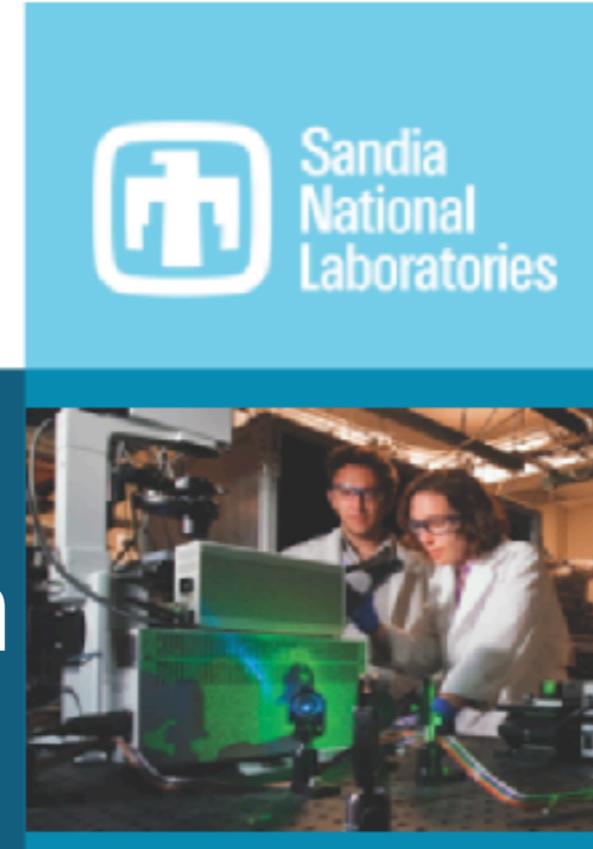


# On the edge: Geometry, model selection, and quantum compressed sensing



PRESENTED BY

Travis L Scholten @Travis\_Sch

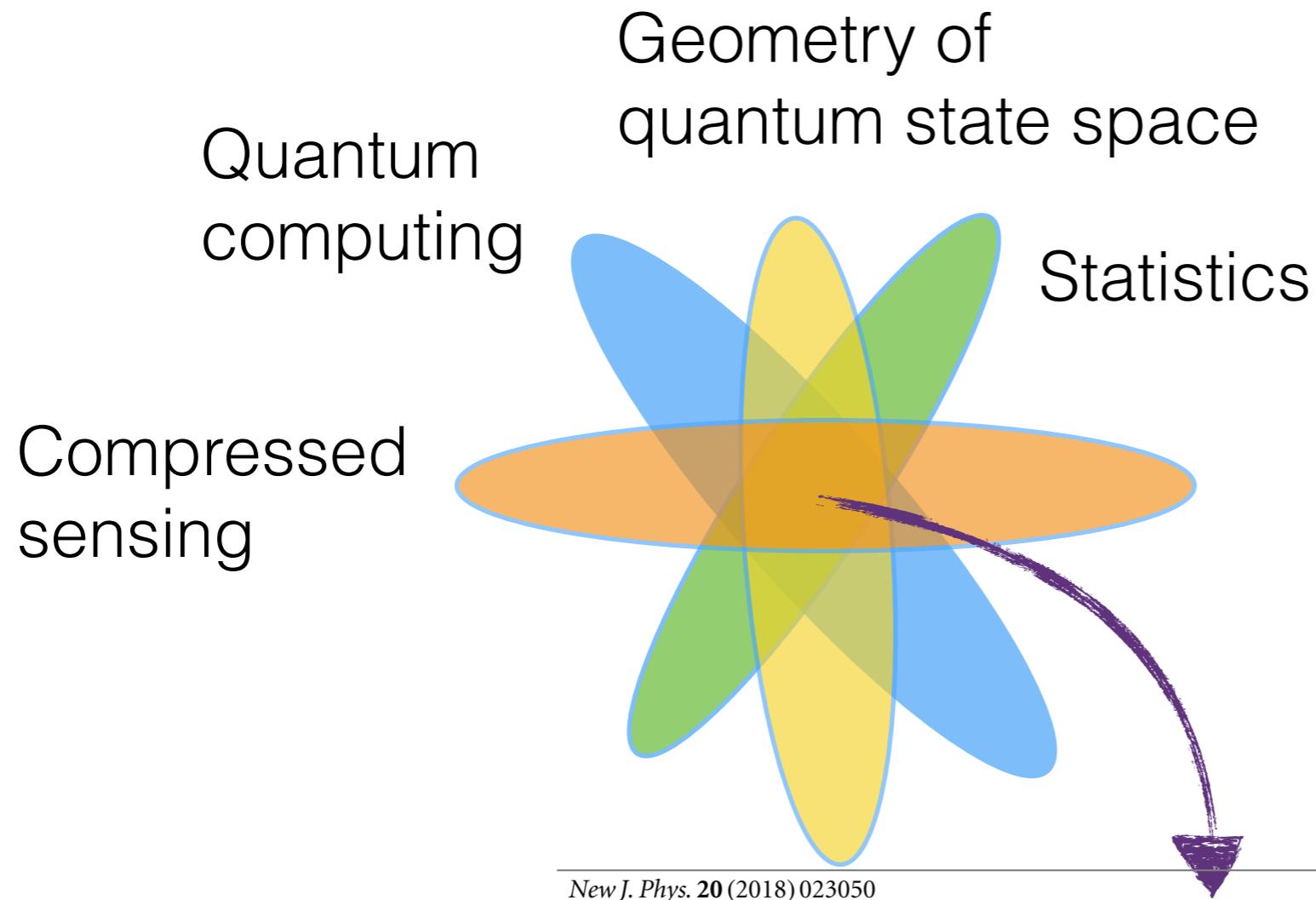
Center for Quantum Information and Control, UNM

Center for Computing Research, Sandia National Laboratories



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This talk lies at the intersection of several topics.



Scholten &  
Blume-Kohout,  
NJP **20** 023050 (2018)

## New Journal of Physics

The open access journal at the forefront of physics

PAPER

Behavior of the maximum likelihood in quantum state tomography

Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

Deutsche Physikalische Gesellschaft 

**IOP** Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

Characterizing the behavior of noisy, intermediate-scale quantum information processors can be hard.

Suppose we have an  $n$ -qubit NISQ device.

The number of parameters to be estimated in various tomographic protocols scales poorly:

State tomography -  $p = \mathcal{O}(4^n)$

Process tomography -  $p = \mathcal{O}(16^n)$

Gate set tomography -  $p = \mathcal{O}(M * 16^n)$

**How do we reduce the number of parameters necessary to characterize the device?**

In practice, we usually impose constraints on the estimates to reduce the number of parameters.

State tomography -  $p = \mathcal{O}(4^n)$

“State has known rank”:  $p = \mathcal{O}(r * 2^n)$

Process tomography -  $p = \mathcal{O}(16^n)$

“Process is unitary”:  $p = \mathcal{O}(4^n)$

Gate set tomography -  $p = \mathcal{O}(M * 16^n)$

“Error generators act on one or two qubits”:  $p = \mathcal{O}(M(12n + 120n^2))$

**Our work: identify how to use statistical model selection to choose a good *model*.**

State tomographers have been doing  
model selection all along!

For tomography, a *model* is a set of density matrices.

**Trivial model selection:**

$$\hat{\rho} = \left( \begin{array}{|c|} \hline \text{ } \\ \hline \end{array} \right)$$

Pick a Hilbert space by fiat.  
("Of course it's a qubit!")

State tomographers have been doing model selection all along!

For tomography, a *model* is a set of density matrices.

### Non-trivial model selection:

$$\hat{\rho} = \begin{pmatrix} & & \\ & \text{green box} & \\ & & \text{red box} \end{pmatrix}$$

Restrict estimate to a subspace.

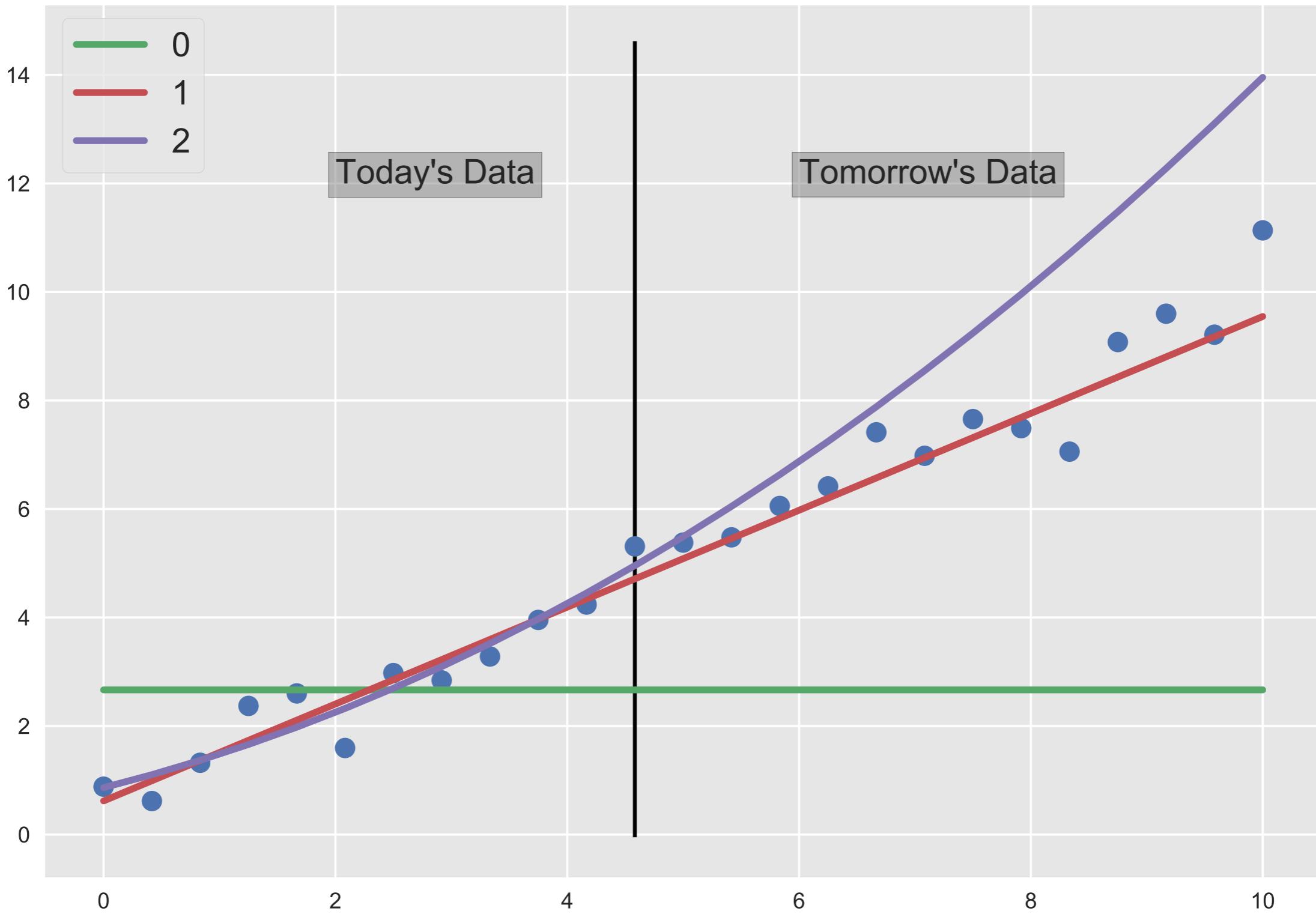
$$\hat{\rho} = \sum_{j,k=0}^{N-1} \rho_{jk} |j\rangle\langle k|$$

$$\hat{\rho} = \begin{pmatrix} \text{green box} & & \\ & \text{green box} & \\ & & \text{red X} \end{pmatrix}$$

Restrict the rank of the estimate.

$$\hat{\rho} = \sum_{j=0}^{r-1} \lambda_j |\lambda_j\rangle\langle\lambda_j|$$

Model selection is used to identify which model fits the data well, and is also useful for prediction.



A *model* is a parameterized family of probability distributions.

Common model for state tomography:

$$\mathcal{M}_{\mathcal{H}} = \{\rho \mid \rho \in \mathcal{B}(\mathcal{H}), \text{Tr}(\rho) = 1, \rho \geq 0\}$$

Probabilities via the Born rule:  $p_j = \text{Tr}(\rho E_j)$

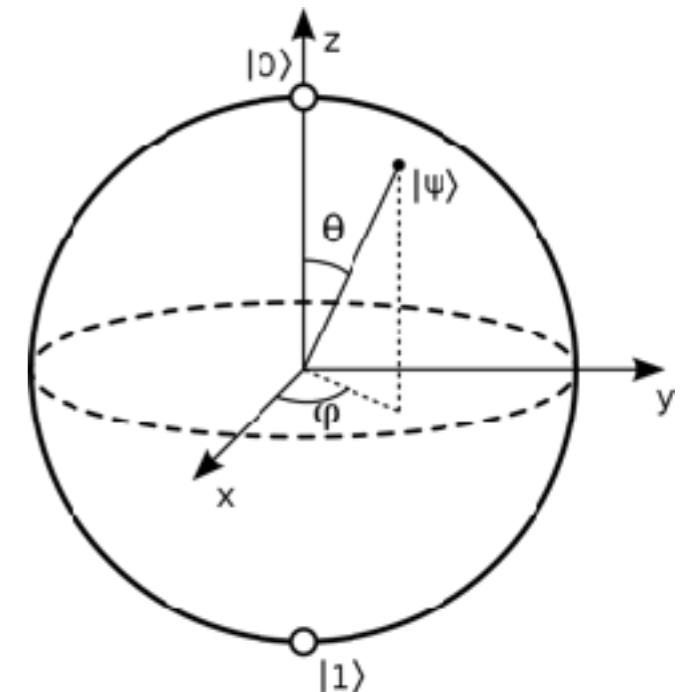
Changing the state changes the probability!

$$\text{POVM} = \{|0\rangle\langle 0|, |1\rangle\langle 1|\}$$

$$\rho_0 = |0\rangle\langle 0| \implies \text{Pr}(\text{"0"}) = 1$$

$$\rho_0 = |+\rangle\langle +| \implies \text{Pr}(\text{"0"}) = 1/2$$

$$\rho_0 = |1\rangle\langle 1| \implies \text{Pr}(\text{"0"}) = 0$$



Maximum likelihood estimation is a common way to infer which parameters of a model can explain your data best.

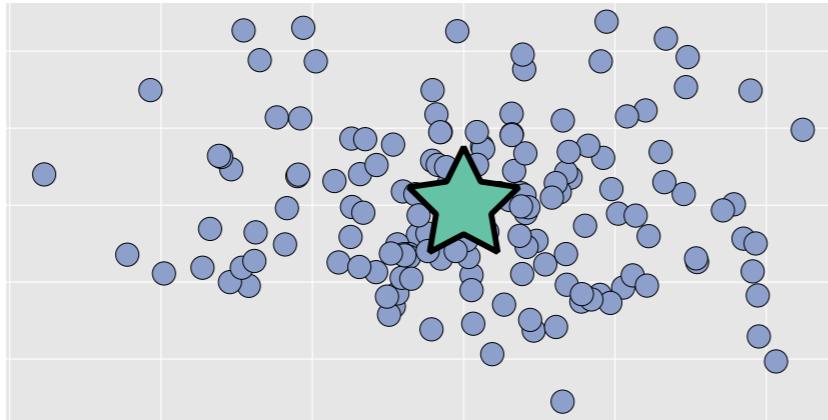
Given data, *likelihood* is

$$\mathcal{L}(\rho) = \Pr(\text{Data}|\rho)$$

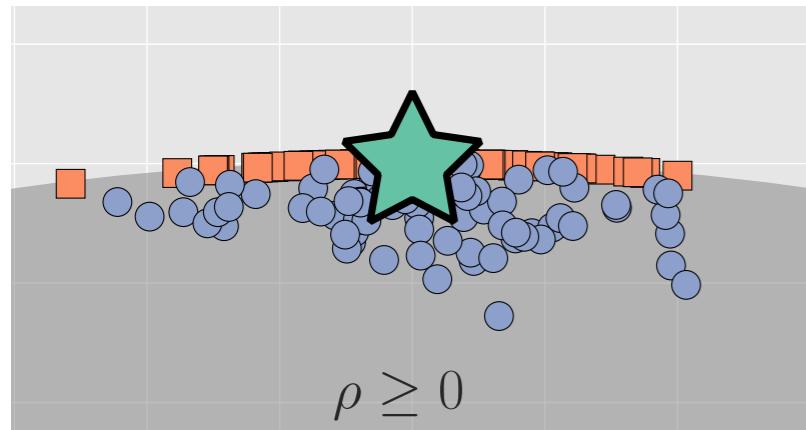
The maximum likelihood estimate is computed as

$$\hat{\rho}_{\text{ML},\mathcal{M}} = \max_{\rho \in \mathcal{M}} \mathcal{L}(\rho)$$

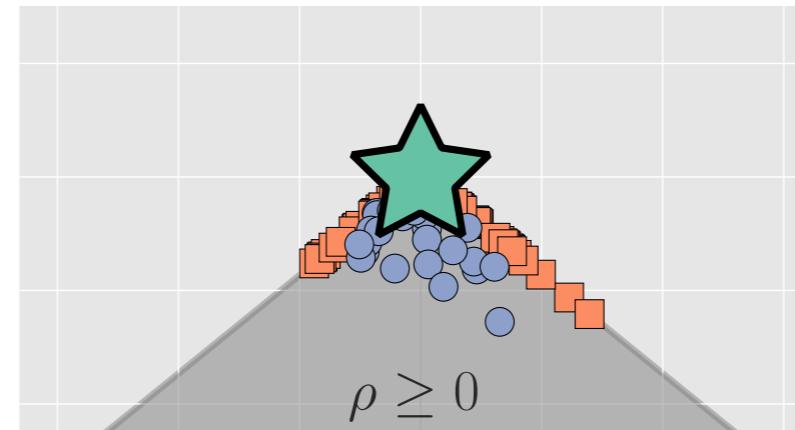
Quantum state space has boundaries, posing some challenges for tomography & model selection.



Easy to reason about  
(many known results)



Hard to reason about  
(known results don't apply!)



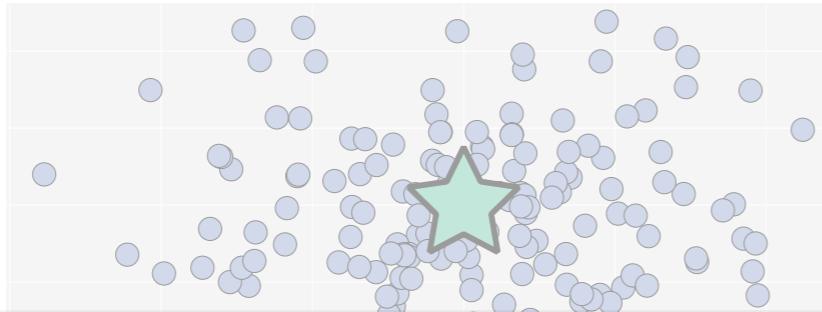
## Tomography:

Boundaries *distort the distribution* of maximum likelihood estimates (makes reasoning about their properties hard).

## Model selection:

Common techniques (Wilks theorem, information criteria) cannot be used!

Quantum state space has boundaries, posing some challenges for tomography & model selection.



Easy to reason about  
(many known results)

These issues stem from the fact that the models used in tomography do not satisfy *Local Asymptotic Normality (LAN)*.

### **Tomography:**

Boundaries *distort the distribution* of maximum likelihood estimates (makes reasoning about their properties hard).

### **Model selection:**

Common techniques (Wilks theorem, information criteria) cannot be used!

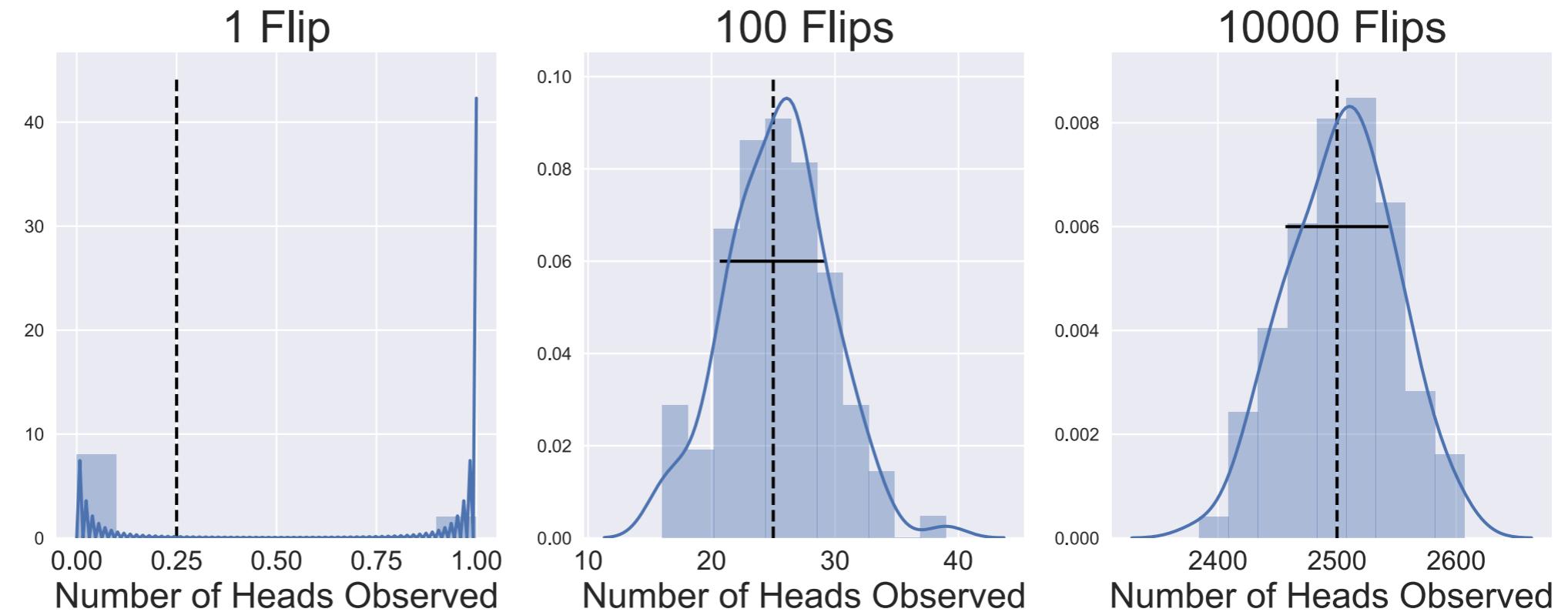
In classical statistics, models often satisfy *local asymptotic normality (LAN)*.

*Local* = fix a value for the parameters  $\theta_0$

*Asymptotic* = the number of samples goes to infinity

*Normality* = the probability distribution function can be approximated by a Gaussian

Example:  
coin flips



$(P_{\theta_0+u/\sqrt{n}} : u \in \mathbb{R}^m)$  &  $(N(u, I_{\theta_0}^{-1}) : u \in \mathbb{R}^m)$  have similar statistical properties

If LAN is satisfied by a model, then several properties follow.

If LAN is satisfied, then asymptotically:

Likelihoods are Gaussian:

$$\mathcal{L}(\rho) \equiv \Pr(\text{Data}|\rho)$$

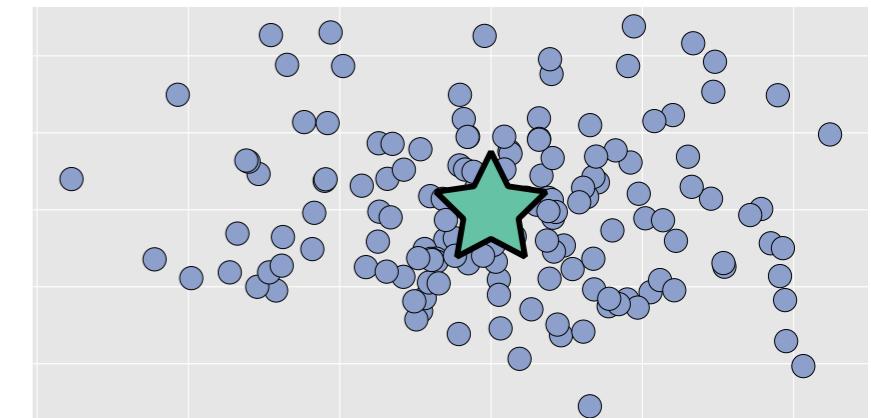
$$\underset{N \rightarrow \infty}{\propto} \text{Exp} \left[ -\frac{1}{2} \text{Tr}(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}}) F(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}}) \right]$$

---

Maximum likelihood (ML) estimates  
are normally distributed:

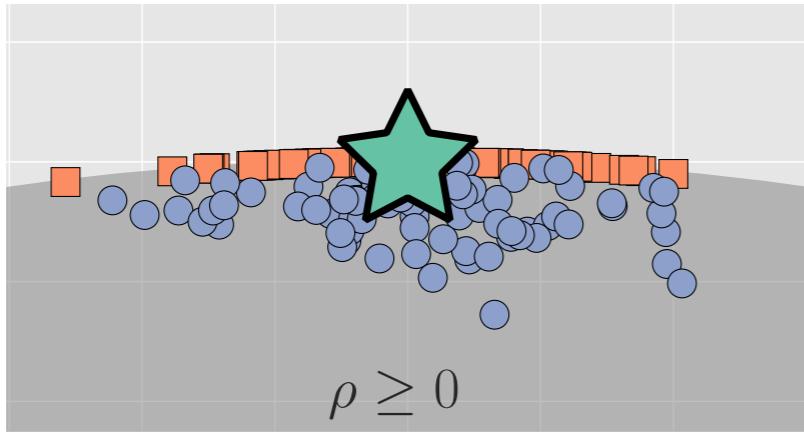
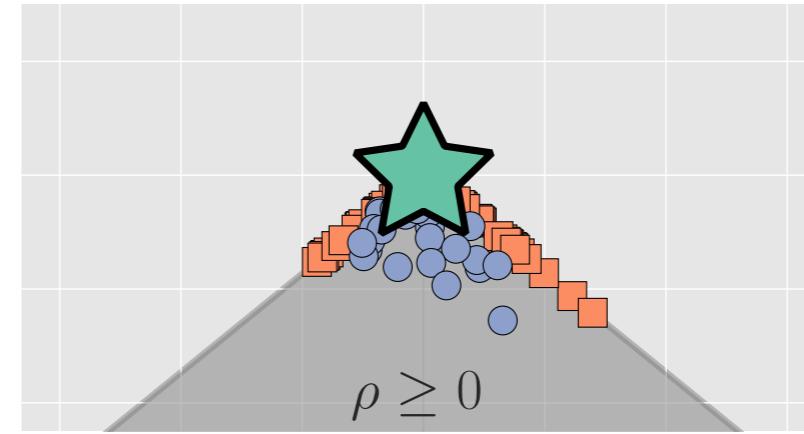
$$\hat{\rho}_{\text{ML}, \mathcal{M}} \equiv \underset{\rho \in \mathcal{M}}{\text{argmax}} \mathcal{L}(\rho)$$

$$\xrightarrow{d} \mathcal{N}(\rho_0, \mathcal{F}^{-1})$$



**Key implication:**  $\mathcal{M}$  satisfies LAN  $\implies \hat{\rho}_{\text{ML}, \mathcal{M}} \sim \mathcal{N}(\rho_0, F^{-1})$

We know ML estimates in state tomography are not always normally distributed, implying LAN is not satisfied.



**Key issue:**  $\hat{\rho}_{\text{ML}, \mathcal{M}} \not\sim \mathcal{N}(\rho_0, F^{-1}) \implies \mathcal{M} \text{ does not satisfy LAN}$

Because LAN is not satisfied, the assumptions necessary for many model selection tools are violated!!

*How do we fix this?*

# New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft 

 IOP Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

## PAPER

# Behavior of the maximum likelihood in quantum state tomography

Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

We show how to **generalize LAN**  
for models with convex boundaries.

We define a new generalization of LAN for models with convex boundaries.



**Definition 1** (Metric-projected local asymptotic normality, or MP-LAN). *A model  $\mathcal{M}$  satisfies MP-LAN if, and only if,  $\mathcal{M}$  is a convex subset of a model  $\mathcal{M}'$  that satisfies LAN.*

We show that quantum state space satisfies MP-LAN.



In state tomography,

$$\mathcal{M}_{\mathcal{H}} = \{\rho \mid \rho \in \mathcal{B}(\mathcal{H}), \text{Tr}(\rho) = 1, \rho \geq 0\} \text{ (all density matrices)}$$

Define

$$\mathcal{M}'_{\mathcal{H}} = \{\sigma \mid \sigma \in \mathcal{B}(\mathcal{H}), \text{Tr}(\sigma) = 1\} \text{ (lift positivity constraint)}$$

(Likelihood is twice continuously differentiable,  
so LAN is satisfied.)

# New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft 

 IOP Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

## PAPER

# Behavior of the maximum likelihood in quantum state tomography

Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

We show how to **generalize LAN**  
for models with convex boundaries.

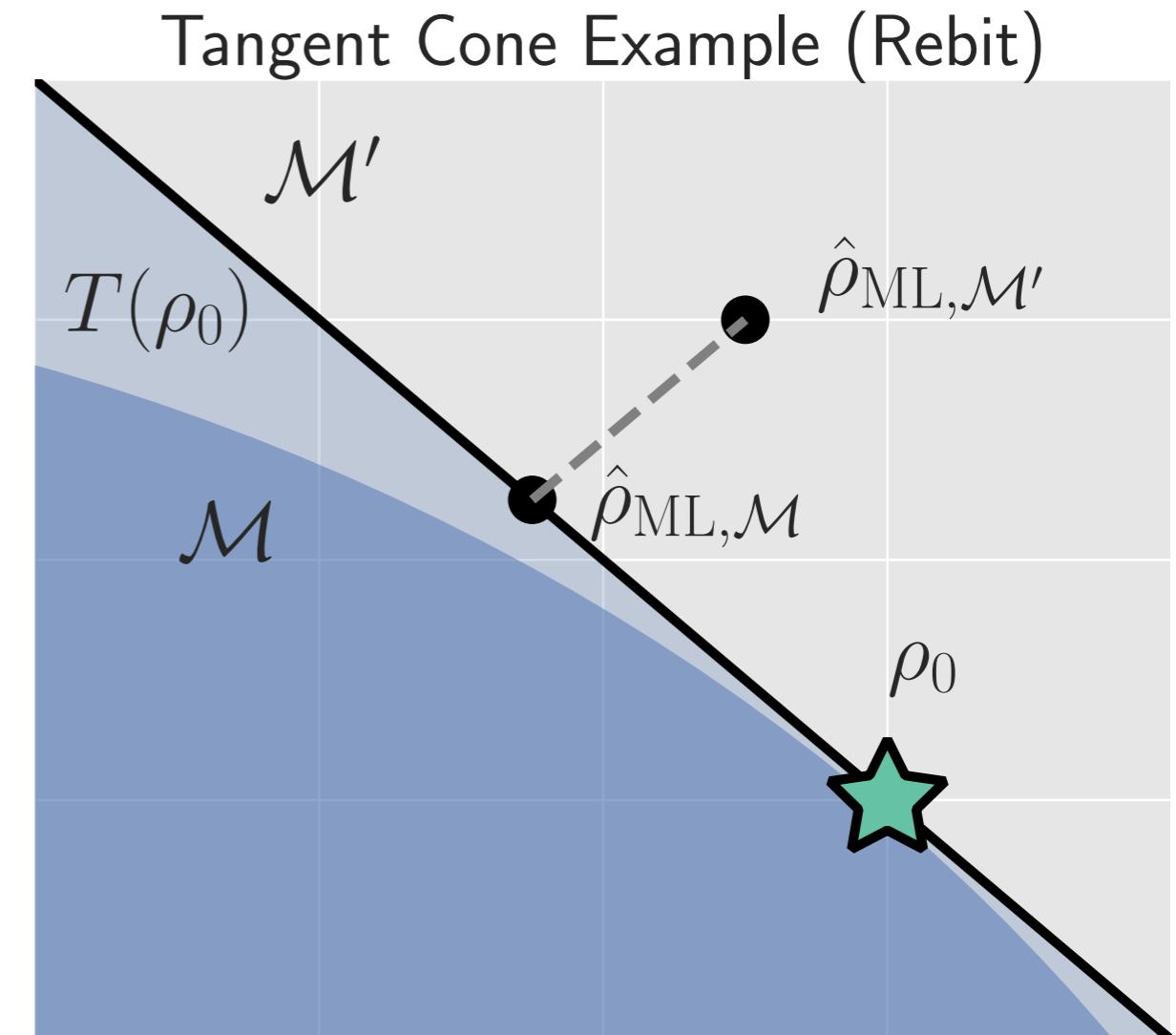
We **derive asymptotic properties**  
of models that satisfy MP-LAN.

Suppose a model satisfies MP-LAN. Then asymptotically,...

...the *local state space* is the *tangent cone*.

We can *zoom in* on the region of state space around the true state to determine the behavior of ML estimates.

Asymptotically, all the ML estimates are contained in a (shrinking) ball around the true state.



Suppose a model satisfies MP-LAN. Then asymptotically,...

...the ML estimate in the constrained model is the *metric projection* of the ML estimate in the larger model.

Because  $\mathcal{M}'$  satisfies LAN:

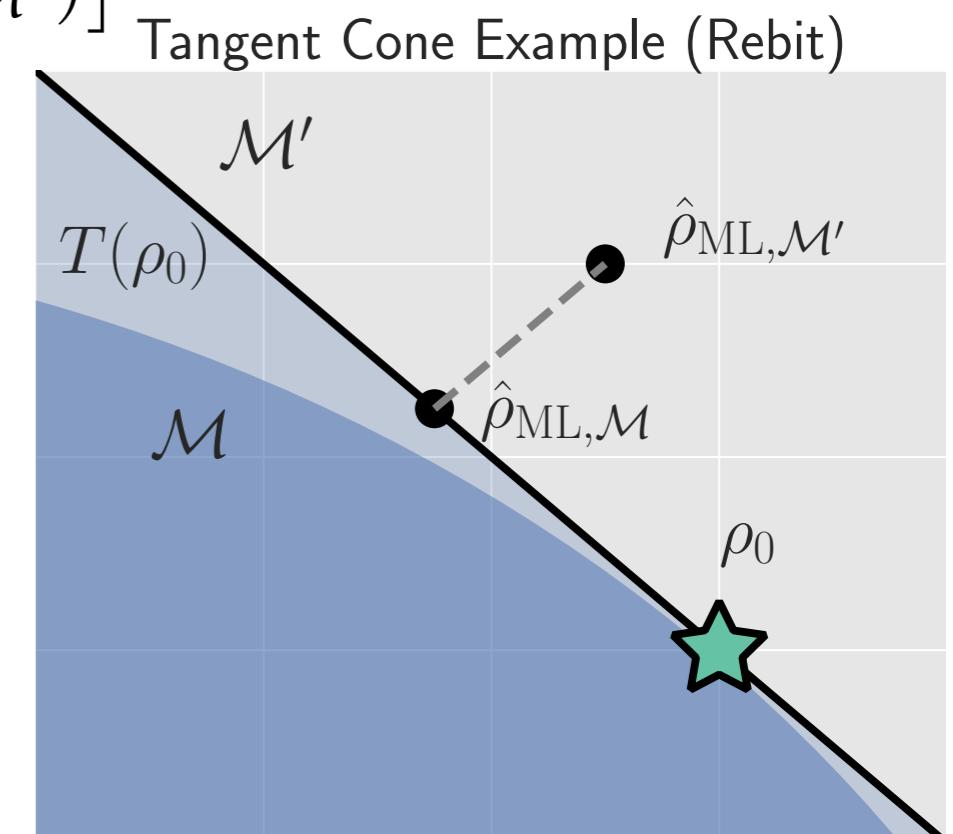
$$\mathcal{L}(\rho) \propto \text{Exp} \left[ -\frac{1}{2} \text{Tr}(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}'}) F(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}'}) \right]$$

Maximize the likelihood over  $\mathcal{M}$ :

$$\hat{\rho}_{\text{ML}, \mathcal{M}} = \underset{\rho \in \mathcal{M}}{\text{argmax}} \mathcal{L}(\rho)$$

Asymptotically, equal to minimizing Fisher-adjusted distance over tangent cone

$$\hat{\rho}_{\text{ML}, \mathcal{M}} = \underset{\rho \in T(\rho_0)}{\text{argmin}} \text{Tr}[(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}'}) F(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}'}))]$$



“Metric projection onto the tangent cone”

Suppose a model satisfies MP-LAN. Then asymptotically,...

...the increase in goodness of fit (as measured by loglikelihood) is equal to increase in squared error (as measured by Fisher information).

---

The loglikelihood ratio statistic comparing two models is

$$\lambda(\mathcal{M}_1, \mathcal{M}_2) = -2 \log \left( \frac{\mathcal{L}(\hat{\rho}_{\text{ML}}, \mathcal{M}_1)}{\mathcal{L}(\hat{\rho}_{\text{ML}}, \mathcal{M}_2)} \right)$$

“How much better does one model do in fitting the data compared to another?”

For analysis purposes: introduce a *reference model*

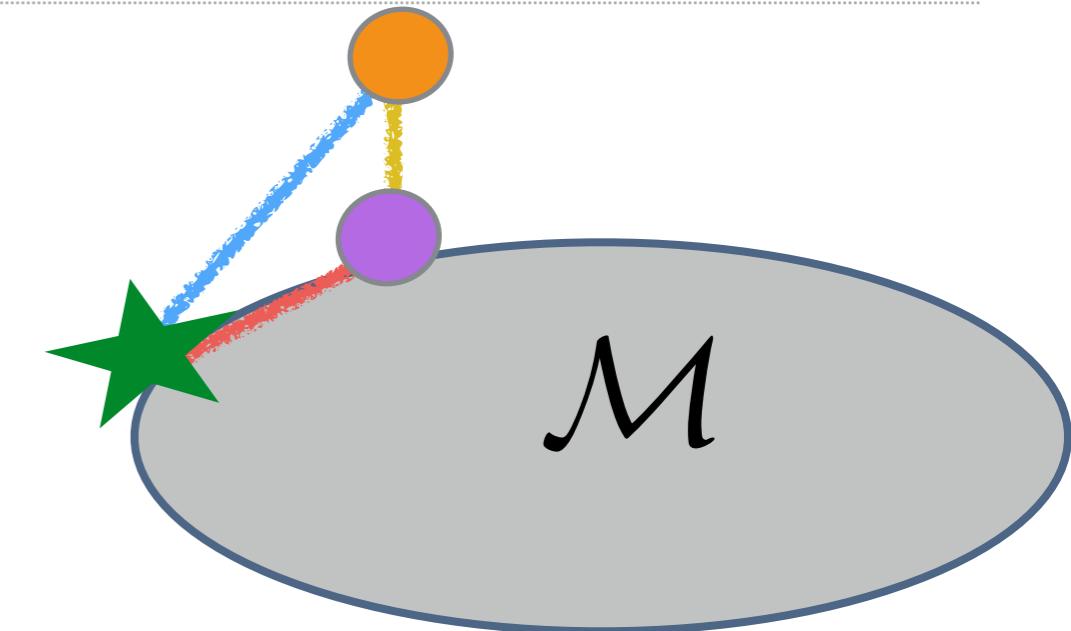
$$\lambda(\mathcal{M}_1, \mathcal{M}_2) = \lambda(\rho_0, \mathcal{M}_2) - \lambda(\rho_0, \mathcal{M}_1)$$

Suppose a model satisfies MP-LAN. Then asymptotically,...

...the increase in goodness of fit (as measured by loglikelihood) is equal to increase in squared error (as measured by Fisher information).

Because  $\mathcal{M}$  satisfies MP-LAN,

$$\lambda(\rho_0, \mathcal{M}) = -2 \log \left( \frac{\mathcal{L}(\rho_0)}{\mathcal{L}(\hat{\rho}_{\text{ML}, \mathcal{M}})} \right)$$



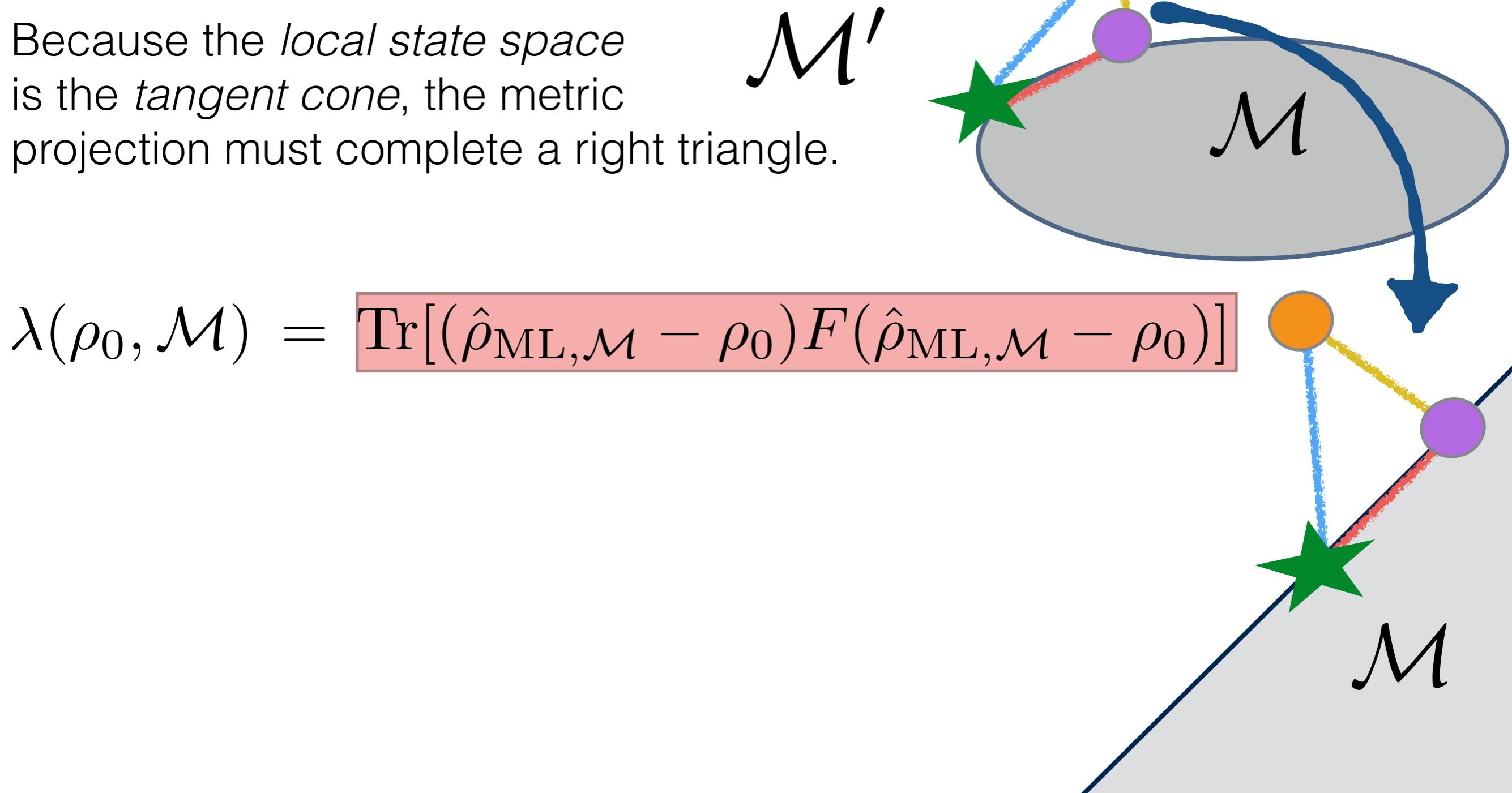
$$\xrightarrow{\text{LAN}} \text{Tr}[(\rho_0 - \hat{\rho}_{\text{ML}, \mathcal{M}'}) F(\rho_0 - \hat{\rho}_{\text{ML}, \mathcal{M}'})]$$

$$- \text{Tr}[(\hat{\rho}_{\text{ML}, \mathcal{M}} - \hat{\rho}_{\text{ML}, \mathcal{M}'}) F(\hat{\rho}_{\text{ML}, \mathcal{M}} - \hat{\rho}_{\text{ML}, \mathcal{M}'})]$$

Suppose a model satisfies MP-LAN. Then asymptotically,...

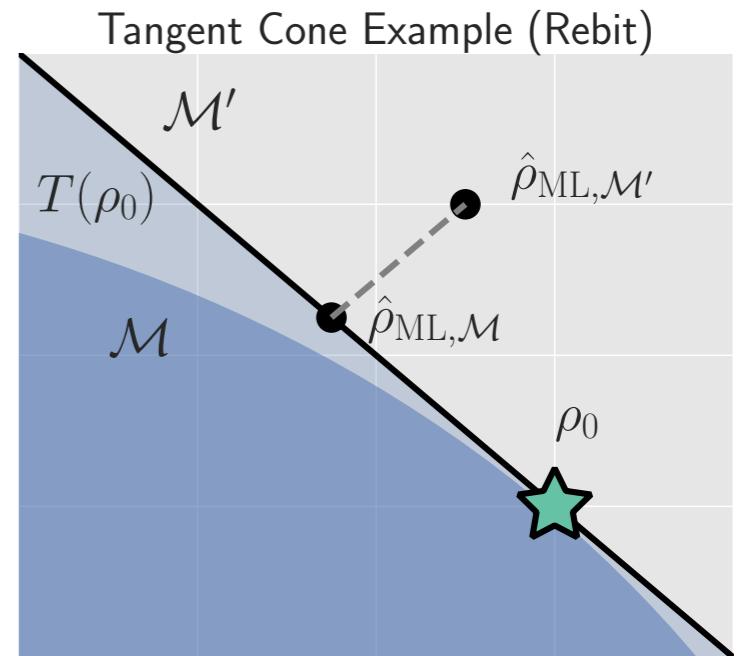
...the increase in goodness of fit (as measured by loglikelihood) is equal to increase in squared error (as measured by Fisher information).

Because the *local state space* is the *tangent cone*, the metric projection must complete a right triangle.



Suppose a model satisfies MP-LAN. Then asymptotically,...

...the *local state space* is the *tangent cone*.



...the ML estimate in the constrained model is the *metric projection* of the ML estimate in the larger model.

$$\hat{\rho}_{\text{ML}, \mathcal{M}} = \underset{\rho \in T(\rho_0)}{\operatorname{argmin}} \operatorname{Tr}[(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}'}) F(\rho - \hat{\rho}_{\text{ML}, \mathcal{M}'} )]$$

...the increase in goodness of fit (as measured by loglikelihood) is equal to increase in squared error (as measured by Fisher information).

$$\lambda(\rho_0, \mathcal{M}) = \operatorname{Tr}[(\hat{\rho}_{\text{ML}, \mathcal{M}} - \rho_0) F(\hat{\rho}_{\text{ML}, \mathcal{M}} - \rho_0)]$$

# East Sandia Mountains - 2017 September 24



# New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft 

 IOP Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

## PAPER

# Behavior of the maximum likelihood in quantum state tomography

Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

We show how to **generalize LAN**  
for models with convex boundaries.

We **derive asymptotic properties**  
of models that satisfy MP-LAN.

We **provide a replacement** to  
the classical Wilks theorem for  
models that satisfy MP-LAN.

A canonical model selection rule uses the *loglikelihood ratio statistic*.

Recall the loglikelihood ratio statistic comparing two models is

$$\lambda(\mathcal{M}_1, \mathcal{M}_2) = -2 \log \left( \frac{\mathcal{L}(\hat{\rho}_{\text{ML}}, \mathcal{M}_1)}{\mathcal{L}(\hat{\rho}_{\text{ML}}, \mathcal{M}_2)} \right)$$

Tells us how much better one model fits the data than the other.

Because of extra parameters, one model might fit better because it's fitting *noise* - how to correct for that?

**Need to know the null behavior –  
what happens when both models are equally good?**

The *Wilks theorem* describes the null behavior of this statistic.

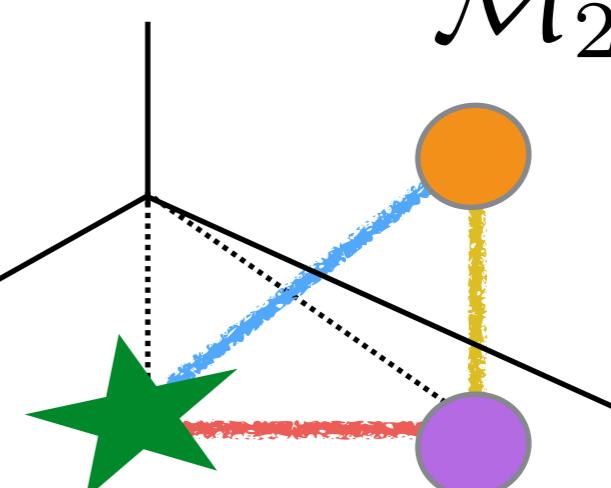
$$\lambda(\mathcal{M}_1, \mathcal{M}_2) = -2 \log \left( \frac{\mathcal{L}(\hat{\rho}_{\text{ML}}, \mathcal{M}_1)}{\mathcal{L}(\hat{\rho}_{\text{ML}}, \mathcal{M}_2)} \right)$$

Wilks theorem (1938):

Assume that  $\rho_0 \in \mathcal{M}_1, \mathcal{M}_2$ , that  $\mathcal{M}_1 \subset \mathcal{M}_2$ , and that  $\mathcal{M}_1, \mathcal{M}_2$  satisfy LAN. Then  $\lambda \sim \chi^2_{\dim(\mathcal{M}_2) - \dim(\mathcal{M}_1)}$ .

Key insight:  $\hat{\rho}_{\text{ML}, \mathcal{M}_2} = \hat{\rho}_{\text{ML}, \mathcal{M}_1} \oplus \sigma$   
 $\sigma \sim \mathcal{N}(0, \mathcal{I})$

$$\begin{aligned} \lambda &= \|\hat{\rho}_{\text{ML}, \mathcal{M}_2} - \rho_0\|^2 - \|\hat{\rho}_{\text{ML}, \mathcal{M}_1} - \rho_0\|^2 \\ &= \|\sigma\|^2 \end{aligned}$$



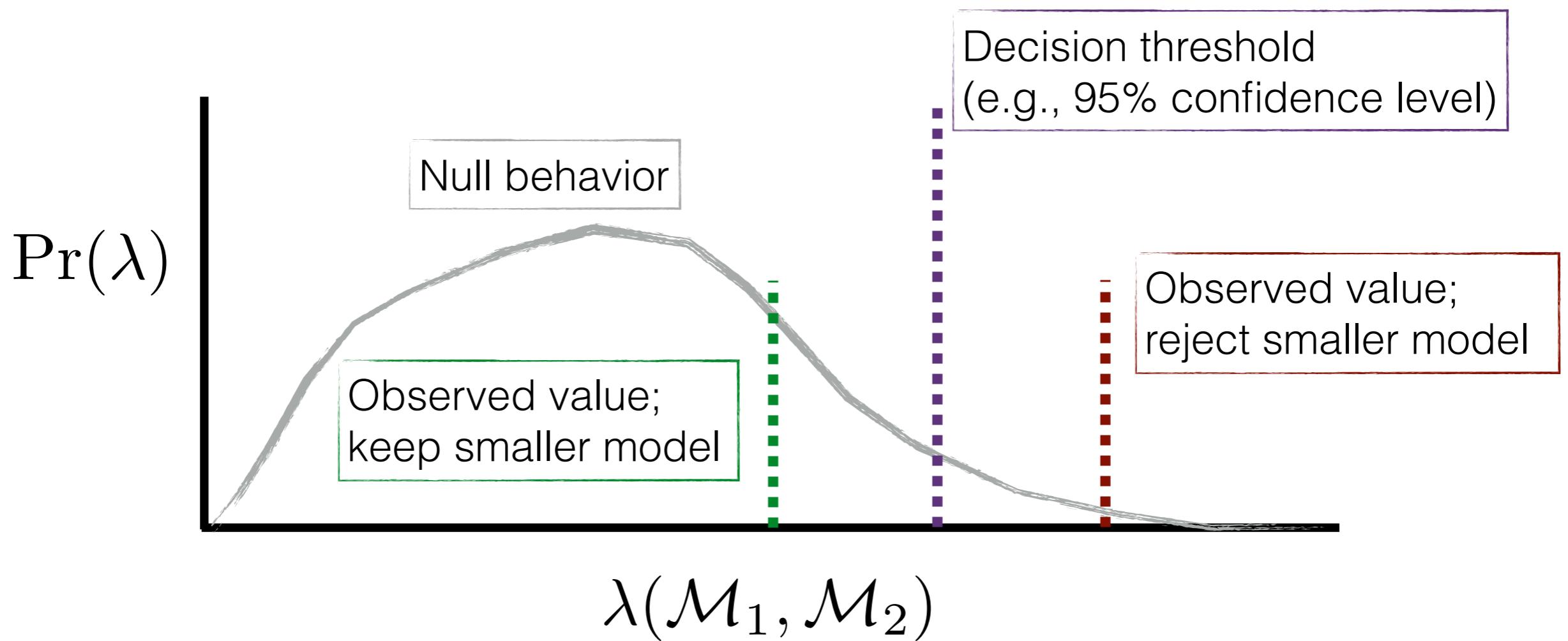
$$\mathcal{M}_1 = \mathbb{R}^2$$

$$\mathcal{M}_2 = \mathbb{R}^3$$

Knowing the null behavior allows us to formulate a *decision rule* for choosing between two models.

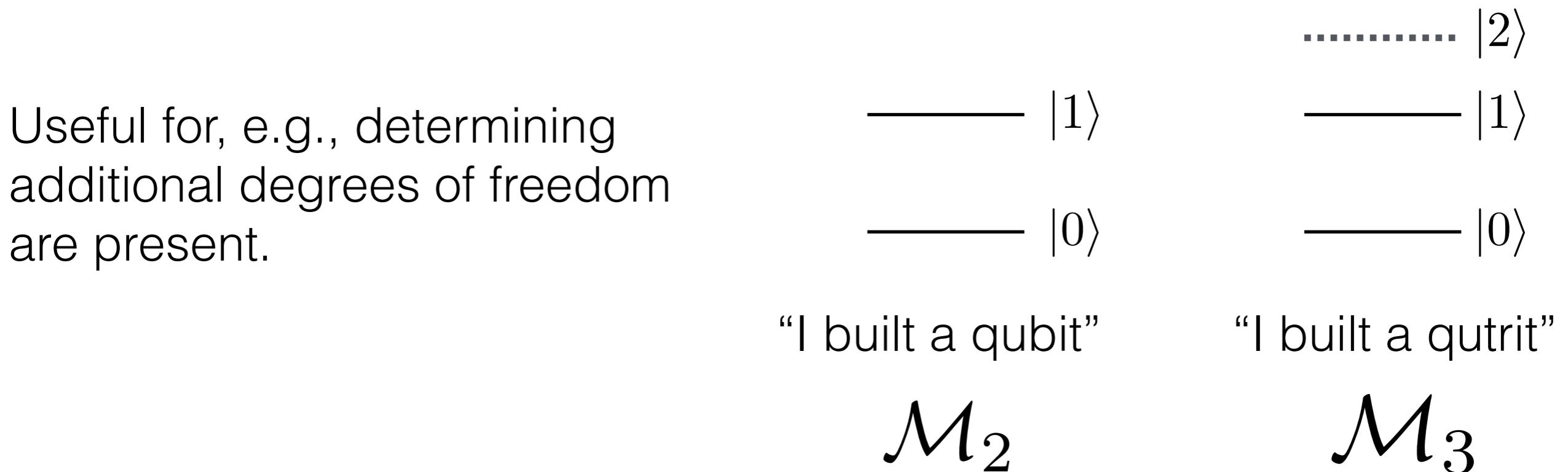
If both models were equally good, would I expect to see the value of the statistic that I actually observed?

Set a *threshold* for judging when to reject smaller model.



For models that might be useful in state tomography, the Wilks theorem fails spectacularly.

Define  $\mathcal{M}_d = \{\rho \in \mathcal{B}(\mathcal{H}_d) \mid \text{Tr}(\rho) = 1, \rho \geq 0\}$   
(d-dimensional density matrices)

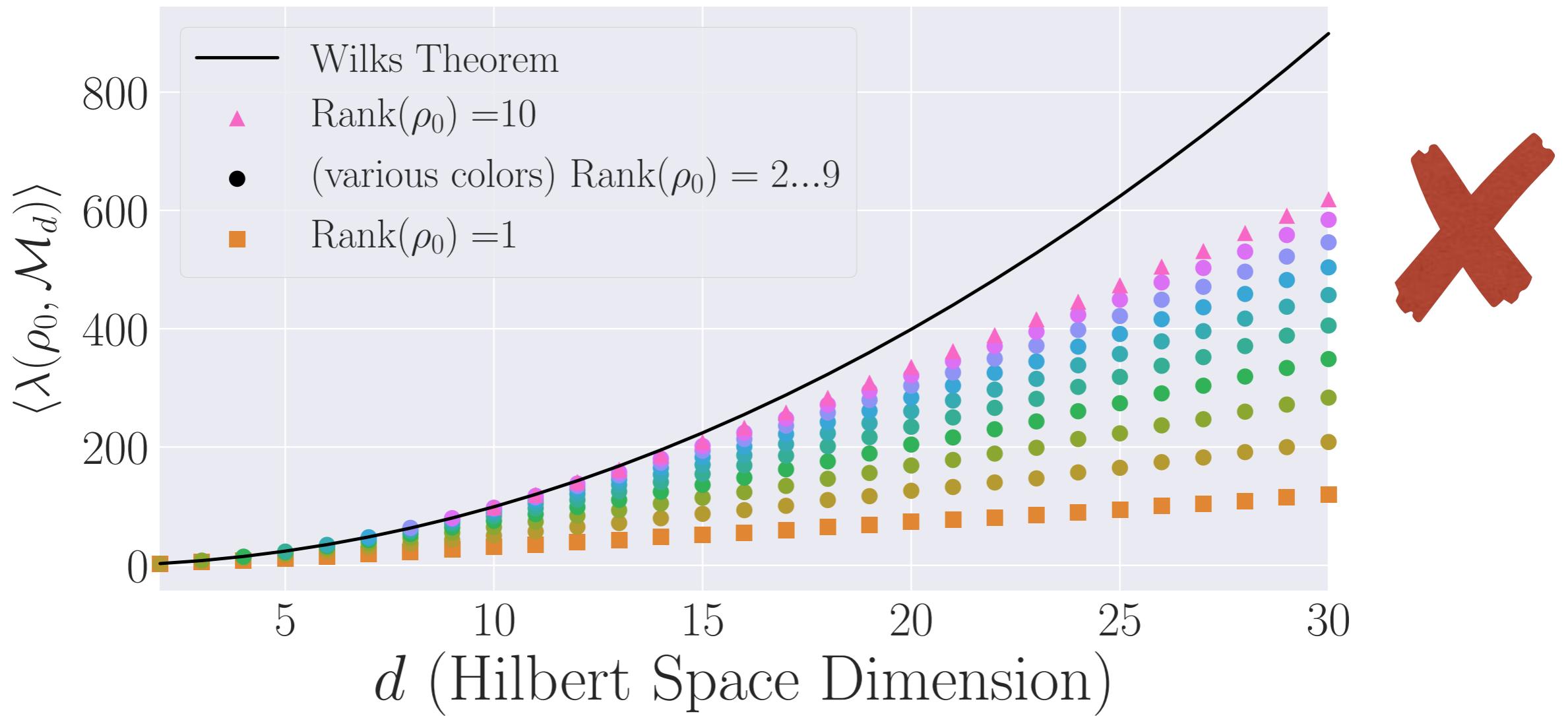


Practical concern for most physical architectures (superconductors, ions, etc) for detecting *leakage*.

For models that might be useful in state tomography, the Wilks theorem fails spectacularly.

Define  $\mathcal{M}_d = \{\rho \in \mathcal{B}(\mathcal{H}_d) \mid \text{Tr}(\rho) = 1, \rho \geq 0\}$  (d-dimensional density matrices)

Wilks theorem says  $\langle \lambda(\rho_0, \mathcal{M}_d) \rangle = d^2 - 1$



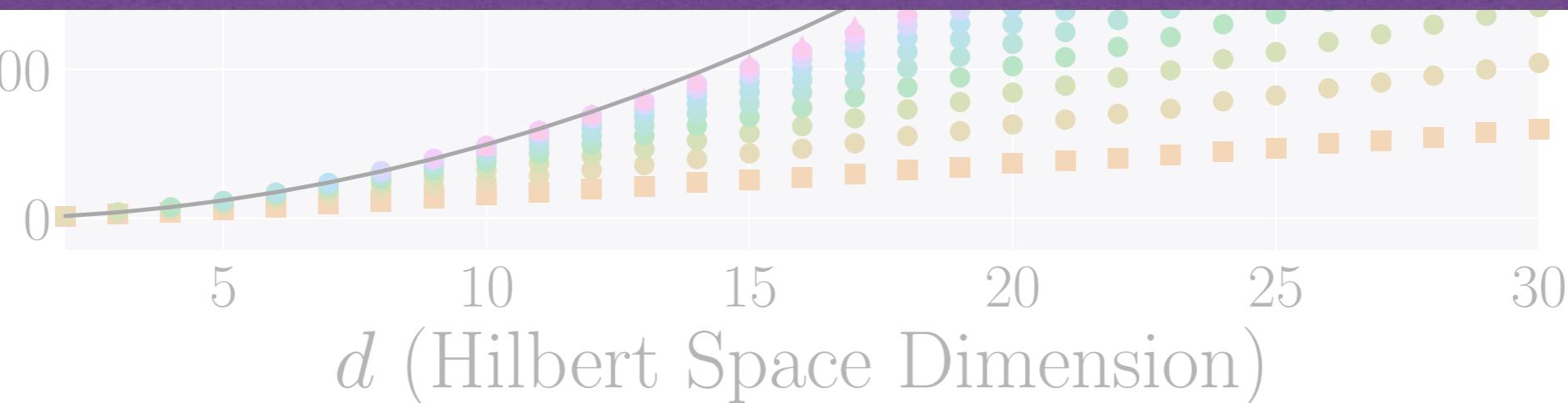
For models that might be useful in state tomography, the Wilks theorem fails spectacularly.

Define  $\mathcal{M}_d = \{\rho \in \mathcal{B}(\mathcal{H}_d) \mid \text{Tr}(\rho) = 1, \rho \geq 0\}$  (d-dimensional density matrices)

Wilks theorem says  $\lambda(\mathcal{M}_d) = d^2 - 1$

Quantum state space **doesn't satisfy LAN**, so **Wilks theorem cannot be applied!**

Can we derive a **replacement** using the fact **state space satisfies MP-LAN?**



Our replacement for Wilks approximates the expected value of the loglikelihood ratio statistic.

Because state space satisfies MP-LAN,

$$\lambda(\rho_0, \mathcal{M}_d) = \text{Tr}[(\rho_0 - \hat{\rho}_{\text{ML}, \mathcal{M}_d}) F(\rho_0 - \hat{\rho}_{\text{ML}, \mathcal{M}_d})]$$

where  $\mathcal{M}_d = \{\rho \in \mathcal{B}(\mathcal{H}_d) \mid \text{Tr}(\rho) = 1, \rho \geq 0\}$

$$\langle \lambda(\rho_0, \mathcal{M}_d) \rangle = ??$$

Our replacement for Wilks approximates the expected value of the loglikelihood ratio statistic.

Because state space satisfies MP-LAN,

$$\lambda(\rho_0, \mathcal{M}_d) = \text{Tr}[(\rho_0 - \hat{\rho}_{\text{ML}, \mathcal{M}_d}) F(\rho_0 - \hat{\rho}_{\text{ML}, \mathcal{M}_d})]$$

where  $\mathcal{M}_d = \{\rho \in \mathcal{B}(\mathcal{H}_d) \mid \text{Tr}(\rho) = 1, \rho \geq 0\}$

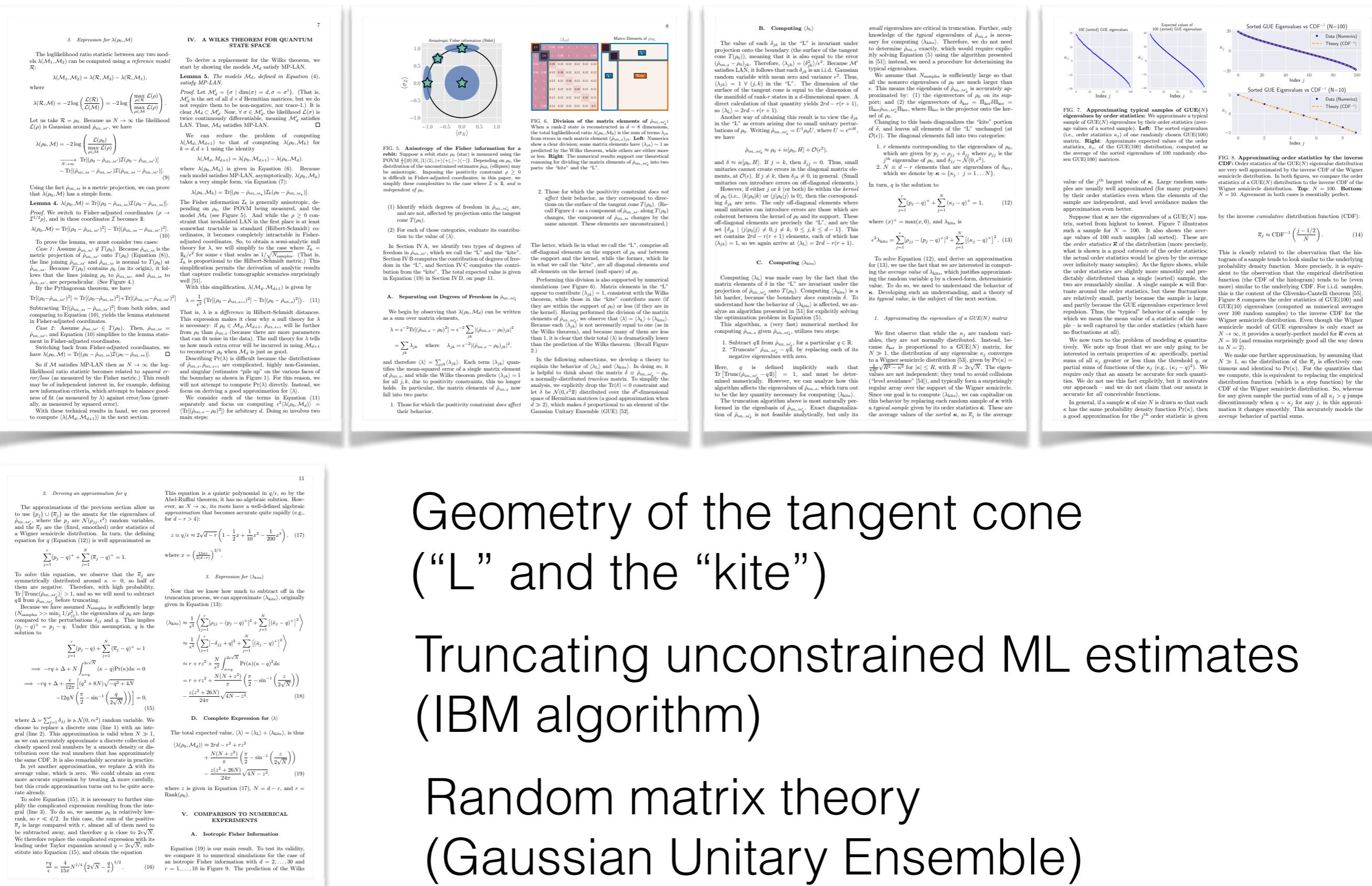
$$\langle \lambda(\rho_0, \mathcal{M}_d) \rangle = ??$$

To make progress, we **assume the Fisher information is isotropic**.

(Never actually happens...except in trivial cases)



# Even with that assumption, the calculation\* was non-trivial...



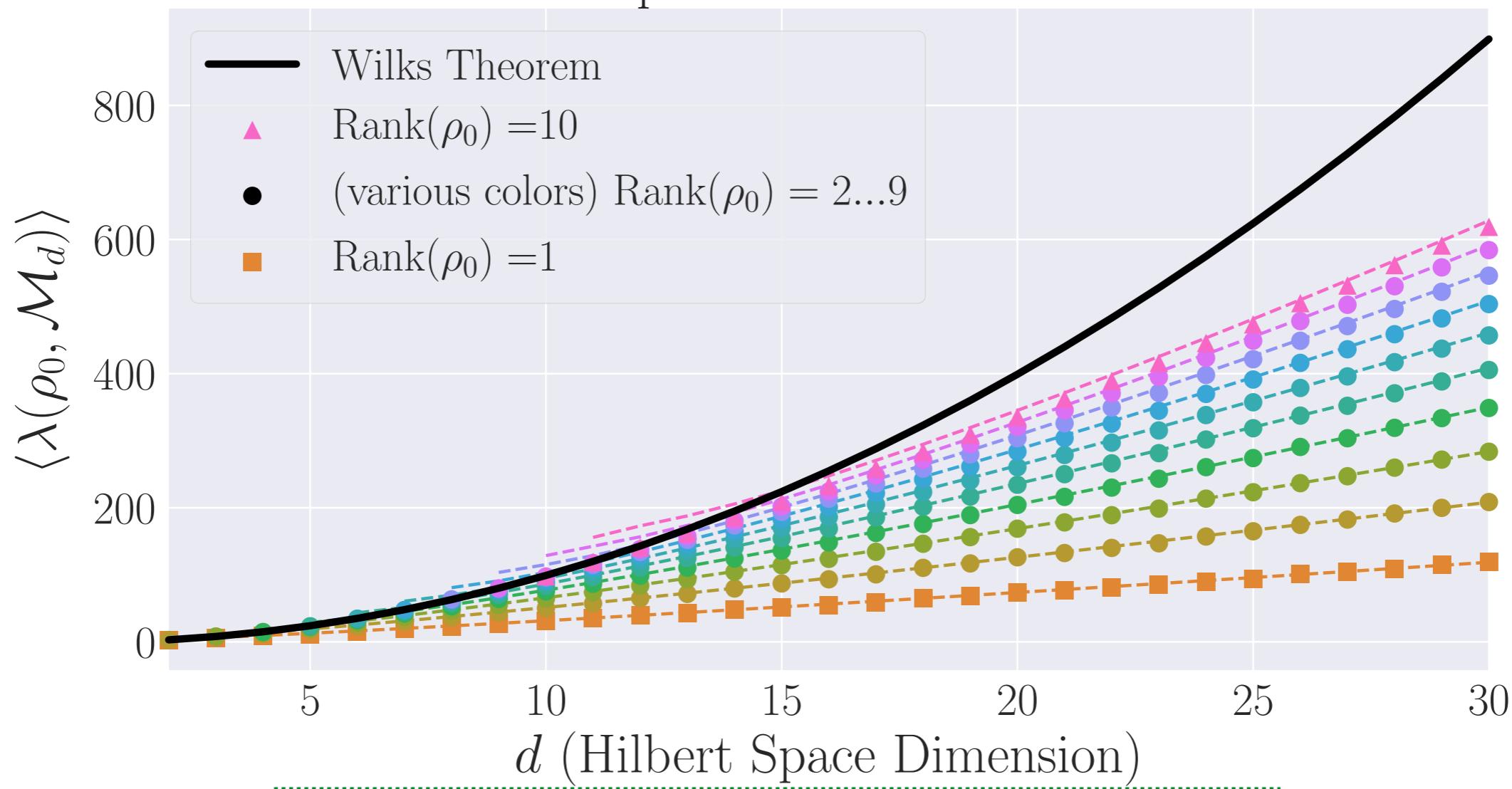
# Geometry of the tangent cone (“L” and the “kite”)

## Truncating unconstrained ML estimates (IBM algorithm)

# Random matrix theory (Gaussian Unitary Ensemble)

...but our result had much better agreement!

## An Accurate Replacement for the Wilks Theorem

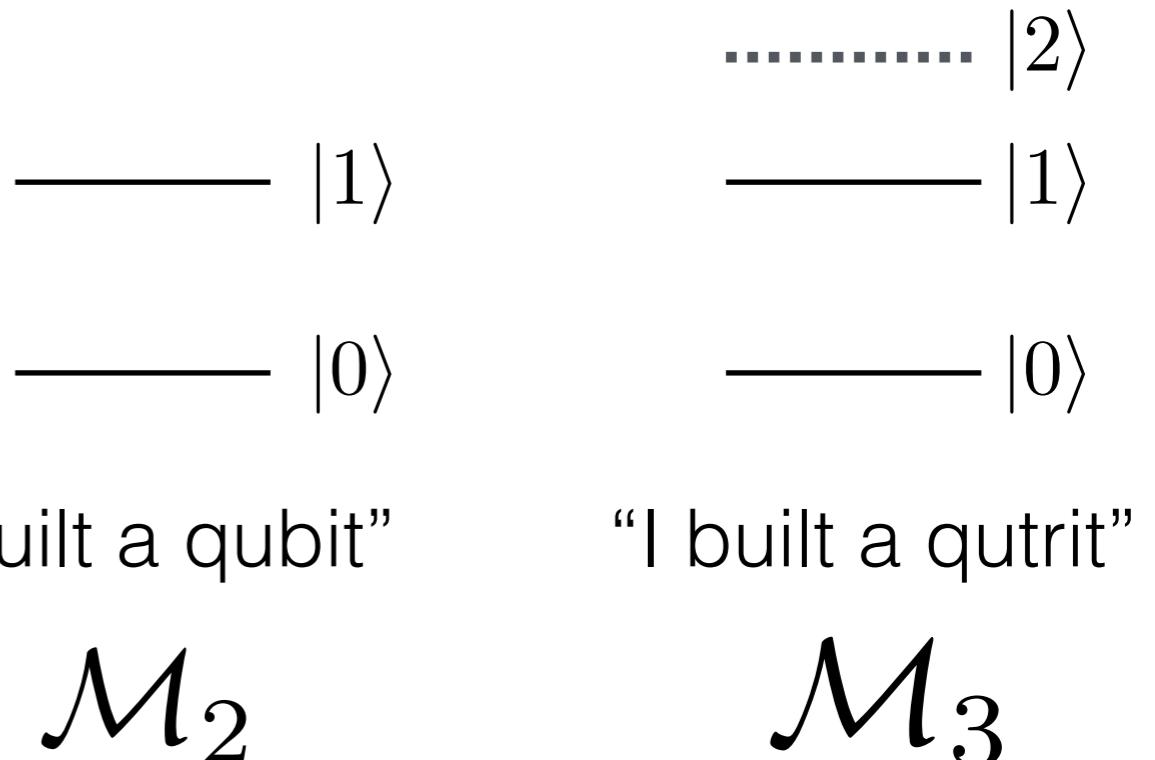


$$\begin{aligned} \langle \lambda(\rho_0, \mathcal{M}_d) \rangle &\approx 2rd - r^2 + rz^2 \\ &+ \frac{N(N + z^2)}{\pi} \left( \frac{\pi}{2} - \sin^{-1} \left( \frac{z}{2\sqrt{N}} \right) \right) \\ &- \frac{z(z^2 + 26N)}{24\pi} \sqrt{4N - z^2}. \end{aligned}$$

$$z \approx 2\sqrt{d-r} \left( 1 - \frac{1}{2}x + \frac{1}{10}x^2 - \frac{1}{200}x^3 \right) \quad x = \left( \frac{15\pi r}{2(d-r)} \right)^{2/5} \quad N = d - r$$

# What can we do with this result?

Choose a Hilbert space dimension for a quantum system (with prior information about rank).



Reason about the *effective* number of parameters in the model.

Classically:  $\langle \lambda(\rho_0, \mathcal{M}) \rangle = \dim(\mathcal{M})$

“Quantumly”:  $\langle \lambda(\rho_0, \mathcal{M}) \rangle \sim \text{“dim}(\mathcal{M})\text{”}$

**Connections to compressed sensing?**

What can we do with this result?

Choose  
dimension  
of system  
about

$|2\rangle$   
 $|1\rangle$   
 $|0\rangle$   
“trit”

**UNDER CONSTRUCTION**

Reason about the *effective* number  
of parameters in the model.

Classically:  $\langle \lambda(\rho_0, \mathcal{M}) \rangle = \dim(\mathcal{M})$

“Quantumly”:  $\langle \lambda(\rho_0, \mathcal{M}) \rangle \sim \text{“dim}(\mathcal{M})\text{”}$

**Connections to  
compressed sensing?**

Recent results in classical compressed sensing show how the *geometry of convex optimization* affects performance.

Suppose we acquire data of the form  $\mathbf{z}_0 = A\mathbf{x}_0$

Estimate the signal using convex optimization:

$$\hat{\mathbf{x}}_0 = \underset{\mathbf{x} \in \mathcal{M}}{\operatorname{argmin}} f(\mathbf{x}) \quad \text{s.t.} \quad \mathbf{z}_0 = A\mathbf{x}$$

To reason about properties of the estimate, look at *descent cone*:

$$D(f, \mathbf{x}) = \bigcup_{\tau > 0} \{ \mathbf{y} \in \mathcal{M} : f(\mathbf{x} + \tau \mathbf{y}) \leq f(\mathbf{x}) \}$$

Recent results in classical compressed sensing show how the *geometry of convex optimization* affects performance.

“Interaction” of descent cone and null space of  $A$  determines whether we can uniquely recover the signal:

**Fact:**  $x_0$  is the unique optimal point of minimizing a proper convex function if, and only if,  $D \cap \text{null}(A) = \{0\}$ .

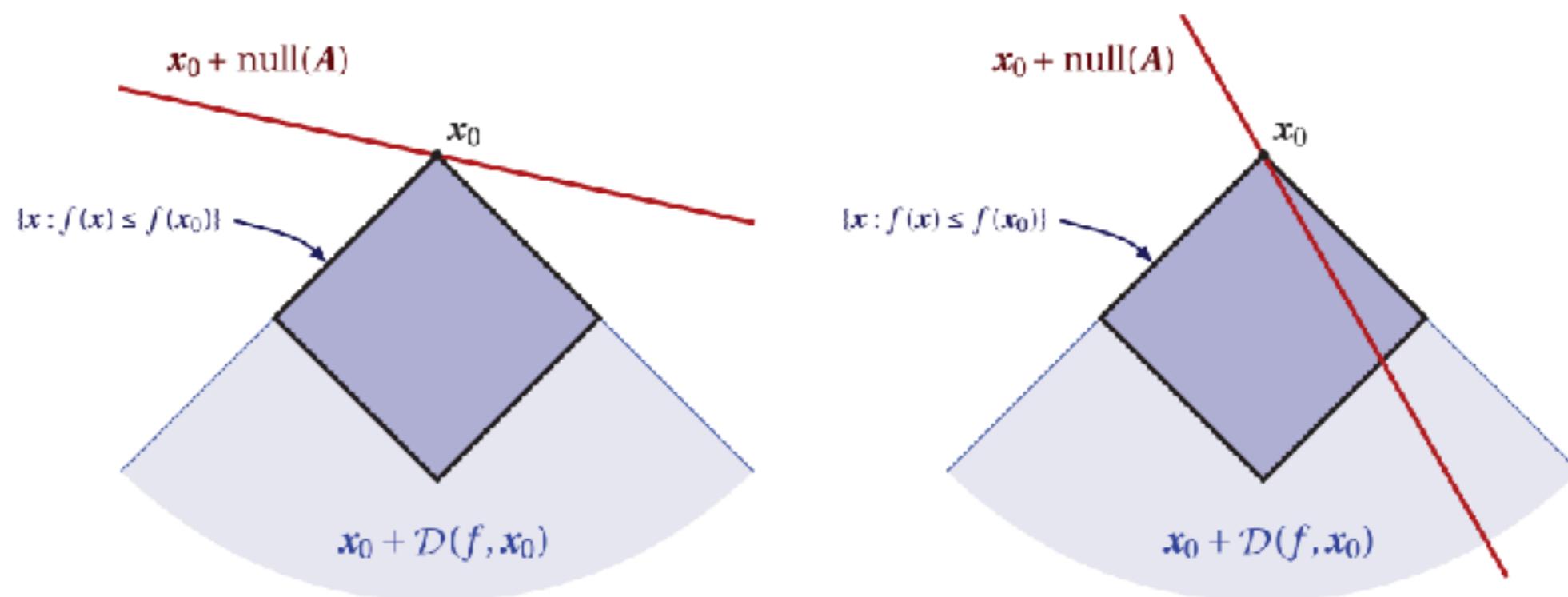


FIG. 4. The optimality condition for a regularized inverse problem. The condition for the regularized linear inverse problem (2.4) to succeed requires that the descent cone  $D(f, x_0)$  and the null space  $\text{null}(A)$  do not share a ray. [Left] The regularized linear inverse problem succeeds. [Right] The regularized linear inverse problem fails.

Computing the *statistical dimension* of the descent cone tells us when unique recovery is possible.

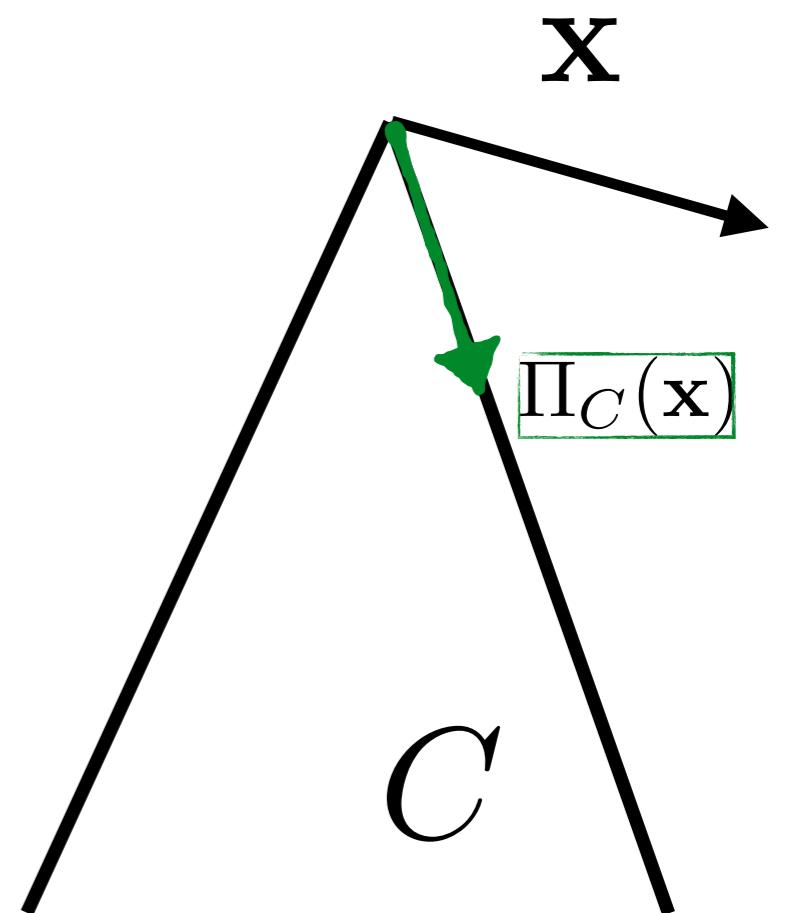
Given cone  $C$ , define the *metric projection* of a point onto  $C$  as

$$\Pi_C(\mathbf{x}) = \underset{\mathbf{y} \in C}{\operatorname{argmin}} \|\mathbf{x} - \mathbf{y}\|$$

The statistical dimension of the cone is

$$\delta(C) = \langle \|\Pi_C(\mathbf{x})\|^2 \rangle \quad \mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathcal{I})$$

If  $C$  is an  $L$ -dimensional subspace,  $\delta(C) = L$



Computing the *statistical dimension* of the descent cone tells us when unique recovery is possible.

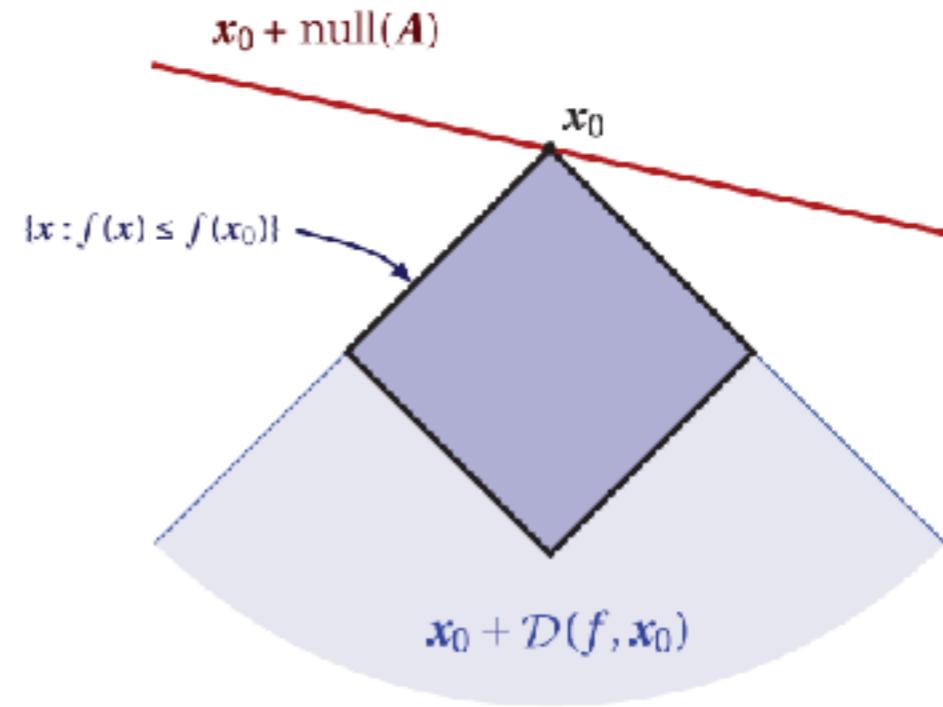
**Theorem:** Suppose  $A \in \mathbb{R}^{m \times d}$ , with i.i.d  $\mathcal{N}(0, 1)$  entries.

If  $m \geq \delta(D(f, \mathbf{x}_0)) + \sqrt{8 \log(4/\eta)}\sqrt{d}$ ,

then recovery is possible with probability  $\geq 1 - \eta$ .

**With enough constraints, the null space doesn't intersect the descent cone.**

“Skinnier” descent cones have lower statistical dimension, meaning fewer measurements are necessary.



Our replacement for the Wilks theorem gives the statistical dimension of the tangent cone!

Start with unconstrained ML estimates

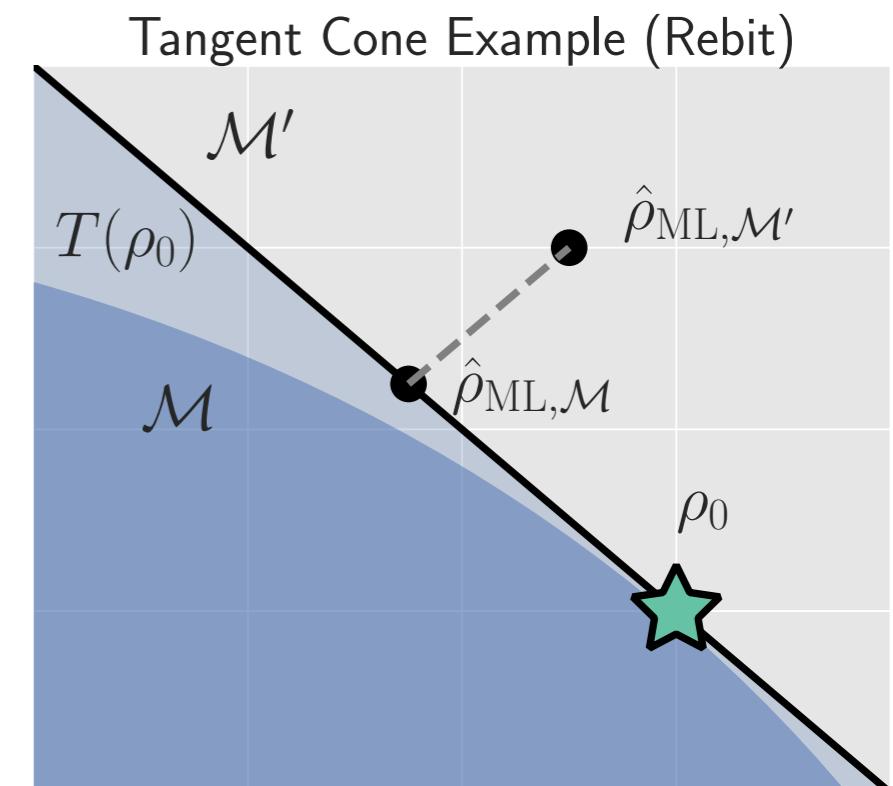
$$\hat{\rho}_{\text{ML}, \mathcal{M}'_d} \sim \mathcal{N}(\rho_0, \mathcal{I}/N)$$

Compute metric projections onto tangent cone

$$\hat{\rho}_{\text{ML}, \mathcal{M}_d} = \Pi_{T(\rho_0)}(\hat{\rho}_{\text{ML}, \mathcal{M}'_d})$$

Expected value of loglikelihood ratio statistic is the statistical dimension

$$\delta(T(\rho_0)) = \langle \text{Tr}[(\Pi_{T(\rho_0)}(\hat{\rho}_{\text{ML}, \mathcal{M}_d}) - \rho_0)^2] \rangle$$



**Does this result provide new insight into quantum compressed sensing?**

We understand how the positivity constraint in state tomography affects reconstruction.

Kalev, et. al, *npj Quantum Information* **1**, 15018 (2015)  
*Quantum tomography protocols with positivity are compressed sensing protocols*

**Theorem 1.** Let  $P_0$  be a positive semidefinite matrix with rank  $(P_0) \leq r$ , and let  $\mathbf{y} = \mathcal{A}[P_0]$  be the measurement record obtained by a sensing map  $\mathcal{A}$  that corresponds to compressing measurements for a rank- $r$  Hermitian matrix. Then  $P_0$  is the unique matrix within the set of positive semidefinite matrices of any rank that is consistent with the measurement record.

Requires restrictions on the measurement map

For the case of *Pauli measurements*, we can compute the number of outcomes necessary for reconstruction.

Gross, et. al, PRL **105**, 150401 (2010)

*Quantum State Tomography via Compressed Sensing*

*Theorem 1 (low-rank tomography)*—Let  $\rho$  be an arbitrary state of rank  $r$ . If  $m = cdrl\log^2 d$  randomly chosen Pauli expectations are known, then  $\rho$  can be uniquely reconstructed by solving the convex optimization problem (1) with probability of failure exponentially small in  $c$ .

For the case of *Gaussian measurements*, we can compute the number of outcomes necessary for reconstruction.

Chandrasekaran et. al, Foundations of Computational Mathematics (2012) 12:805–849

*The Convex Geometry of Linear Inverse Problems*

**Proposition 3.11** *Let  $\mathbf{x}^*$  be an  $m_1 \times m_2$  rank- $r$  matrix with  $m_1 \leq m_2$ . Letting  $\mathcal{A}$  denote the set of unit-Euclidean-norm rank-one matrices, we have that*

$$w(T_{\mathcal{A}}(\mathbf{x}^*) \cap \mathbb{S}^{m_1 m_2 - 1})^2 \leq 3r(m_1 + m_2 - r).$$

*Thus  $3r(m_1 + m_2 - r) + 1$  random Gaussian measurements suffice to recover  $\mathbf{x}^*$  via nuclear norm minimization with high probability.*

Consequence:

In state tomography,  $6rd - 3r^2$  measurements are sufficient.

In the limit of large dimension, our result for the statistical also yields a similar conclusion.

$$\langle \lambda \rangle \xrightarrow[d \rightarrow \infty]{} \cancel{rd} \left[ 6 - \frac{20}{7} \left( \frac{15\pi r}{2d} \right)^{2/5} + \frac{20}{21} \left( \frac{15\pi r}{2d} \right)^{4/5} \right] - \cancel{5r^2}.$$

Statistical dimension of tangent cone



Number of measurements for quantum compressed sensing (Gaussian model)

Tangent cone in state space



Descent cone of some convex function??

# Wrap up: geometry, model selection, and quantum compressed sensing

New J. Phys. 20 (2018) 023050

<https://doi.org/10.1088/1367-2630/aaa7e2>

## New Journal of Physics

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft   
IOP Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

### PAPER

#### Behavior of the maximum likelihood in quantum state tomography

Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

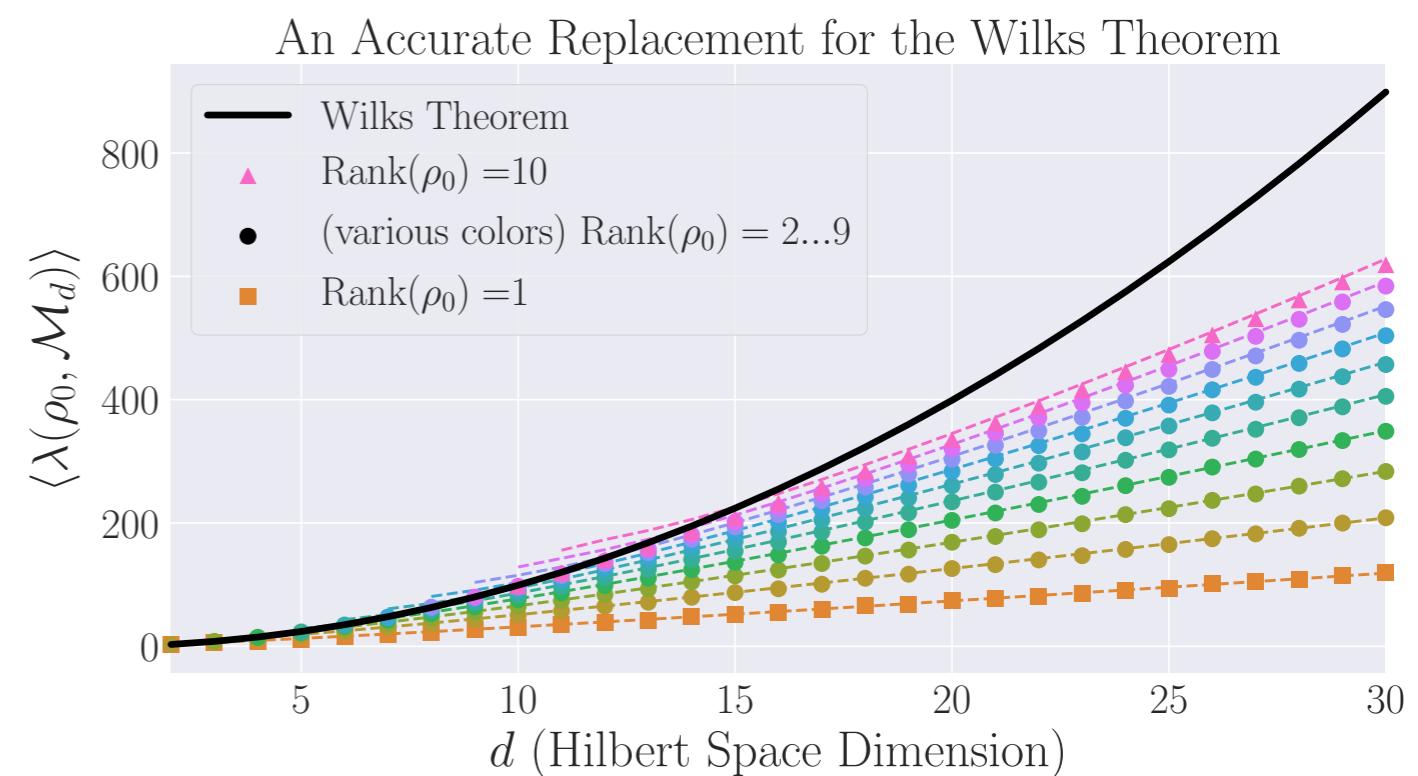
$\mathcal{M}'$

New generalization of LAN  
(applicable to quantum models)

satisfies LAN

$\mathcal{M}$   
satisfies “MP-LAN”

Replacement for the  
classical Wilks theorem  
(model selection for  
state-space dimension)



# Wrap up: geometry, model selection, and quantum compressed sensing

*New J. Phys.* **20** (2018) 023050

<https://doi.org/10.1088/1367-2630/aaa7e2>

**New Journal of Physics**

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft **DPG**  
**IOP** Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

**PAPER**

## Behavior of the maximum likelihood in quantum state tomography

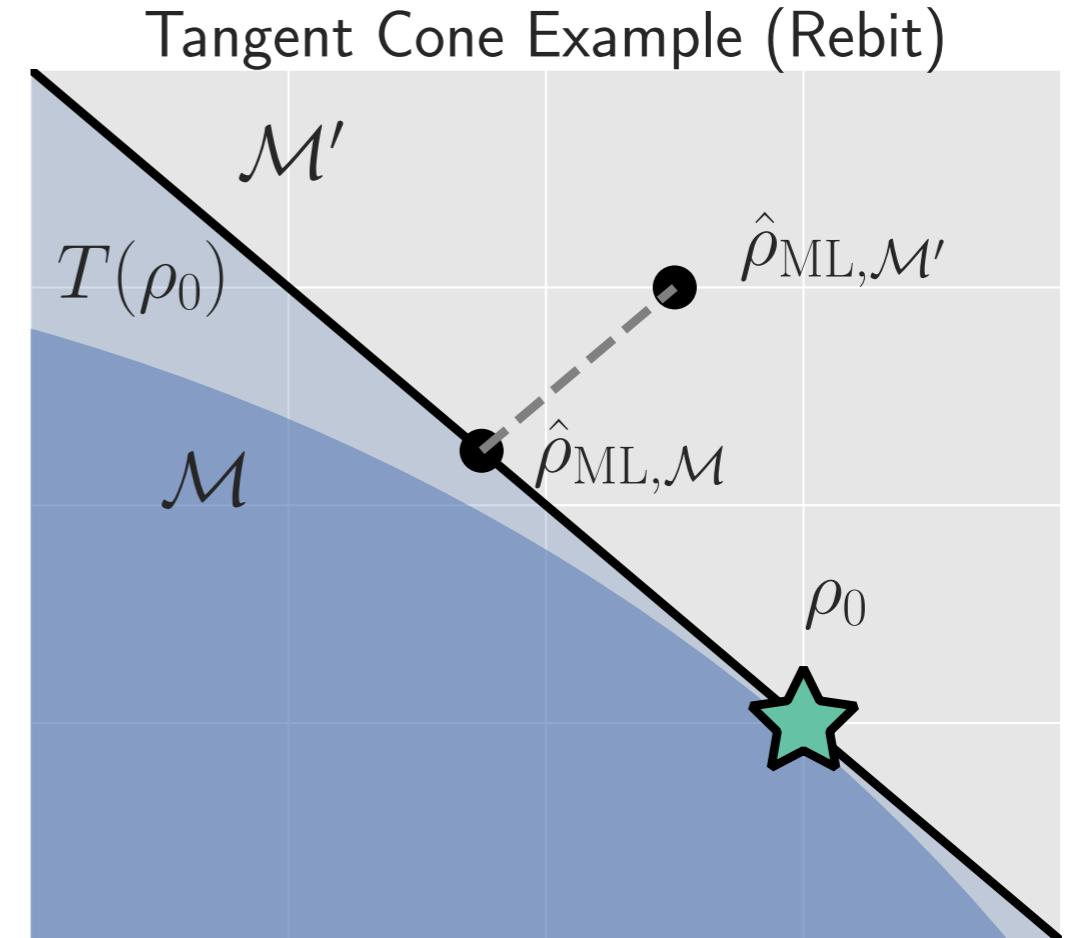
Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

Understanding the geometry  
of convex optimization

Connections to quantum  
compressed sensing



# Wrap up: geometry, model selection, and quantum compressed sensing

*New J. Phys.* **20** (2018) 023050

<https://doi.org/10.1088/1367-2630/aaa7e2>

**New Journal of Physics**

The open access journal at the forefront of physics

Deutsche Physikalische Gesellschaft **DPG**  
**IOP** Institute of Physics

Published in partnership  
with: Deutsche Physikalische  
Gesellschaft and the Institute  
of Physics

PAPER

## Behavior of the maximum likelihood in quantum state tomography

Travis L Scholten<sup>1,2</sup>  and Robin Blume-Kohout<sup>1,2</sup>

<sup>1</sup> Center for Computing Research (CCR), Sandia National Laboratories, United States of America

<sup>2</sup> Center for Quantum Information and Control (CQuIC), University of New Mexico, United States of America

# Thank you!

Understanding the geometry  
of convex optimization

Connections to quantum  
compressed sensing

