix this?
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We show how to generalize LAN
for models with convex boundaries.



We define a new generalization of LAN
for models with convex boundaries.

satisfies LAN
satlsfles ‘MP-LAN”

Definition 1 (Metric-projected local asymptotic nor-
mality, or MP- LAN) A model M satisfies MP-LAN if,

and only if, M is a convex subset of a model M’ that
satisfies LAN.



We show that quantum state space satisties MP-LAN.

satisfies LAN
satlsfles ‘MP-LAN”

In state tomography,

My ={p|peBH), Tr(p) =1, p> 0} (all density matrices)

Define
L, =40 | o€ B(H),Tr(oc) =1} (lift positivity constraint)

(Likelihood is twice continuously differentiable,
so LAN is satisfied.)
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We derive asymptotic properties
of models that satisty MP-LAN.



Suppose a model satisties MP-LAN. Then asymptotically,...

...the local state space is the tangent cone.

We can zoom in on the region
of state space around

the true state to determine the
behavior of ML estimates.

Asymptotically, all

the ML estimates are
contained in a (shrinking)
ball around the true state.




Suppose a model satisties MP-LAN. Then asymptotically,...

...the ML estimate in the constrained model is
the metric projection of the ML estimate in the larger model.

Because M’ satisfies LAN:

L(p) o Exp [—5Tr(p — pmr,a)F(p — pur,aar) ]

Tangent Cone Example (Rebit)

Maximize the likelihood over M:

pair, = argmax £(p)
peM

Asymptotically, equal to minimizing
Fisher-adjusted distance
over tangent cone

pymp,m = argmin Tr[(p — pumrae ) F(p — pumr,a)]
p€T (po)

“Metric projection onto the tangent cone”



Suppose a model satisties MP-LAN. Then asymptotically,...

...the increase in goodness of fit (as measured by loglikelihood)
IS equal to increase in squared error (as measured by Fisher information).

The loglikelihood ratio statistic
comparing two models Is

A(M1, Mz) = —2log (ﬁ(ﬁML’Ml))

K’(ﬁML,MQ)

"How much better does one model do
in fitting the data compared to another?”

For analysis purposes: introduce a reference model

)\(M:[?MQ) — )\(/007/\/12) — )\(/007/\/11)



Suppose a model satisties MP-LAN. Then asymptotically,...

...the increase in goodness of fit (as measured by loglikelihood)
IS equal to increase in squared error (as measured by Fisher information).

Because M satisfies MP- LAN, M/ ) _

-
e ) t >

T — D / F — D /
e r|(po — pmr,mr ) F'(po — puvr, )

— Tr[(pmr,m — pyvr, v ) F(PrL,m — pur, )]



Suppose a model satisties MP-LAN. Then asymptotically,...

...the increase in goodness of fit (as measured by loglikelihood)
IS equal to increase in squared error (as measured by Fisher information).

O

Because the local state space M’
IS the tangent cone, the metric
projection must complete a right triangle.

Apo, M) = Tr[(pym.at — po) E(prvram — po)] ©




Suppose a model satisties MP-LAN. Then asymptotically,...

Tangent Cone Example (Rebit)

...the local state space Is the tangent cone.

...the ML estimate in the constrained model is
the metric projection of the ML estimate in the larger model.

pymL,m = argmin Tr[(p — pmpae ) E(p — pmp,av )]
p€T (po)

...the increase in goodness of fit (as measured by loglikelihood)
IS equal to increase in squared error (as measured by Fisher information).

A(PO»M) — Tf[(ﬁML,M — PO)F(,@ML,M — ,00)]
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We provide a replacement to
the classical Wilks theorem for
models that satisfy MP-LAN.



A canonical model selection rule uses
the loglikelihood ratio statistic.

Recall the loglikelihood ratio statistic
comparing two models Is

A M1, Ms) = —2log (L(ﬁML’Ml))

’C(ﬁML,Mz )
Tells us how much better one model fits the data than the other.

Because of extra parameters, one model might fit better
because it’s fitting noise - how to correct for that”

Need to know the null behavior —
what happens when both models are equally good?



The Wilks theorem describes the
null behavior of this statistic.

AN M1, My) = —2log (ﬁ(ﬁML’M1)>

ﬁ(ﬁML,MQ)

Wilks theorem (1938):

Assume that pg € M7, M5, that M, C Mo,
and that M, My satisty LAN. Then A\ ~ X(th(MQ)_dim(Ml).

Key insight: PML M = PML M, © O M2 — R3
o~ N(0,7)

A= ﬁML,Mz — /00||2 _ ||/6ML,M1 — IOOH2

= |lo|l*




Knowing the null behavior allows us to formulate a
decision rule for choosing between two models.

It both models were equally good, would | expect to
see the value of the statistic that | actually observed?

Set a threshold tor judging when to reject smaller model.

Decision threshold
.| (€.9., 95% confidence level)

Null behavior

Pr(\)

- Observed value;
: [reject smaller model

‘Observed value; *
1keep smaller model




For models that might be useful in state tomography,
the Wilks theorem fails spectacularly.

Define Mg ={p € B(Hq) | Tr(p) =1,p > 0}
(d-dimensional density matrices)

............ 2)
Useful for, e.g., determining 1) 1)
additional degrees of freedom
are present. 0) 0)
‘I built a qubit” ‘I built a qutrit”

M M

Practical concern for most physical architectures
(superconductors, ions, etc) for detecting leakage.



For models that might be useful in state tomography,
the Wilks theorem fails spectacularly.

- d-dimensional
efine Md { ( d) ‘ r( ) 1’ — O} density matrices)
Wilks theorem says (A(pg, Mg)) = d? —1

—— Wilks Theorem
300 »  Rank(py) =10
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For models that might be useful in state tomography,
the Wilks theorem fails spectacularly.

Define Mg = {p € B(Ha) | Tr(p) =1,p > 0} Ejde_gsl?yepnsé?rrifés)

‘ ébaoe 6esn’t satisfy LAN,
so Wilks theorem cannot be applied!

Can we derive a replacement using
the fact state space satisfies MP-LAN




Our replacement for Wilks approximates the
expected value of the loglikelihood ratio statistic.

Because state space satisfies MP-LAN,

)‘(/007 Md) — Tf[(ﬂo — ﬁML,Md)F(Po — ﬁML,Md)]

where My ={p € B(Hq) | Tr(p) =1,p > 0}

(A(po, Mq)) = 77



Our replacement for Wilks approximates the
expected value of the loglikelihood ratio statistic.

Because state space satisfies MP-LAN,

)‘(/007 Md) — Tf[(/)o — ﬁML,Md)F(Po — ﬁML,Md)]

where My ={p € B(Hq) | Tr(p) =1,p > 0}

(A(po, Mq)) = 77

To make progress, we assume the Fisher information is isotropic.
(Never actually happens...except in trivial cases)




Even with that assumption, the calculation™ was non-trivial...

3. Expression for A(po, M)

The loglikelihood ratio statistic between any two mod-
els (M1, Ma) can be computed using a reference model

My, Mz) = AR, Ma) — AR, My).

where

max

L(R) ) e [ 2R ()
g

AR, M) = —2log (L[/\A) n)

Let us take R = po. Because as N — oo the likelihood
L(p) is Gaussian around fy, x, we have

L(po)

Alpo, M) = =2log | —7
(pos M) 8\ Sax £(o)
b

o= oo = P )0 = pron.w)

= T[(ps.ne =

QLA NIVEY N

)
Using the fact iy v is a metric projection, we can prove
that A(po. M) has a simple form.

Lemma 4. A(po, M) = Tr{(p0 = prir.s)Z(p0 = prin.aa)]

Proof. We switch to Fisher-adjusted coordinates (p —
T/2p), and in these coordinates Z becomes 1z

Apo, M) = Tx[(po = pravwe)*] = Tr{(uion — puiaer)?]-

(10)

Case 1: Assume pyy e @ T(po). Because pu e is the  theory for A, we will simplify to th
metric projection of Py onto T(py) (Equation (8)),
e and pig, e is normal to T(pp) at
fuunae. Because T(po) contains po (as its origin), it fol-
lows that the lines joining po t0 pyyni and pyen to  that capture realistic tomographic scenari

To prove the lemma, we must consider two cascs:

the line joining jy

fuunae, are perpendicular. (See Figure 4.)
By the Pythagorean theorem, we have

Trl(po—san.awr)*] = Tr{(po =t ) I+ T (B o= Pranon”

Subtracting Tr[(y.a — faue.)?] from both sides, and
comparing to Equation (10), yields the lemma statement

in Fisher-adjusted coordinates.

Jase 2: Assume pysre € T(po). Then, pupn =
frat.aer, and Equation (10) simplifies to the lemma state-

ment in Fisher-adjusted coordinates.

Switching back from Fisher-adjusted coordinates, we

have A(po, M) = Tr((po — fprur.. ) Z(p0 = P

)l

So if M satisfies MP-LAN then as N — oo the log-
likelihood ratio statistic becomes related to squared er-
ror/loss (as measured by the Fisher metric.) This result
may be of independent interest in, for example, defining
new information criteria, which attempt to balance good-
ness of fit (as measured by A) against error/loss (gener-

ally, as measured by squared error).

With these technical results in hand, we can proceed

to compute (A(Mgy, Mgs1)) in the next section.

| ——

2. Deriving an approzimation for q

IV. A WILKS THEOREM FOR QUANTUM
STATE SPACE

To derive a replacement for the Wilks theorem, we
start by showing the models My satisfy

Lemma 5. The models My, defined in Equation (4).
satisfy MP-LAN.
Proof. Let M}y = {o | dim(0) = d,o = o'}. (That is,
My is the set of all d x d Hermitian matrices, but we do
1ot require them to be non-negative, nor trace-1.) It is
clear My € Ml). Now, ¥ o € M}, the likelihood £(a) is
twice continuously differentiable, meaning M} satisfies
LAN. Thus, M, satisfies MP-LAN.

We can reduce the problem of computing
A(Ma, Mgy1) to that of computing A(po, My) tm
k=d,d+1 using the identity

AMMa, Myz1) = Mpo, Mas1) = Alpo, Ma)
where A(po, My) is given in Equation (6). Because

each model satisfies MP-LAN, asymptotically, A(po. M)
takes a very simple form, via Equation (7):

Mpo, M) = Tr[(po — prur.ae )k (po = Pruw.a )]
The Fisher information Z; is generally anisotropic, de-
pending on pg, the POVM being measured, and the
model My, (see Figure 5). And while the p > 0 con-
straint that invalidated LAN in the first place is at least
somewhat tractable in standard (Hilbert-Schmidt) co-
ordinates, it becomes completely intractable in Fisher-
adjusted coordinates. So, to obtain a semi-analytic null

where T
1/€* for some € that scales as 1/\/Nomples (That is,
Ty is proportional to the Hilbert-Schmidt metric.) This
simplification permits the derivation of analytic results
s surprisingly

well [51]

With this simplification, A(Ma, Muy1) is given by
l (Tel(p0 = fae.a)?] = Tel(po = puna)®]) - (1)
That is, A is a difference in Hilbert-Schmidt distances.
This expression makes it clear why a null theory for A
is necessary: if po € Ma, M1, psasn will lie further
from po than pyy.s (because there are more parameters
that can fit noise in the data). The null theory for A tells
us how much extra error will be incurred in using Mz
to reconstruct po when Mg is just as good.

Describing Pr(A) is difficult because the distributions
f Paras frun.an re complicated, highly non-Gaussian,
and Singular (estimates “pile up” on the various faces of
the boundary as shown in Figure 1). For this reason, we
will not attempt to compute Pr()) directly. Instead, we
focus on deriving a good approximation for {A)

We consider each of the terms in Equation (11)
separately and focus on computing €2(A(po, Ma)) =
(Tx[(yus — po)2]) for arbitrary d. Doing o involves two
main steps:

T ———————————

1

This equation is a quintic polynomial in g/, so by the

Abel- Ruﬂuu theorem, it has no algebraic solution. How-

The approximations of the previous section allow us €V
{1, U {7} as the ansatz for the cigenvalues of  @pprosimation that becomes accurate quite rapidly (e.g
or d — 7 > 4):

to u
pruvriys where the p; are N(p;;. %) random variables,
and the % are the (fixed, smoothed) order statistics of
a Wigner semicircle distribution. In turn, the defining
equation for ¢ (Equation (12)) is well approximated as

>

=1

To solve this equation, we observe that the ; are
symmetrically distributed around x = 0, so half of
them are negative. Therefore, with high probability,
Tr [Trunc(fue. air)] > 1, and so we will need to subtract
g1l from py,, vy, before truncating,

Because we have assumed Nuamples is sufficiently large
(Nuamples >> min; 1/p?,), the (\u,cm'(\l\\cx of py are large
compared to the perturbations 4;; and g. This implies
(p; —a)* = p; — ¢. Under this assumption, ¢ is the
solution to

. v
SNwi-a+Y F-a =
= =

2eVN
— —rg+A+N / (k= q)Pr(x)dx = 0

- 7“,+A+— [(q +8N)y/ =@ +aN

(o ()

(15)

where A = Y7_, 6 is a A(0, r¢?) random variable. We
choose to replace a discrete sum (line 1) with an inte-
gral (line 2). This approximation is valid when N > 1,
as we can accurately approximate a discrete collection of
closely spaced real numbers by a smooth density or dis-
tribution over the real numbers that approximately
the same CDF. It is also remarkably accurate in practice

In yet another approximation, we replace A with its
average value, which is zero. We could obtain an even
more accurate expression by treating A more carcfully,
but this crude approximation turns out to be quite accu-

—12gN

To solve Equation (15), it is necessary to further sim-
plify the complicated expression resulting from the inte-
gral (line 3). To do so, we assume po is relatively low-
rank, so 7 < d/2. In this case, the sum of the positive
7 is large compared with 7, almost all of them need to
be subtracted away, and therefore ¢ is close to 2ev/N.
We therefore replace the complicated expression with its
leading order Taylor expansion around ¢ = 2¢v/N, sub-
stitute into Equation (15), and obtain the equation

truncation process, we can approximate (e, ori
given in Equation (13)

(Mire) =

where
rate already. Rank(po).

we compare it to numer
an isotropic Fisher information with d = 2,...,30 and

/1 (zﬁf ‘7’)""2 a6 -

L as N — 00, its roots have a well-defined algebraic

1
10

1
gfe~2V/d—r (1 —get

().

3. Eapression for (Mte)

Now that we know how much to subtract off in the
ally

<’Z[»,, IR il

st

=%<Z[fm,+q +Z & - 0)*]

=t

Pr(y,)(,, q)%dr

M ()

/IN — 22 (18)

D. Complete Expression for (\)
The total expected value, (A) = (AL) + (Aite), is thus
(Apo, Ma)) = 2rd — 1% + 122
N(N +22) (7
S NN (1
™ 2 :

WN) ——
SN N (19)

z roand r =

V. COMPARISON TO NUMERICAL
EXPERIMENTS
A. Isotropic Fisher Information

Equation (19) is our main result. To test its validity,
al simulations for the case of

ion of the Wilks

.10 in Figure 9. The pred;

T ————

Anisotropic Fisher information (Rebit)

R
X
1.0

FIG. 5. Anisotropy of the Fisher information for a
ppose a rebit state po (star) is measured using the
POVM ’Um\u\ 1)1, [+){+[,|=){~[}. Depending on po, the
distribution of the unconstrained estimates pu. (cllipses) may
be anisotropic. Imposing the positivity constraint p > 0
is difficult in Fisher-adjusted coordinates; in this paper, we
simplify these complexities to the case where T o 1l and is
independent of po

{oz)

{

(1) Identify which degrees of freedom in . x, are,
and are not, affected by projection onto the tangent
cone T(po)

(2) For each of those categories, evaluate its contribu-
tion to the value of (A)

In Section IV A, we identify two types of degrees of
freedom in fyg s, which we call the “L” and the “kite
Section IV B computes the contribution of degrees of free-
dom in the “L”, and Scction IV C computes the contri-
bution from the “kite”. The total expected value is given
in Equation (19) in Section IV D, on page 11.

A. Separating out Degrees of Freedom in . .,

We begin by observing that A(po, M) can be written
as a sum over matrix elements,
; .
S (s — po)ie
T

=Yk where Ak = € 2|(puna — po)inl?,

A= €T (pu.a — p0)?] =

and therefore (X) = 3, (Aji). Each term (\jx) quan-
tifies the mean-squared error of a single matrix clement
of 4 and while the Wilks theorem predicts (A;x) = 1
for all j,k, due to positivity constraints, this no longer
holds. In particular, the matrix elements of fy,.. now
fall into two parts:

1. Those for which the positivity constraint does affect
their behavior.

8
A Matrix Elements of
[ ]
3 0w 02 012 2
=
2 on 02 012 2
Division of the matrix clcmcnta of §,
i ranke? state is reconstricted in d — § dimensionk

the total loglikelihood ratio A(po.

Me) i the sum of torms Ayt
from error. s

in each matrix element (py.«);x. Left: Numer
show aclear division: some matrix elements have (A;) ~ 1
predicted by the Wilks theore while othe
or less. Right: The numerical results support our theoretical
reasoning for dividing the matrix elements of py. v, into two
parts: the “kite” and the “L" !

e cither more

Those for which the positivity constraint does not
affect their behavior, as they correspond to direc-
tions on the surface of the tangent cone T(po). (Re-
call Figure 4 - as a component of pu, s along T'(po)
changes, the component of fy,. . changes by the
same amount. These elements are unconstrained.)

The latter, which lie in what we call the “L”, comprise all
off-diagonal elements on the support of py and between
the support and the kernel, while the former, which lie
in what we call the “kite”, are all diagonal elements and
all clements on the kernel (null space) of po.

Performing this division s also supported by numerical
simulations (see Figure 6). Matrix clements in the “L”
appear to contribute (A;x) = 1, consistent with the Wilks
theorem, while those in the “kite” contribute more (if
they are within the support of po) or less (if they are in
the kernel). Having performed the division of the matrix
elements of fuu. a. we observe that () = (AL) + (Miite)
Because each (A;,) is not necessarily equal to one (as in
the Wilks theorem), and because many of them are less
than 1, it is clear that their total () is dramatically lower
than the prediction of the Wilks theorem. (Recall Figure
2)

In the following subsections, we develop a theory to
explain the behavior of (AL) and (Aqie). In (lulm., it
is helpful to think about the matrix & = fyy.v, —
 normally-distributed fraceless matrix. To. \\mphfv fe
analysis, we explicitly drop the Tr(8) = 0 constraint and
let § be N(0,¢1l) distributed over the d>-dimensional
space of Hermitian matrices (a good approximation when
d > 2), which makes § proportional to an element of the
Gaussian Unitary Ensemble (GUE) [52]

T ——————

B. Computing (L)

The value of each d;; in the “L” is invariant under
projection onto the boundary (the surface of the tangent
cone T(po)), meaning that it is also equal to the error
(Pa = po) k- Therefore, (\x) = (67 2.)/€%. Because M’
satisfies LAN, it follows that cach 6, is an i.i.d. Gaussian
random variable with mean zero and variance 2. Thus
(Ajk) = 1Y (j.k) in the The dimension of the
surface of the tangent cone is equal to the dimension of

small eigenvalues are critical in truncation. Further, only
knowledge of the typical cigenvalues of py . is neces-
sary for computing (o). Therefore, we do not need
to determine iy, exactly, which would require explic-
itly solving Equation (5) using the algorithm presented
in [51]; instead, we need a procedure for determining its
typical cigenvalues.

We assume that Noampies i sufficiently large so that
all the nonzero cigenvalues of py are much larger than
s accurately ap-
the of py on its sup-

¢. This means the cigenbasis of . u

the manifold of rank-r states in a d-di space. A
direct calculation of that quantity yields 2rd — r(r + 1)
(A) = 2rd —r(r +1)

Another way of obtaining this result is to view the &y
in the “L” as errors arising due to small unitary pertur-
bations of po. Writing puw., = UtpoU, where U = e’
we have

Prwe, = po + i€[po, H] + O(€?),

and 6 ~ ie[po, H]. If j = k, then d;; = 0. Thus, small
unitaries cannot create errors in the diagonal matrix ele-
ments, at O(c). If j # k, then &y, # 0, in general. (Small
unitaries can introduce errors on off-diagonal elements.)
However, if either j or k (or both) lie within the kernel
of po (i.e.. (Klpolk) or (jlpols) is 0), then the correspond-
ing 4,5, are zero. The only off-diagonal elements where
small unitaries can introduce errors are those which are
coherent between the kernel of pg and its support. These
off-diagonal elements are precisely the “L”, and are the
{65k | Glool) # 0.5 # k. 0< j.k < d—1}. This
set contains 2rd — r(r + 1) elements, each of which has
(Aji) = 1, so we again arrive at (Ap) = 2rd — r(r + 1).

C. Computing (i)

Computing () was made easy by the fact that the
matrix elements of § in the “L” are invariant under the
projection of py. ¢, onto T(pg). Computing (Akiee) is a
bit harder, because the boundary does constrain d. To
understand how the behavior of (Agire} is affected, we an-
alyze an algorithm presented in [51] for explicitly solving
the optimization problem in Equation (5).

This algorithm, a (very fast) numerical method for
comPpUng fy. gIven Py e, utilizes two steps:

1. Subtract ¢l from puu,. vy, for a particular ¢ € R.
2. “Truncate” fu,n, — gll, by replacing cach of its
negative cigenvalues with zero,

Here, ¢ is defined implicitly such that
Tr [Trunc(pue e, — q)] = 1, and must be deter-
mined numericaily. However, we can analyze how this
algorithm affects the cigenvalues of fy. ., which turn out
to be the key quantity necessary for computing (Aie)
The truncation algorithm above is most naturally per-
formed in the »m»n\.dm of pav,. Exact diagonaliza-
tion of Pu not ible analy ically, but only its

——

port; and (2) the mgcn\m,loh of Oyer = Iier0lley =
Tyes s, s, where Iy is the projector onto the ker-
nel of py. -

Changing to this basis diagonalizes the “kite” portion
of 4, and leaves all elements of the “L” unchanged (at
0O(¢)). The diagonal elements fall into two categories

1. 7 clements corresponding to the eigenvalues of po,
which are given by p; = pj; + 6;; where pj; is the
™ eigenvalue of po, and 85 ~ A0, €2)

2. N = d— r clements that are cige
which we denote by & = {r;: j=1...N}

In turn, g is the solution to

- +2 —0t=1 (2

=

where (2)* = max(x, 0), and Ayt is

ENite = 3 lois — 0~ )P+ Y (5 - 9)*]. (13)
i=1 =1

To solve Equation (12), and derive an approximation
for (13), we use the fact that we are interested in comput-
ing the average value of Aie. which justifies approximat-
ing the random variable g by a closed-form, deterministic
value. To do so, we need to understand the behavior of
k. Developing such an understanding, and a theory of
its typical value, is the subject of the next section,

1. Approzimating the eigenvalues of « GUE(N ) matriz
We first observe that while the #; are random vari-
ables, they are not normally distributed. Instead, be-
cause G is proportional to a GUE(N) matrix, for
N > 1, the distribution of any cigenvalue ; converges
toa \hgnm x(‘nmml(wlmnlnmuu [53]. given by Pr(x) =
2 VRT =2 for |k| < R, with R = 2¢v/N. The eiges
values are n(»( independent; they tend to avoid collisions
(“level avoidance” [54]), and typically form a surprisingly
regular array over the support of the Wigner semicircle.
Since our goal is to compute (Akie), we can capitalize on
this behavior by replacing each random sample of & with
a typical sample given by its order statistics &. These are
the average values of the sorted &, so % is the average

T —————

100 (sorted) GUE eigenvalues 1w lwmﬂ GUE eigenvalues.

NI ”

- .

Index j Index j

FIG. 7. Approximating typical samples of GUE(N)
eigenvalues by order statistics: We approximate a typical
sample of GUE(N) eigenvalues by their order statistics (aver-
age values of a sorted sample). Left: The sorted cigenvalues
(ice., order statistics r;) of one randomly chosen GUE(100)
matrix. Right: Approximate expected values of the order
statistics, &, of the GUE(100) distribution, computed as
the average of the sorted cigenvalues of 100 randomly cho-
sen GUE(100) matrices.

value of the j* largest value of k. Large random sam-
ples are usually well approximated (for many purposes)
by their order statistics even when the elements of the
sample are independent, and level avoidance makes the
approximation even better.

Suppose that « are the eigenvalues of a GUE(N) ma-
trix, sorted from highest to lowest. Figure 7 illustrates
such a sample for N 100. It also shows the aver-
age values of 100 such samples (all sorted). These are
the order statistics  of the distribution (more precisel
what is shown is a good estimate of the order statistics;
the actual order statistics would be given by the average
over infinitely many samples). As the figure shows, while
the order statistics are slightly more smoothly and pre-
dictably distributed than a single (sorted) sample, the
two are remarkably similar. A single sample # will fluc-
tuate around the order statistics, but these fluctuations
are relatively small, partly because the sample is large,
and partly because the GUE eigenvalues experience leve
repulsion. Thus, the “typical” behavior of a sample — by
which we mean the mean value of a statistic of the sam-
ple — is well captured by the order statistics (which have
no fluctuations at all)

We now turn to the problem of modeling # quantita-
tively. We note up front that we are only going to be
interested in certain properties of k: specifically, partial
sums of all & greater or less than the threshold g, or
partial sums of functions of the «; (e.g., (k; — q)%). We
require only that am ansatz be aceurate for such quanti-
ties. We do not use this fact explicitly, but it motivates
our approach — and we do not claim that our ansatz is
accurate for all conceivable functions.

In general, if a sample & of size N is drawn so that each
# has the same probability density function Pr(x), then
a good approximation for the j*" order statistic

s given

I —

Geometry of the tangent cone
"L" and the “kite”

Truncating unconstrained ML estimates
IBM algorithm

Random matrix theory
Gaussian Unitary Ensemble
*Scholten & Blume-Kohout, NJP 20 023050 (2018

Sorted GUE Eigenvalues vs CDF ' (N=100)
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FIG. 8. Approximating order statistics by the inverse

CDF: Order statistics of the GUE(N) eigenvalue distribution

y well approximated by the inverse CDF of the Wigner

\(‘muml(‘ distribution. In both figures, we compare the order
¢

are

statis distribution to the inverse CDF of the
Wigner semieircle distribution. Top: N  100. Bottom.
N = 10. Agreement in both cases s essentially perfect

by the inverse cumulative distribution function (CDF):

ﬂ) (14)

This is closely related to the observation that the his-
togram of a sample tends to look similar to the underlying
probability density function. More precisely, it is equiv-
alent to the observation that the empirical distribution
function (the CDF of the histogram) tends to be (even
more) similar to the underlying CDF. For i.id. samples,
this is the content of the Glivenko-Cantelli theorem [55].
Figure 8 compares the order statistics of GUE(100) and
GUE(10) eigenvalues (computed as numerical averages
over 100 random samples) to the inverse CDF for the
Wigner semicircle distribution. Even though the Wigner
semicircle model of GUE eigenvalues is only exact as
N — 0o, it provides a nearly-perfect model for % even at
N = 10 (and remains surprisingly good all the way down

2)

~ CDF ! (

We

make one further approximation, by assuming that
N > 1, so the distribution of the &, is effectively con-
tinuous and identical to Pr(x). For the quantities that
we compute, this is equivalent to replacing the empirical
distribution function (which is a step function) by the
CDF of the Wigner semicircle distribution. So, whereas
for any given sample the partial sum of all x, > g jumps
discontinuously when ¢ = x; for any j, in this approxi-
mation it changes smoothly. This accurately models the
average behavior of partial sums

T —————



..but our result had much better agreement!
An Accurate Replacement for the Wilks Theorem

Wilks Theorem
500 »  Rank(pg) =10

e (various colors) Rank(pg) = 2...9
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What can we do with this result?

Ly

Choose a Hilbert space

dimension for a quantum 0)
system (with prior information
about rank). “| built a qubit”

M

Reason about the effective number
of parameters in the model.

Classically: (A(po, M)) = dim (M)

‘| built a qutrit”

M

“‘Quantumly”:  (A(pg, M)) ~ “dim(M)” Connections to

compressed sensing?



What can we do with this result?

Cho
dimz
Syst

ol UNDER CONSTRUCTION

Reason about the effective number
of parameters in the model.

Classically: (A(po, M)) = dim (M)

“‘Quantumly”:  (A(pg, M)) ~ “dim(M)” Connections to

compressed sensing?



Recent results in classical compressed sensing show
how the geometry of convex optimization affects performance.

Suppose we acquire data of the form zg = Axg

Estimate the signal using convex optimization:

Xo = argmin f(x) s.t. zg= Ax
xeM

To reason about properties of the estimate, look at descent cone:

D(f,x) =U;s0 {y eM : flx+71y) < f(x)}

Living on the edge: Phase transitions in convex programs with random data
D Amelunxen, M Lotz, M McCoy, & J Tropp
Information and Inference, 2014



Recent results in classical compressed sensing show
how the geometry of convex optimization affects performance.

“Interaction” of descent cone and null space of A determines
whether we can uniquely recover the signal:

Fact: x( is the unique optimal point of minimizing
a proper convex function if, and only if, D Nnull(4) = {0}.

Xg+ null(A) X+ null(A)

lx:(x)s [lxo)] \‘ x: fix)s [ixgl] \

X0 D (_/ ..' X0 t'

F1G. 4. The optimality condition for a regularized inverse problem. The condition for the regularized linear inverse problem (2.4)
to succeed requires that the descent cone D{(f,xq) and the null space null{4) do not share a ray. [Left] The regularized linear
inverse problem succeeds. [Right] The regularized linear inverse problem fails.

Living on the edge: Phase transitions in convex programs with random data
D Amelunxen, M Lotz, M McCoy, & J Tropp
Information and Inference, 2014



Computing the statistical dimension of the descent cone
tells us when unigue recovery is possible.

Given cone C, define the metric projection of a point onto C as

[Ic(x) = argmin ||x — /|
yeC

The statistical dimension of the cone is

6(C) = ([[He(x)|[*)  x~N(0,I)

If C is an L-dimensional subspace, 6(C') = L

Living on the edge: Phase transitions in convex programs with random data
D Amelunxen, M Lotz, M McCoy, & J Tropp
Information and Inference, 2014



Computing the statistical dimension of the descent cone
tells us when unigue recovery is possible.

Theorem: Suppose A € R™*¢ with i.i.d N'(0,1) entries.

If m > 6(D(f,x0)) + /8log(4/n)Vd,
then recovery is possible with probability > 1 — n.

With enough constraints, the S+ oul(A)
null space doesn’t intersect the
descent cone. lx: f(x)=s Jlxp)l \

“Skinnier” descent cones have
lower statistical dimension,
meaning fewer measurements
are necessary.

Living on the edge: Phase transitions in convex programs with random data

D Amelunxen, M Lotz, M McCoy, & J Tropp
Information and Inference, 2014



Our replacement for the Wilks theorem gives
the statistical dimension of the tangent cone!

Tangent Cone Example (Rebit)

Start with unconstrained ML estimates
pmr,ay, ~ N(po, Z/N)

Compute metric projections onto tangent cone

pMmL, My = L1 (ﬁML,M;l)

Expected value of loglikelihood ratio statistic
IS the statistical dimension

(T (po)) = (Tr[(Tr(py) (PML, M) — P0)7])

Does this result provide new insight
into guantum compressed sensing?



We understand how the positivity constraint
In state tomography affects reconstruction.

Kalev, et. al, npj Quantum Information 1, 15018 (2015)
Quantum tomography protocols with positivity are
compressed sensing protocols

Theorem 1. Let Py, be a positive semidefinite matrix with rank
(Po) <r,and lety = A[P,| be the measurement record obtained by
a sensing map A that corresponds to compressing measurements
for a rank-r Hermitian matrix. Then Py is the nematrlewnhm
the set of positive semidefinite matrices of any rank that is
consistent with the measurement record.

Requires restrictions on the measurement map



For the case of Pauli measurements, we can compute the
number of outcomes necessary for reconstruction.

Gross, et. al, PRL 105, 150401 (2010)
Quantum State Tomography via Compressed Sensing

Theorem 1 (low-rank tomography)—Let p be an arbi-
trary state of rank r. If m = cdrlo - randomly chosen
Pauli expectations are known, then p » can be uniquely
reconstructed by solving the convex optimization problem
(1) with probability of failure exponentially small in c.




For the case of Gaussian measurements, we can compute the
number of outcomes necessary for reconstruction.

Chandrasekaran et. al, Foundations of Computational Mathematics
(2012) 12:805-849
The Convex Geometry of Linear Inverse Problems

Proposition 3.11 Let x* be an m| x my rank-r matrix with m| < m,. Letting A
denote the set of unit-Euclidean-norm rank-one mairices, we have that

rym ) i — 2
w(74(x*) NS™m2 1) <3r(mi+ma —r).
Thus 3r(m| + ma —r) + 1 random Gaussian measurements suffice to recover X* via

nuclear norm minimizaiion with high probability.

D

Conseqguence:

In state tomography, 6rd — 3r* measurements are sufficient.



In the limit of large dimension, our result for
the statistical also yields a similar conclusion.

20 (157r\® 20 [15ar\*°]
</\>de 6—7( ) +_(2d) — or*.

o . . Number of measurements
Statistical dimension of
for guantum compressed

tangent cone T ) .
J sensing (Gaussian model)

Tangent cone in Descent cone of
state space | some convex function??




Wrap up: geometry, model selection, and quantum
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An Accurate Replacement for the Wilks Theorem
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Wrap up: geometry, model selection, and quantum
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Wrap up: geometry, model selection, and quantum
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