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Abstract
Quantum state tomography on a d-dimensional systemdemands resources that grow rapidlywith d.
Theymay be reduced by usingmodel selection to tailor the number of parameters in themodel (i.e.,
the size of the densitymatrix).Mostmodel selectionmethods typically rely on a test statistic and a null
theory that describes its behavior when twomodels are equally good.Here, we consider the
loglikelihood ratio. Because of the positivity constraint ρ�0, quantum state space does not generally
satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio
(theWilks theorem) should not be used. Thus, understanding and quantifying howpositivity affects
the null behavior of this test statistic is necessary for its use inmodel selection for state tomography.
Wedefine a new generalization of LAN,metric-projected LAN, show that quantum state space satisfies
it, and derive a replacement for theWilks theorem. In addition to enabling reliablemodel selection,
our results shedmore light on the qualitative effects of the positivity constraint on state tomography.

Determining thequantumstateρ0producedbya specificpreparationprocedure for aquantumsystem is aproblem
almost as old asquantummechanics itself [1, 2]. This task, knownasquantumstate tomography [3], is notonlyuseful in
its ownright (diagnosing anddetecting errors in statepreparation), but is alsoused inother characterizationprotocols
including entanglement verification [4–6] andprocess tomography [7].A typical state tomographyprotocolproceeds
as follows:many copies ofρ0 areproduced, they aremeasured indiverseways, andfinally theoutcomesof those
measurements (data) are collated andanalyzed toproduce an estimate r̂. This is a straightforward statistical inference
process [8, 9],where thedata areused tofit theparameters of a statisticalmodel. In state tomography, theparameter is
ρ, and themodel is the set of all possibledensitymatrices onaHilbert space (equippedwith theBorn rule).However,
wedonot always knowwhatmodel touse. It is not alwaysaprioriobviouswhat , or its dimension, is; examples
includeopticalmodes [10–14] and leakage levels inAMOand superconducting [15, 16]qubits. In such situations,we
seek to let thedata itself determinewhichofmany candidateHilbert spaces is best suited for reconstructingρ0.

Choosing anappropriateHilbert spaceon thefly is an instanceof a general statistical problemcalledmodel selection.
Althoughmodel selectionhasbeen thoroughly explored in classical statistics [17], its application to state tomography
encounters someobstacles.They stemfromthe fact thatquantumstates—and therefore, estimatesof them—must
satisfy apositivity constraintρ�0. (Seefigure 1.)Asimilar constraint, completepositivity, applies toprocess
tomography.The impactof positivity constraints on state andprocess tomography is an active areaof research [18–21],
and its implications formodel selectionhave alsobeen considered [22–28]. In this paper,we address a specificquestion
at theheart of thismatter:Howdoes the loglikelihood ratio statistic used inmanymodel selectionprotocols, including (but
not limited to) information criteria such asAkaike’sAIC [29], behave in thepresence of the positivity constraintρ�0?

We begin in section 1 by introducing the loglikelihood ratio statisticλ, and outline how it can be used to
choose aHilbert space. In section 2, we showhow andwhy the classical null theory for its behavior, theWilks
theorem, falls apart in the presence of the positivity constraint, because quantum state space does not generally
satisfy local asymptotic normality (LAN).We define a new generalization of LAN,metric-projected local
asymptotic normality (MP-LAN), in section 3; this generalization explicitly accounts for the positivity
constraint, and is satisfied by quantum state space. Using this generalization, we derive a closed-form
approximation forλʼs expected value in section 4, thereby providing a replacement for theWilks theorem that is
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Characterizing the behavior of noisy, intermediate-scale 
quantum information processors can be hard.

Suppose we have an n-qubit NISQ device.

The number of parameters to be estimated in 
various tomographic protocols scales poorly:

State tomography - p = O(4n)

p = O(16n)Process tomography - 

Gate set tomography - 

How do we reduce the number of parameters 
necessary to characterize the device?

p = O(M ⇤ 16n)



In practice, we usually impose constraints on 
the estimates to reduce the number of parameters.

State tomography - p = O(4n)

p = O(16n)Process tomography - 

Gate set tomography - 

“State has known rank”: p = O(r ⇤ 2n)

“Process is unitary”: p = O(4n)

“Error generators act on 
one or two qubits”:

Our work: identify 
how to use 
statistical model 
selection to choose 
a good model.

p = O �
M

�
12n+ 120n2

��

p = O(M ⇤ 16n)



⇢̂ =

0

@

1

A

State tomographers have been doing 
model selection all along!

For tomography, a model is a set of density matrices.

Trivial model selection:

Pick a Hilbert space by fiat. 
(“Of course it’s a qubit!”)



For tomography, a model is a set of density matrices.

Non-trivial model selection:

⇢̂ =

0

@

1

A

⇢̂ =

0

@
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⇢̂ =
N�1X

j,k=0

⇢jk|jihk|

⇢̂ =
r�1X

j=0

�j |�jih�j |

Restrict estimate to a 
subspace.

Restrict the rank of 
the estimate.

State tomographers have been doing 
model selection all along!



Model selection is used to identify which model 
fits the data well, and is also useful for prediction.



A model is a parameterized family of probability distributions.

MH = {⇢ | ⇢ 2 B(H), Tr(⇢) = 1, ⇢ � 0}
Common model for state tomography:

Probabilities via the Born rule: pj = Tr(⇢Ej)

Changing the state changes the probability!
POVM = {|0ih0|, |1ih1|}

⇢0 = |0ih0| =) Pr(“0”) = 1

⇢0 = |+ih+| =) Pr(“0”) = 1/2

⇢0 = |1ih1| =) Pr(“0”) = 0



Given data, likelihood is

Maximum likelihood estimation is a common way to infer 
which parameters of a model can explain your data best.

L(⇢) = Pr(Data|⇢)

⇢̂ML,M = max

⇢2M
L(⇢)

The maximum likelihood estimate 
is computed as 



Quantum state space has boundaries, 
posing some challenges for tomography & model selection.

⇢ � 0 ⇢ � 0

⇢ � 0 ⇢ � 0

Tomography: 
Boundaries distort the distribution of maximum likelihood estimates 
(makes reasoning about their properties hard).

Model selection: 
Common techniques (Wilks theorem, information criteria) cannot be used!

Easy to reason about 
(many known results)

Hard to reason about 
(known results don’t 
apply!)



Quantum state space has boundaries, 
posing some challenges for tomography & model selection.

⇢ � 0 ⇢ � 0

⇢ � 0 ⇢ � 0

Tomography: 
Boundaries distort the distribution of maximum likelihood estimates 
(makes reasoning about their properties hard).

Model selection: 
Common techniques (Wilks theorem, information criteria) cannot be used!

Easy to reason about 
(many known results)

Hard to reason about 
(known results don’t 
apply!)

These issues stem from the fact 
that the models used in 
tomography do not satisfy 
Local Asymptotic Normality (LAN).



In classical statistics, models often satisfy 
local asymptotic normality (LAN).

Local = fix a value for the parameters

Asymptotic = the number of samples goes to infinity

Normality = the probability distribution function can 
          be approximated by a Gaussian

have similar statistical properties&

✓0

Example: 
coin flips

Le Cam L., Yang G.L. (2000) Local Asymptotic Normality. In: Asymptotics in Statistics. 
Springer Series in Statistics. Springer, New York, NY



If LAN is satisfied by a model, then several 
properties follow.

If LAN is satisfied, then asymptotically:

Likelihoods are Gaussian:
L(⇢) ⌘ Pr(Data|⇢)

/
N!1

Exp


�1

2

Tr(⇢� ⇢̂ML,M)F (⇢� ⇢̂ML,M)

�

Maximum likelihood (ML) estimates 
are normally distributed:
⇢̂ML,M ⌘ argmax

⇢2M
L(⇢)

d! N (⇢0,F�1
)

M satisfies LAN =) ⇢̂ML,M ⇠ N (⇢0, F�1)Key implication:



We know ML estimates in state tomography are 
not always normally distributed, implying LAN is not satisfied.

Key issue:

⇢ � 0 ⇢ � 0

⇢ � 0 ⇢ � 0

⇢̂ML,M 6⇠ N (⇢0, F�1
) =) M does not satisfy LAN

Because LAN is not satisfied, the assumptions 
necessary for many model selection tools are violated!!

How do we fix this?



We show how to generalize LAN
for models with convex boundaries.
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We define a new generalization of LAN 
for models with convex boundaries.

4

FIG. 2. Predictions of the Wilks theorem vs reality:
In the context of state tomography on a true state ⇢0 in a
d-dimensional Hilbert space, the Wilks theorem can be used
to predict that, when comparing the zero-parameter model
M = {⇢0} and the (d2 � 1)-parameter model Md defined
in Equation (4), the expected loglikelihood ratio h�(⇢0,Md)i
will be d2 � 1. Here, we compare that prediction to nu-
merical simulations of tomography on states ⇢0 in dimension
d = 2, . . . , 30, with ranks r = 1, . . . ,min(10, d). The Wilks
theorem only predicts h�i correctly for full-rank states; when
r ⌧ d, the actual expected loglikelihood ratio is much smaller.
Our main result (Equation 19) gives a replacement that works
correctly (see Figure 9).

is the relevant situation for our analysis, because even if
⇢
0

is full-rank in Md, it must be rank-deficient in Md+1

.
So we require a replacement for the Wilks theorem, a null
theory for � when ⇢

0

is rank-deficient. We do so by first
describing a new framework for reasoning about asymp-
totic properties of models, by generalizing LAN to deal
with constraints.

III. GENERALIZING LAN TO DEAL WITH
CONSTRAINTS

In this section, we develop a framework that will allow
us to derive a replacement for the Wilks theorem that
holds for rank-deficient ⇢

0

. To do so, we define a gen-
eralization of LAN in the presence of boundaries, which
we call metric-projected local asymptotic normality (MP-
LAN). (For other generalizations of LAN, see [46, 47].)
Like LAN, MP-LAN is a property that a statistical model
may satisfy. Unlike LAN, MP-LAN is satisfied by quan-
tum state space. For any model that satisfies MP-LAN
(quantum or classical), we compute an asymptotically
exact expression for �, a necessary building block in our
replacement for the Wilks theorem.

In Section IV, we show that the models Md satisfy
MP-LAN, and derive an approximation for h�i (Equation
(19), on page 11). Section VA compares our theory to
numerical results, and Section VB applies our theory to
the problem of heterodyne tomography.

The reader should note that to enhance readability, in
this section (and only this section) we use N to denote
the number of samples, previously denoted as N

samples

.

Later in the paper, we will use N to denote a di↵erent
quantity.

A. Definitions and Overview of Results

The main definitions and results required for the re-
mainder of the paper are presented in this subsection.
Technical details and proofs are presented in the next
subsection.

Definition 1 (Metric-projected local asymptotic nor-
mality, or MP-LAN). A model M satisfies MP-LAN if,
and only if, M is a convex subset of a model M0 that
satisfies LAN.

Although the definition of MP-LAN is rather short,
it implies some very useful properties. These properties
follow from the fact that, as N ! 1, the behavior of
⇢̂ML,M and � is entirely determined by their behavior in
an arbitrarily small region of M around ⇢

0

, which we call
the local state space.

Definition 2 (Local state space). Given a model M,
the local state space around a point ⇢

0

is the limit, as
N ! 1, of any sequence of convex subsets MN of M
such that limN!1 Pr(⇢̂ML,M 2 MN ) = 1, described in
coordinates with I = O(1).

Models that satisfy MP-LAN have the following
asymptotic properties:

• The local state space is the solid tangent cone of
the model at ⇢

0

, denoted T (⇢
0

).
• The ML estimate ⇢̂ML,M is given by the metric pro-
jection of ⇢̂ML,M0 onto T (⇢

0

):

⇢̂ML,M = argmin
⇢2T (⇢0)

(⇢ � ⇢̂ML,M0)I(⇢ � ⇢̂ML,M0). (5)

(We first encountered the term “metric projection”
in the convex optimization literature [48, 49], and
inspires our choice for the acronym “MP-LAN”.
However, it should be noted that in the problem
setting considered in those references, I = 1l.)

• The loglikelihood ratio �(⇢
0

,M), defined as

�(⇢
0

,M) = �2 log

0

@ L(⇢
0

)

max
⇢2M

L(⇢)

1

A , (6)

takes the following simple form:

�(⇢
0

,M) = Tr[(⇢
0

� ⇢̂ML,M)I(⇢
0

� ⇢̂ML,M)]. (7)

(This property is non-trivial; see Figure 3.)
Even when M satisfies MP-LAN, these properties may

not be true when N is finite; they are guaranteed only
in the asymptotic limit. When N is su�ciently large, we
can (and will!) use the asymptotic properties above.
The following subsection presents the technical details

and definitions necessary to show the above results. The
reader may skip it without loss of continuity, and proceed
to Section IV.

satisfies LAN
satisfies “MP-LAN”

M0
M



In state tomography,

(lift positivity constraint)

(all density matrices)

satisfies LAN
satisfies “MP-LAN”

M0
M

We show that quantum state space satisfies MP-LAN.

(Likelihood is twice continuously differentiable, 
so LAN is satisfied.)

MH = {⇢ | ⇢ 2 B(H), Tr(⇢) = 1, ⇢ � 0}
Define
M0

H = {� | � 2 B(H),Tr(�) = 1}



We show how to generalize LAN
for models with convex boundaries.
We derive asymptotic properties
of models that satisfy MP-LAN.
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Suppose a model satisfies MP-LAN. Then asymptotically,…

…the local state space is the tangent cone.

We can zoom in on the region 
of state space around 
the true state to determine the 
behavior of ML estimates.

⇢0

⇢̂ML,M

T (⇢0)

M

M0

⇢̂ML,M0

Tangent Cone Example (Rebit)

Asymptotically, all 
the ML estimates are 
contained in a (shrinking) 
ball around the true state.



…the ML estimate in the constrained model is 
the metric projection of the ML estimate in the larger model.

Maximize the likelihood over     :

⇢0

⇢̂ML,M

T (⇢0)

M

M0

⇢̂ML,M0

Tangent Cone Example (Rebit)
L(⇢) / Exp

⇥
� 1

2Tr(⇢� ⇢̂ML,M0
)F (⇢� ⇢̂ML,M0

)

⇤
Because M0 satisfies LAN:

M
⇢̂ML,M = argmax

⇢2M
L(⇢)

Asymptotically, equal to minimizing 
Fisher-adjusted distance 
over tangent cone

⇢̂ML,M = argmin
⇢2T (⇢0)

Tr[(⇢� ⇢̂ML,M0)F (⇢� ⇢̂ML,M0)]

“Metric projection onto the tangent cone”

Suppose a model satisfies MP-LAN. Then asymptotically,…



…the increase in goodness of fit (as measured by loglikelihood) 
is equal to increase in squared error (as measured by Fisher information).

The loglikelihood ratio statistic 
comparing two models is

�(M1,M2) = �2 log

⇣
L(⇢̂ML,M1 )
L(⇢̂ML,M2 )

⌘

For analysis purposes: introduce a reference model

�(M1,M2) = �(⇢0,M2)� �(⇢0,M1)

“How much better does one model do 
in fitting the data compared to another?”

Suppose a model satisfies MP-LAN. Then asymptotically,…



M
M0

�(⇢0,M) = �2 log

✓
L(⇢0)

L(⇢̂ML,M)

◆

!
LAN

Tr[(⇢0 � ⇢̂ML,M0
)F (⇢0 � ⇢̂ML,M0

)]

� Tr[(⇢̂ML,M � ⇢̂ML,M0
)F (⇢̂ML,M � ⇢̂ML,M0

)]

Because      satisfies MP- LAN,M

…the increase in goodness of fit (as measured by loglikelihood) 
is equal to increase in squared error (as measured by Fisher information).

Suppose a model satisfies MP-LAN. Then asymptotically,…



Because the local state space 
is the tangent cone, the metric 
projection must complete a right triangle.

M

M
M0

…the increase in goodness of fit (as measured by loglikelihood) 
is equal to increase in squared error (as measured by Fisher information).

Suppose a model satisfies MP-LAN. Then asymptotically,…

�(⇢0,M) =
PT

Tr[(⇢̂ML,M � ⇢0)F (⇢̂ML,M � ⇢0)]



…the local state space is the tangent cone.

Suppose a model satisfies MP-LAN. Then asymptotically,…

…the ML estimate in the constrained model is 
the metric projection of the ML estimate in the larger model.

…the increase in goodness of fit (as measured by loglikelihood) 
is equal to increase in squared error (as measured by Fisher information).

⇢0

⇢̂ML,M

T (⇢0)

M

M0

⇢̂ML,M0

Tangent Cone Example (Rebit)

⇢̂ML,M = argmin
⇢2T (⇢0)

Tr[(⇢� ⇢̂ML,M0)F (⇢� ⇢̂ML,M0)]

�(⇢0,M) =
PT

Tr[(⇢̂ML,M � ⇢0)F (⇢̂ML,M � ⇢0)]
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We show how to generalize LAN
for models with convex boundaries.
We derive asymptotic properties
of models that satisfy MP-LAN.
We provide a replacement to 
the classical Wilks theorem for 
models that satisfy MP-LAN.
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PAPER

Behavior of themaximum likelihood in quantum state tomography
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Abstract
Quantum state tomography on a d-dimensional systemdemands resources that grow rapidlywith d.
Theymay be reduced by usingmodel selection to tailor the number of parameters in themodel (i.e.,
the size of the densitymatrix).Mostmodel selectionmethods typically rely on a test statistic and a null
theory that describes its behavior when twomodels are equally good.Here, we consider the
loglikelihood ratio. Because of the positivity constraint ρ�0, quantum state space does not generally
satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio
(theWilks theorem) should not be used. Thus, understanding and quantifying howpositivity affects
the null behavior of this test statistic is necessary for its use inmodel selection for state tomography.
Wedefine a new generalization of LAN,metric-projected LAN, show that quantum state space satisfies
it, and derive a replacement for theWilks theorem. In addition to enabling reliablemodel selection,
our results shedmore light on the qualitative effects of the positivity constraint on state tomography.

Determining thequantumstateρ0producedbya specificpreparationprocedure for aquantumsystem is aproblem
almost as old asquantummechanics itself [1, 2]. This task, knownasquantumstate tomography [3], is notonlyuseful in
its ownright (diagnosing anddetecting errors in statepreparation), but is alsoused inother characterizationprotocols
including entanglement verification [4–6] andprocess tomography [7].A typical state tomographyprotocolproceeds
as follows:many copies ofρ0 areproduced, they aremeasured indiverseways, andfinally theoutcomesof those
measurements (data) are collated andanalyzed toproduce an estimate r̂. This is a straightforward statistical inference
process [8, 9],where thedata areused tofit theparameters of a statisticalmodel. In state tomography, theparameter is
ρ, and themodel is the set of all possibledensitymatrices onaHilbert space (equippedwith theBorn rule).However,
wedonot always knowwhatmodel touse. It is not alwaysaprioriobviouswhat , or its dimension, is; examples
includeopticalmodes [10–14] and leakage levels inAMOand superconducting [15, 16]qubits. In such situations,we
seek to let thedata itself determinewhichofmany candidateHilbert spaces is best suited for reconstructingρ0.

Choosing anappropriateHilbert spaceon thefly is an instanceof a general statistical problemcalledmodel selection.
Althoughmodel selectionhasbeen thoroughly explored in classical statistics [17], its application to state tomography
encounters someobstacles.They stemfromthe fact thatquantumstates—and therefore, estimatesof them—must
satisfy apositivity constraintρ�0. (Seefigure 1.)Asimilar constraint, completepositivity, applies toprocess
tomography.The impactof positivity constraints on state andprocess tomography is an active areaof research [18–21],
and its implications formodel selectionhave alsobeen considered [22–28]. In this paper,we address a specificquestion
at theheart of thismatter:Howdoes the loglikelihood ratio statistic used inmanymodel selectionprotocols, including (but
not limited to) information criteria such asAkaike’sAIC [29], behave in thepresence of the positivity constraintρ�0?

We begin in section 1 by introducing the loglikelihood ratio statisticλ, and outline how it can be used to
choose aHilbert space. In section 2, we showhow andwhy the classical null theory for its behavior, theWilks
theorem, falls apart in the presence of the positivity constraint, because quantum state space does not generally
satisfy local asymptotic normality (LAN).We define a new generalization of LAN,metric-projected local
asymptotic normality (MP-LAN), in section 3; this generalization explicitly accounts for the positivity
constraint, and is satisfied by quantum state space. Using this generalization, we derive a closed-form
approximation forλʼs expected value in section 4, thereby providing a replacement for theWilks theorem that is
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A canonical model selection rule uses 
the loglikelihood ratio statistic.

Tells us how much better one model fits the data than the other.

Recall the loglikelihood ratio statistic 
comparing two models is

�(M1,M2) = �2 log

⇣
L(⇢̂ML,M1 )
L(⇢̂ML,M2 )

⌘

Because of extra parameters, one model might fit better 
because it’s fitting noise - how to correct for that?

Need to know the null behavior —
what happens when both models are equally good?



The Wilks theorem describes the 
null behavior of this statistic.

Wilks theorem (1938):

�(M1,M2) = �2 log

⇣
L(⇢̂ML,M1 )
L(⇢̂ML,M2 )

⌘

Assume that ⇢0 2 M1,M2, that M1 ⇢ M2,
and that M1,M2 satisfy LAN. Then � ⇠ �2

dim(M2)�dim(M1)
.

M1 = R2

M2 = R3Key insight: ⇢̂ML,M2 = ⇢̂ML,M1 � �

� ⇠ N (0, I)

� = ||⇢̂ML,M2 � ⇢0||2 � ||⇢̂ML,M1 � ⇢0||2

= ||�||2



Knowing the null behavior allows us to formulate a 
decision rule for choosing between two models.

Null behavior

Decision threshold 
(e.g., 95% confidence level)

If both models were equally good, would I expect to 
see the value of the statistic that I actually observed?

Set a threshold for judging when to reject smaller model.

Observed value; 
keep smaller model

Observed value; 
reject smaller model

�(M1,M2)

Pr(�)



For models that might be useful in state tomography, 
the Wilks theorem fails spectacularly.

Md = {⇢ 2 B(Hd) | Tr(⇢) = 1, ⇢ � 0}Define
(d-dimensional density matrices)

Useful for, e.g., determining 
additional degrees of freedom 
are present.

Practical concern for most physical architectures 
(superconductors, ions, etc) for detecting leakage.

“I built a qubit” “I built a qutrit”

M3M2

|0i

|1i
|2i
|1i

|0i



For models that might be useful in state tomography, 
the Wilks theorem fails spectacularly.

5 10 15 20 25 30

d (Hilbert Space Dimension)

0

200

400

600

800

h�
(⇢

0,
M

d
)i

Wilks Theorem

Rank(⇢0) =10

(various colors) Rank(⇢0) = 2...9

Rank(⇢0) =1

Md = {⇢ 2 B(Hd) | Tr(⇢) = 1, ⇢ � 0}
h�(⇢0,Md)i = d2 � 1Wilks theorem says

Define (d-dimensional 
density matrices)



For models that might be useful in state tomography, 
the Wilks theorem fails spectacularly.

5 10 15 20 25 30

d (Hilbert Space Dimension)

0

200

400

600

800

h�
(⇢

0,
M

d
)i

Wilks Theorem

Rank(⇢0) =10

(various colors) Rank(⇢0) = 2...9

Rank(⇢0) =1

Md = {⇢ 2 B(Hd) | Tr(⇢) = 1, ⇢ � 0}
h�(⇢0,Md)i = d2 � 1Wilks theorem says

Define (d-dimensional 
density matrices)

Quantum state space doesn’t satisfy LAN, 
so Wilks theorem cannot be applied! 

Can we derive a replacement using 
the fact state space satisfies MP-LAN?



Our replacement for Wilks approximates the 
expected value of the loglikelihood ratio statistic.

�(⇢0,Md) = Tr[(⇢0 � ⇢̂ML,Md)F (⇢0 � ⇢̂ML,Md)]

h�(⇢0,Md)i = ??

Because state space satisfies MP-LAN,

Md = {⇢ 2 B(Hd) | Tr(⇢) = 1, ⇢ � 0}where



Our replacement for Wilks approximates the 
expected value of the loglikelihood ratio statistic.

�(⇢0,Md) = Tr[(⇢0 � ⇢̂ML,Md)F (⇢0 � ⇢̂ML,Md)]

h�(⇢0,Md)i = ??

Md = {⇢ 2 B(Hd) | Tr(⇢) = 1, ⇢ � 0}where

To make progress, we assume the Fisher information is isotropic.
(Never actually happens…except in trivial cases)

Because state space satisfies MP-LAN,
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3. Expression for �(⇢0,M)

The loglikelihood ratio statistic between any two mod-
els �(M

1

,M
2

) can be computed using a reference model
R:

�(M
1

,M
2

) = �(R,M
2

) � �(R,M
1

),

where

�(R,M) = �2 log

✓
L(R)

L(M)

◆
= �2 log

0

@
max
⇢2R

L(⇢)

max
⇢2M

L(⇢)

1

A .

Let us take R = ⇢
0

. Because as N ! 1 the likelihood
L(⇢) is Gaussian around ⇢̂ML,M0 , we have

�(⇢
0

,M) = �2 log

0

@ L(⇢
0

)

max
⇢2M

L(⇢)

1

A

����!
N!1

Tr[(⇢
0

� ⇢̂ML,M0)I(⇢
0

� ⇢̂ML,M0)]

� Tr[(⇢̂ML,M � ⇢̂ML,M0)I(⇢̂ML,M � ⇢̂ML,M0)].
(9)

Using the fact ⇢̂ML,M is a metric projection, we can prove
that �(⇢

0

,M) has a simple form.

Lemma 4. �(⇢
0

,M) = Tr[(⇢
0

� ⇢̂ML,M)I(⇢
0

� ⇢̂ML,M)].

Proof. We switch to Fisher-adjusted coordinates (⇢ !
I1/2⇢), and in these coordinates I becomes 1l:

�(⇢
0

,M) = Tr[(⇢
0

� ⇢̂ML,M0)2] � Tr[(⇢̂ML,M � ⇢̂ML,M0)2].
(10)

To prove the lemma, we must consider two cases:
Case 1 : Assume ⇢̂ML,M0 62 T (⇢

0

). Because ⇢̂ML,M is the
metric projection of ⇢̂ML,M0 onto T (⇢

0

) (Equation (8)),
the line joining ⇢̂ML,M0 and ⇢̂ML,M is normal to T (⇢

0

) at
⇢̂ML,M. Because T (⇢

0

) contains ⇢
0

(as its origin), it fol-
lows that the lines joining ⇢

0

to ⇢̂ML,M, and ⇢̂ML,M to
⇢̂ML,M0 , are perpendicular. (See Figure 4.)

By the Pythagorean theorem, we have

Tr[(⇢
0

�⇢̂ML,M0)2] = Tr[(⇢
0

�⇢̂ML,M)2]+Tr[(⇢̂ML,M�⇢̂ML,M0)2]

Subtracting Tr[(⇢̂ML,M � ⇢̂ML,M0)2] from both sides, and
comparing to Equation (10), yields the lemma statement
in Fisher-adjusted coordinates.

Case 2 : Assume ⇢̂ML,M0 2 T (⇢
0

). Then, ⇢̂ML,M =
⇢̂ML,M0 , and Equation (10) simplifies to the lemma state-
ment in Fisher-adjusted coordinates.

Switching back from Fisher-adjusted coordinates, we
have �(⇢

0

,M) = Tr[(⇢
0

� ⇢̂ML,M)I(⇢
0

� ⇢̂ML,M)].

So if M satisfies MP-LAN then as N ! 1 the log-
likelihood ratio statistic becomes related to squared er-
ror/loss (as measured by the Fisher metric.) This result
may be of independent interest in, for example, defining
new information criteria, which attempt to balance good-
ness of fit (as measured by �) against error/loss (gener-
ally, as measured by squared error).

With these technical results in hand, we can proceed
to compute h�(Md,Md+1

)i in the next section.

IV. A WILKS THEOREM FOR QUANTUM
STATE SPACE

To derive a replacement for the Wilks theorem, we
start by showing the models Md satisfy MP-LAN.

Lemma 5. The models Md, defined in Equation (4),
satisfy MP-LAN.

Proof. Let M0
d = {� | dim(�) = d,� = �†}. (That is,

M0
d is the set of all d⇥ d Hermitian matrices, but we do

not require them to be non-negative, nor trace-1.) It is
clear Md ⇢ M0

d. Now, 8 � 2 M0
d, the likelihood L(�) is

twice continuously di↵erentiable, meaning M0
d satisfies

LAN. Thus, Md satisfies MP-LAN.

We can reduce the problem of computing
�(Md,Md+1

) to that of computing �(⇢
0

,Mk) for
k = d, d+ 1 using the identity

�(Md,Md+1

) = �(⇢
0

,Md+1

) � �(⇢
0

,Md).

where �(⇢
0

,Mk) is given in Equation (6). Because
each model satisfies MP-LAN, asymptotically, �(⇢

0

,Mk)
takes a very simple form, via Equation (7):

�(⇢
0

,Mk) = Tr[(⇢
0

� ⇢̂ML,Mk
)Ik(⇢0 � ⇢̂ML,Mk

)].

The Fisher information Ik is generally anisotropic, de-
pending on ⇢

0

, the POVM being measured, and the
model Mk (see Figure 5). And while the ⇢ � 0 con-
straint that invalidated LAN in the first place is at least
somewhat tractable in standard (Hilbert-Schmidt) co-
ordinates, it becomes completely intractable in Fisher-
adjusted coordinates. So, to obtain a semi-analytic null
theory for �, we will simplify to the case where Ik =
1lk/✏2 for some ✏ that scales as 1/

p
N

samples

. (That is,
Ik is proportional to the Hilbert-Schmidt metric.) This
simplification permits the derivation of analytic results
that capture realistic tomographic scenarios surprisingly
well [51].
With this simplification, �(Md,Md+1

) is given by

� =
1

✏2
�
Tr[(⇢

0

� ⇢̂ML,d+1)
2] � Tr[(⇢

0

� ⇢̂ML,d)
2]
�
. (11)

That is, � is a di↵erence in Hilbert-Schmidt distances.
This expression makes it clear why a null theory for �
is necessary: if ⇢

0

2 Md,Md+1

, ⇢̂ML,d+1 will lie further
from ⇢

0

than ⇢̂ML,d (because there are more parameters
that can fit noise in the data). The null theory for � tells
us how much extra error will be incurred in using Md+1

to reconstruct ⇢
0

when Md is just as good.
Describing Pr(�) is di�cult because the distributions

of ⇢̂ML,d, ⇢̂ML,d+1 are complicated, highly non-Gaussian,
and singular (estimates “pile up” on the various faces of
the boundary as shown in Figure 1). For this reason, we
will not attempt to compute Pr(�) directly. Instead, we
focus on deriving a good approximation for h�i.
We consider each of the terms in Equation (11)

separately and focus on computing ✏2h�(⇢
0

,Md)i =
hTr[(⇢̂ML,d � ⇢

0

)2]i for arbitrary d. Doing so involves two
main steps:
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�1.0 �0.5 0.0 0.5 1.0
h�Xi

�1.0

�0.5

0.0

0.5

1.0

h�
Z
i

Anisotropic Fisher information (Rebit)

FIG. 5. Anisotropy of the Fisher information for a
rebit: Suppose a rebit state ⇢0 (star) is measured using the
POVM 1

2{|0ih0|, |1ih1|, |+ih+|, |�ih�|}. Depending on ⇢0, the
distribution of the unconstrained estimates ⇢̂ML (ellipses) may
be anisotropic. Imposing the positivity constraint ⇢ � 0
is di�cult in Fisher-adjusted coordinates; in this paper, we
simplify these complexities to the case where I / 1l, and is
independent of ⇢0.

(1) Identify which degrees of freedom in ⇢̂ML,M0
d
are,

and are not, a↵ected by projection onto the tangent
cone T (⇢

0

).

(2) For each of those categories, evaluate its contribu-
tion to the value of h�i.

In Section IVA, we identify two types of degrees of
freedom in ⇢̂ML,M0 , which we call the “L” and the “kite”.
Section IVB computes the contribution of degrees of free-
dom in the “L”, and Section IVC computes the contri-
bution from the “kite”. The total expected value is given
in Equation (19) in Section IVD, on page 11.

A. Separating out Degrees of Freedom in ⇢̂ML,M0
d

We begin by observing that �(⇢
0

,Md) can be written
as a sum over matrix elements,

� = ✏�2Tr[(⇢̂ML,d � ⇢
0

)2] = ✏�2

X

jk

|(⇢̂ML,d � ⇢
0

)jk|2

=
X

jk

�jk where �jk = ✏�2|(⇢̂ML,d � ⇢
0

)jk|2,

and therefore h�i =
P

jkh�jki. Each term h�jki quan-
tifies the mean-squared error of a single matrix element
of ⇢̂ML,d, and while the Wilks theorem predicts h�jki = 1
for all j, k, due to positivity constraints, this no longer
holds. In particular, the matrix elements of ⇢̂ML,d now
fall into two parts:

1. Those for which the positivity constraint does a↵ect
their behavior.

“Kite”“L”

“L”

Matrix Elements of �̂M�
d

1 0.98 0.12 0.12 0.12 0.11 0.11 0.3

1 1 0.12 0.12 0.11 0.12 0.33 0.11

1 1 0.12 0.12 0.12 0.34 0.12 0.11

1 1 0.12 0.12 0.29 0.12 0.11 0.12

0.99 0.99 0.13 0.38 0.12 0.12 0.12 0.12

0.94 1 0.35 0.13 0.12 0.12 0.12 0.12

1 2.6 1 0.99 1 1 1 0.98

2.7 1 0.94 0.99 1 1 1 1

h�jki

FIG. 6. Division of the matrix elements of ⇢̂ML,M0
d
:

When a rank-2 state is reconstructed in d = 8 dimensions,
the total loglikelihood ratio �(⇢0,M8) is the sum of terms �jk

from errors in each matrix element (⇢̂ML,d)jk. Left: Numerics
show a clear division; some matrix elements have h�jki ⇠ 1 as
predicted by the Wilks theorem, while others are either more
or less. Right: The numerical results support our theoretical
reasoning for dividing the matrix elements of ⇢̂ML,M0

d
into two

parts: the “kite” and the “L”.

2. Those for which the positivity constraint does not
a↵ect their behavior, as they correspond to direc-
tions on the surface of the tangent cone T (⇢

0

). (Re-
call Figure 4 - as a component of ⇢̂ML,M0 along T (⇢

0

)
changes, the component of ⇢̂ML,M changes by the
same amount. These elements are unconstrained.)

The latter, which lie in what we call the “L”, comprise all
o↵-diagonal elements on the support of ⇢

0

and between
the support and the kernel, while the former, which lie
in what we call the “kite”, are all diagonal elements and
all elements on the kernel (null space) of ⇢

0

.

Performing this division is also supported by numerical
simulations (see Figure 6). Matrix elements in the “L”
appear to contribute h�jki = 1, consistent with the Wilks
theorem, while those in the “kite” contribute more (if
they are within the support of ⇢

0

) or less (if they are in
the kernel). Having performed the division of the matrix
elements of ⇢̂ML,M0

d
, we observe that h�i = h�

L

i+ h�
kite

i.
Because each h�jki is not necessarily equal to one (as in
the Wilks theorem), and because many of them are less
than 1, it is clear that their total h�i is dramatically lower
than the prediction of the Wilks theorem. (Recall Figure
2.)

In the following subsections, we develop a theory to
explain the behavior of h�

L

i and h�
kite

i. In doing so, it
is helpful to think about the matrix � ⌘ ⇢̂ML,M0

d
� ⇢

0

,
a normally-distributed traceless matrix. To simplify the
analysis, we explicitly drop the Tr(�) = 0 constraint and
let � be N (0, ✏21l) distributed over the d2-dimensional
space of Hermitian matrices (a good approximation when
d � 2), which makes � proportional to an element of the
Gaussian Unitary Ensemble (GUE) [52].
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B. Computing h�Li

The value of each �jk in the “L” is invariant under
projection onto the boundary (the surface of the tangent
cone T (⇢

0

)), meaning that it is also equal to the error
(⇢̂ML,d � ⇢

0

)jk. Therefore, h�jki = h�2jki/✏2. Because M0
satisfies LAN, it follows that each �jk is an i.i.d. Gaussian
random variable with mean zero and variance ✏2. Thus,
h�jki = 1 8 (j, k) in the “L”. The dimension of the
surface of the tangent cone is equal to the dimension of
the manifold of rank-r states in a d-dimensional space. A
direct calculation of that quantity yields 2rd � r(r + 1),
so h�

L

i = 2rd � r(r + 1).
Another way of obtaining this result is to view the �jk

in the “L” as errors arising due to small unitary pertur-
bations of ⇢

0

. Writing ⇢̂ML,M0
d
= U †⇢

0

U , where U = ei✏H ,
we have

⇢̂ML,M0
d

⇡ ⇢
0

+ i✏[⇢
0

, H] + O(✏2),

and � ⇡ i✏[⇢
0

, H]. If j = k, then �jj = 0. Thus, small
unitaries cannot create errors in the diagonal matrix ele-
ments, at O(✏). If j 6= k, then �jk 6= 0, in general. (Small
unitaries can introduce errors on o↵-diagonal elements.)
However, if either j or k (or both) lie within the kernel

of ⇢
0

(i.e., hk|⇢
0

|ki or hj|⇢
0

|ji is 0), then the correspond-
ing �jk are zero. The only o↵-diagonal elements where
small unitaries can introduce errors are those which are
coherent between the kernel of ⇢

0

and its support. These
o↵-diagonal elements are precisely the “L”, and are the
set {�jk | hj|⇢

0

|ji 6= 0, j 6= k, 0  j, k  d � 1}. This
set contains 2rd � r(r + 1) elements, each of which has
h�jki = 1, so we again arrive at h�

L

i = 2rd � r(r + 1).

C. Computing h�kitei

Computing h�
L

i was made easy by the fact that the
matrix elements of � in the “L” are invariant under the
projection of ⇢̂ML,M0

d
onto T (⇢

0

). Computing h�
kite

i is a
bit harder, because the boundary does constrain �. To
understand how the behavior of h�

kite

i is a↵ected, we an-
alyze an algorithm presented in [51] for explicitly solving
the optimization problem in Equation (5).
This algorithm, a (very fast) numerical method for

computing ⇢̂ML,d given ⇢̂ML,M0
d
, utilizes two steps:

1. Subtract q1l from ⇢̂ML,M0
d
, for a particular q 2 R.

2. “Truncate” ⇢̂ML,M0
d

� q1l, by replacing each of its
negative eigenvalues with zero.

Here, q is defined implicitly such that
Tr

⇥
Trunc(⇢̂ML,M0

d
� q1l)

⇤
= 1, and must be deter-

mined numerically. However, we can analyze how this
algorithm a↵ects the eigenvalues of ⇢̂ML,d, which turn out
to be the key quantity necessary for computing h�

kite

i.
The truncation algorithm above is most naturally per-

formed in the eigenbasis of ⇢̂ML,M0
d
. Exact diagonaliza-

tion of ⇢̂ML,M0
d
is not feasible analytically, but only its

small eigenvalues are critical in truncation. Further, only
knowledge of the typical eigenvalues of ⇢̂ML,d is neces-
sary for computing h�

kite

i. Therefore, we do not need
to determine ⇢̂ML,d exactly, which would require explic-
itly solving Equation (5) using the algorithm presented
in [51]; instead, we need a procedure for determining its
typical eigenvalues.
We assume that N

samples

is su�ciently large so that
all the nonzero eigenvalues of ⇢

0

are much larger than
✏. This means the eigenbasis of ⇢̂ML,M0

d
is accurately ap-

proximated by: (1) the eigenvectors of ⇢
0

on its sup-
port; and (2) the eigenvectors of �

ker

= ⇧
ker

�⇧
ker

=
⇧

ker

⇢̂ML,M0
d
⇧

ker

, where ⇧
ker

is the projector onto the ker-
nel of ⇢

0

.
Changing to this basis diagonalizes the “kite” portion
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O(✏)). The diagonal elements fall into two categories:
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FIG. 7. Approximating typical samples of GUE(N)
eigenvalues by order statistics: We approximate a typical
sample of GUE(N) eigenvalues by their order statistics (aver-
age values of a sorted sample). Left: The sorted eigenvalues
(i.e., order statistics j) of one randomly chosen GUE(100)
matrix. Right: Approximate expected values of the order
statistics, ̄j , of the GUE(100) distribution, computed as
the average of the sorted eigenvalues of 100 randomly cho-
sen GUE(100) matrices.

value of the jth largest value of . Large random sam-
ples are usually well approximated (for many purposes)
by their order statistics even when the elements of the
sample are independent, and level avoidance makes the
approximation even better.
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such a sample for N = 100. It also shows the aver-
age values of 100 such samples (all sorted). These are
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what is shown is a good estimate of the order statistics;
the actual order statistics would be given by the average
over infinitely many samples). As the figure shows, while
the order statistics are slightly more smoothly and pre-
dictably distributed than a single (sorted) sample, the
two are remarkably similar. A single sample  will fluc-
tuate around the order statistics, but these fluctuations
are relatively small, partly because the sample is large,
and partly because the GUE eigenvalues experience level
repulsion. Thus, the “typical” behavior of a sample – by
which we mean the mean value of a statistic of the sam-
ple – is well captured by the order statistics (which have
no fluctuations at all).
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require only that an ansatz be accurate for such quanti-
ties. We do not use this fact explicitly, but it motivates
our approach – and we do not claim that our ansatz is
accurate for all conceivable functions.

In general, if a sample  of size N is drawn so that each
 has the same probability density function Pr(), then
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FIG. 8. Approximating order statistics by the inverse
CDF: Order statistics of the GUE(N) eigenvalue distribution
are very well approximated by the inverse CDF of the Wigner
semicircle distribution. In both figures, we compare the order
statistics of a GUE(N) distribution to the inverse CDF of the
Wigner semicircle distribution. Top: N = 100. Bottom:
N = 10. Agreement in both cases is essentially perfect.

by the inverse cumulative distribution function (CDF):

j ⇡ CDF�1

✓
j � 1/2

N

◆
. (14)

This is closely related to the observation that the his-
togram of a sample tends to look similar to the underlying
probability density function. More precisely, it is equiv-
alent to the observation that the empirical distribution
function (the CDF of the histogram) tends to be (even
more) similar to the underlying CDF. For i.i.d. samples,
this is the content of the Glivenko-Cantelli theorem [55].
Figure 8 compares the order statistics of GUE(100) and
GUE(10) eigenvalues (computed as numerical averages
over 100 random samples) to the inverse CDF for the
Wigner semicircle distribution. Even though the Wigner
semicircle model of GUE eigenvalues is only exact as
N ! 1, it provides a nearly-perfect model for  even at
N = 10 (and remains surprisingly good all the way down
to N = 2).
We make one further approximation, by assuming that

N � 1, so the distribution of the j is e↵ectively con-
tinuous and identical to Pr(). For the quantities that
we compute, this is equivalent to replacing the empirical
distribution function (which is a step function) by the
CDF of the Wigner semicircle distribution. So, whereas
for any given sample the partial sum of all j > q jumps
discontinuously when q = j for any j, in this approxi-
mation it changes smoothly. This accurately models the
average behavior of partial sums.
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2. Deriving an approximation for q

The approximations of the previous section allow us
to use {pj} [ {j} as the ansatz for the eigenvalues of
⇢̂ML,M0

d
, where the pj are N (⇢jj , ✏2) random variables,

and the j are the (fixed, smoothed) order statistics of
a Wigner semicircle distribution. In turn, the defining
equation for q (Equation (12)) is well approximated as
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(pj � q)+ +
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j=1

(j � q)+ = 1.

To solve this equation, we observe that the j are
symmetrically distributed around  = 0, so half of
them are negative. Therefore, with high probability,
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⇥
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d
)
⇤
> 1, and so we will need to subtract

q1l from ⇢̂ML,M0
d
before truncating.

Because we have assumed N
samples

is su�ciently large
(N

samples

>> minj 1/⇢2jj), the eigenvalues of ⇢
0

are large
compared to the perturbations �jj and q. This implies
(pj � q)+ = pj � q. Under this assumption, q is the
solution to
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where � =
Pr

j=1

�jj is a N (0, r✏2) random variable. We
choose to replace a discrete sum (line 1) with an inte-
gral (line 2). This approximation is valid when N � 1,
as we can accurately approximate a discrete collection of
closely spaced real numbers by a smooth density or dis-
tribution over the real numbers that has approximately
the same CDF. It is also remarkably accurate in practice.

In yet another approximation, we replace � with its
average value, which is zero. We could obtain an even
more accurate expression by treating � more carefully,
but this crude approximation turns out to be quite accu-
rate already.

To solve Equation (15), it is necessary to further sim-
plify the complicated expression resulting from the inte-
gral (line 3). To do so, we assume ⇢

0

is relatively low-
rank, so r ⌧ d/2. In this case, the sum of the positive
j is large compared with r, almost all of them need to
be subtracted away, and therefore q is close to 2✏

p
N .

We therefore replace the complicated expression with its
leading order Taylor expansion around q = 2✏

p
N , sub-

stitute into Equation (15), and obtain the equation

rq

✏
=

4

15⇡
N1/4

⇣
2
p
N � q

✏

⌘
5/2

. (16)

This equation is a quintic polynomial in q/✏, so by the
Abel-Ru�ni theorem, it has no algebraic solution. How-
ever, as N ! 1, its roots have a well-defined algebraic
approximation that becomes accurate quite rapidly (e.g.,
for d � r > 4):

z ⌘ q/✏ ⇡ 2
p
d � r

✓
1 � 1

2
x+

1

10
x2 � 1

200
x3

◆
, (17)

where x =
⇣

15⇡r
2(d�r)

⌘
2/5

.

3. Expression for h�kitei

Now that we know how much to subtract o↵ in the
truncation process, we can approximate h�

kite

i, originally
given in Equation (13):

h�
kite

i ⇡ 1

✏2

*
rX

j=1

[⇢jj � (pj � q)+]2 +
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D. Complete Expression for h�i

The total expected value, h�i = h�
L

i + h�
kite

i, is thus

h�(⇢
0

,Md)i ⇡ 2rd � r2 + rz2

+
N(N + z2)
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2
� sin�1
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where z is given in Equation (17), N = d � r, and r =
Rank(⇢

0

).

V. COMPARISON TO NUMERICAL
EXPERIMENTS

A. Isotropic Fisher Information

Equation (19) is our main result. To test its validity,
we compare it to numerical simulations for the case of
an isotropic Fisher information with d = 2, . . . , 30 and
r = 1, . . . , 10 in Figure 9. The prediction of the Wilks

Even with that assumption, the calculation* was non-trivial…

Random matrix theory 
(Gaussian Unitary Ensemble)

Truncating unconstrained ML estimates 
(IBM algorithm)

Geometry of the tangent cone 
(“L” and the “kite”)

*Scholten & Blume-Kohout, NJP 20 023050 (2018)



…but our result had much better agreement!
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where � =
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choose to replace a discrete sum (line 1) with an inte-
gral (line 2). This approximation is valid when N � 1,
as we can accurately approximate a discrete collection of
closely spaced real numbers by a smooth density or dis-
tribution over the real numbers that has approximately
the same CDF. It is also remarkably accurate in practice.

In yet another approximation, we replace � with its
average value, which is zero. We could obtain an even
more accurate expression by treating � more carefully,
but this crude approximation turns out to be quite accu-
rate already.

To solve Equation (15), it is necessary to further sim-
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gral (line 3). To do so, we assume ⇢
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This equation is a quintic polynomial in q/✏, so by the
Abel-Ru�ni theorem, it has no algebraic solution. How-
ever, as N ! 1, its roots have a well-defined algebraic
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V. COMPARISON TO NUMERICAL
EXPERIMENTS
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Equation (19) is our main result. To test its validity,
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r = 1, . . . , 10 in Figure 9. The prediction of the Wilks
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Recent results in classical compressed sensing show 
how the geometry of convex optimization affects performance.

Suppose we acquire data of the form z0 = Ax0

Estimate the signal using convex optimization:

x̂0 = argmin
x2M

f(x) s.t. z0 = Ax

To reason about properties of the estimate, look at descent cone:

Living on the edge: Phase transitions in convex programs with random data 
D Amelunxen, M Lotz, M McCoy, & J Tropp 
Information and Inference, 2014

D(f,x) =
S

⌧>0 {y 2 M : f(x+ ⌧y)  f(x)}



Recent results in classical compressed sensing show 
how the geometry of convex optimization affects performance.

Living on the edge: Phase transitions in convex programs with random data 
D Amelunxen, M Lotz, M McCoy, & J Tropp 
Information and Inference, 2014

“Interaction” of descent cone and null space of A determines 
whether we can uniquely recover the signal:

Fact: x0 is the unique optimal point of minimizing

a proper convex function if, and only if, D \ null(A) = {0}.



Computing the statistical dimension of the descent cone 
tells us when unique recovery is possible.

Living on the edge: Phase transitions in convex programs with random data 
D Amelunxen, M Lotz, M McCoy, & J Tropp 
Information and Inference, 2014

Given cone C, define the metric projection of a point onto C as

⇧C(x) = argmin
y2C

||x� y||
x

C

The statistical dimension of the cone is

�(C) = h||⇧C(x)||2i x ⇠ N (0, I)
⇧C(x)

If C is an L-dimensional subspace, �(C) = L



Computing the statistical dimension of the descent cone 
tells us when unique recovery is possible.

Living on the edge: Phase transitions in convex programs with random data 
D Amelunxen, M Lotz, M McCoy, & J Tropp 
Information and Inference, 2014

With enough constraints, the
null space doesn’t intersect the
descent cone.

“Skinnier” descent cones have 
lower statistical dimension, 
meaning fewer measurements 
are necessary.

Theorem: Suppose A 2 Rm⇥d, with i.i.d N (0, 1) entries.

If m � �(D(f,x0)) +
p

8 log(4/⌘)
p
d,

then recovery is possible with probability � 1� ⌘.



Our replacement for the Wilks theorem gives 
the statistical dimension of the tangent cone!

⇢0

⇢̂ML,M

T (⇢0)

M

M0

⇢̂ML,M0

Tangent Cone Example (Rebit)

⇢̂ML,M0
d
⇠ N (⇢0, I/N)

�(T (⇢0)) = hTr[(⇧T (⇢0)(⇢̂ML,Md)� ⇢0)
2]i

Start with unconstrained ML estimates

Compute metric projections onto tangent cone

Expected value of loglikelihood ratio statistic 
is the statistical dimension

Does this result provide new insight
into quantum compressed sensing?

⇢̂ML,Md = ⇧T (⇢0)(⇢̂ML,M0
d
)



Kalev, et. al, npj Quantum Information 1, 15018 (2015) 
Quantum tomography protocols with positivity are 
compressed sensing protocols

We understand how the positivity constraint 
in state tomography affects reconstruction.

Requires restrictions on the measurement map



Gross, et. al, PRL 105, 150401 (2010) 
Quantum State Tomography via Compressed Sensing

For the case of Pauli measurements, we can compute the 
number of outcomes necessary for reconstruction.



Chandrasekaran et. al, Foundations of Computational Mathematics 
(2012) 12:805–849 
The Convex Geometry of Linear Inverse Problems

For the case of Gaussian measurements, we can compute the 
number of outcomes necessary for reconstruction.

In state tomography, 6rd� 3r2 measurements are su�cient.

Consequence:



In the limit of large dimension, our result for 
the statistical also yields a similar conclusion.

Statistical dimension of 
tangent cone

Number of measurements 
for quantum compressed 
sensing (Gaussian model)

Tangent cone in 
state space

Descent cone of 
some convex function??



Wrap up: geometry, model selection, and quantum 
compressed sensing
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Abstract
Quantum state tomography on a d-dimensional systemdemands resources that grow rapidlywith d.
Theymay be reduced by usingmodel selection to tailor the number of parameters in themodel (i.e.,
the size of the densitymatrix).Mostmodel selectionmethods typically rely on a test statistic and a null
theory that describes its behavior when twomodels are equally good.Here, we consider the
loglikelihood ratio. Because of the positivity constraint ρ�0, quantum state space does not generally
satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio
(theWilks theorem) should not be used. Thus, understanding and quantifying howpositivity affects
the null behavior of this test statistic is necessary for its use inmodel selection for state tomography.
Wedefine a new generalization of LAN,metric-projected LAN, show that quantum state space satisfies
it, and derive a replacement for theWilks theorem. In addition to enabling reliablemodel selection,
our results shedmore light on the qualitative effects of the positivity constraint on state tomography.

Determining thequantumstateρ0producedbya specificpreparationprocedure for aquantumsystem is aproblem
almost as old asquantummechanics itself [1, 2]. This task, knownasquantumstate tomography [3], is notonlyuseful in
its ownright (diagnosing anddetecting errors in statepreparation), but is alsoused inother characterizationprotocols
including entanglement verification [4–6] andprocess tomography [7].A typical state tomographyprotocolproceeds
as follows:many copies ofρ0 areproduced, they aremeasured indiverseways, andfinally theoutcomesof those
measurements (data) are collated andanalyzed toproduce an estimate r̂. This is a straightforward statistical inference
process [8, 9],where thedata areused tofit theparameters of a statisticalmodel. In state tomography, theparameter is
ρ, and themodel is the set of all possibledensitymatrices onaHilbert space (equippedwith theBorn rule).However,
wedonot always knowwhatmodel touse. It is not alwaysaprioriobviouswhat , or its dimension, is; examples
includeopticalmodes [10–14] and leakage levels inAMOand superconducting [15, 16]qubits. In such situations,we
seek to let thedata itself determinewhichofmany candidateHilbert spaces is best suited for reconstructingρ0.

Choosing anappropriateHilbert spaceon thefly is an instanceof a general statistical problemcalledmodel selection.
Althoughmodel selectionhasbeen thoroughly explored in classical statistics [17], its application to state tomography
encounters someobstacles.They stemfromthe fact thatquantumstates—and therefore, estimatesof them—must
satisfy apositivity constraintρ�0. (Seefigure 1.)Asimilar constraint, completepositivity, applies toprocess
tomography.The impactof positivity constraints on state andprocess tomography is an active areaof research [18–21],
and its implications formodel selectionhave alsobeen considered [22–28]. In this paper,we address a specificquestion
at theheart of thismatter:Howdoes the loglikelihood ratio statistic used inmanymodel selectionprotocols, including (but
not limited to) information criteria such asAkaike’sAIC [29], behave in thepresence of the positivity constraintρ�0?

We begin in section 1 by introducing the loglikelihood ratio statisticλ, and outline how it can be used to
choose aHilbert space. In section 2, we showhow andwhy the classical null theory for its behavior, theWilks
theorem, falls apart in the presence of the positivity constraint, because quantum state space does not generally
satisfy local asymptotic normality (LAN).We define a new generalization of LAN,metric-projected local
asymptotic normality (MP-LAN), in section 3; this generalization explicitly accounts for the positivity
constraint, and is satisfied by quantum state space. Using this generalization, we derive a closed-form
approximation forλʼs expected value in section 4, thereby providing a replacement for theWilks theorem that is
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Determining thequantumstateρ0producedbya specificpreparationprocedure for aquantumsystem is aproblem
almost as old asquantummechanics itself [1, 2]. This task, knownasquantumstate tomography [3], is notonlyuseful in
its ownright (diagnosing anddetecting errors in statepreparation), but is alsoused inother characterizationprotocols
including entanglement verification [4–6] andprocess tomography [7].A typical state tomographyprotocolproceeds
as follows:many copies ofρ0 areproduced, they aremeasured indiverseways, andfinally theoutcomesof those
measurements (data) are collated andanalyzed toproduce an estimate r̂. This is a straightforward statistical inference
process [8, 9],where thedata areused tofit theparameters of a statisticalmodel. In state tomography, theparameter is
ρ, and themodel is the set of all possibledensitymatrices onaHilbert space (equippedwith theBorn rule).However,
wedonot always knowwhatmodel touse. It is not alwaysaprioriobviouswhat , or its dimension, is; examples
includeopticalmodes [10–14] and leakage levels inAMOand superconducting [15, 16]qubits. In such situations,we
seek to let thedata itself determinewhichofmany candidateHilbert spaces is best suited for reconstructingρ0.

Choosing anappropriateHilbert spaceon thefly is an instanceof a general statistical problemcalledmodel selection.
Althoughmodel selectionhasbeen thoroughly explored in classical statistics [17], its application to state tomography
encounters someobstacles.They stemfromthe fact thatquantumstates—and therefore, estimatesof them—must
satisfy apositivity constraintρ�0. (Seefigure 1.)Asimilar constraint, completepositivity, applies toprocess
tomography.The impactof positivity constraints on state andprocess tomography is an active areaof research [18–21],
and its implications formodel selectionhave alsobeen considered [22–28]. In this paper,we address a specificquestion
at theheart of thismatter:Howdoes the loglikelihood ratio statistic used inmanymodel selectionprotocols, including (but
not limited to) information criteria such asAkaike’sAIC [29], behave in thepresence of the positivity constraintρ�0?

We begin in section 1 by introducing the loglikelihood ratio statisticλ, and outline how it can be used to
choose aHilbert space. In section 2, we showhow andwhy the classical null theory for its behavior, theWilks
theorem, falls apart in the presence of the positivity constraint, because quantum state space does not generally
satisfy local asymptotic normality (LAN).We define a new generalization of LAN,metric-projected local
asymptotic normality (MP-LAN), in section 3; this generalization explicitly accounts for the positivity
constraint, and is satisfied by quantum state space. Using this generalization, we derive a closed-form
approximation forλʼs expected value in section 4, thereby providing a replacement for theWilks theorem that is
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Abstract
Quantum state tomography on a d-dimensional systemdemands resources that grow rapidlywith d.
Theymay be reduced by usingmodel selection to tailor the number of parameters in themodel (i.e.,
the size of the densitymatrix).Mostmodel selectionmethods typically rely on a test statistic and a null
theory that describes its behavior when twomodels are equally good.Here, we consider the
loglikelihood ratio. Because of the positivity constraint ρ�0, quantum state space does not generally
satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio
(theWilks theorem) should not be used. Thus, understanding and quantifying howpositivity affects
the null behavior of this test statistic is necessary for its use inmodel selection for state tomography.
Wedefine a new generalization of LAN,metric-projected LAN, show that quantum state space satisfies
it, and derive a replacement for theWilks theorem. In addition to enabling reliablemodel selection,
our results shedmore light on the qualitative effects of the positivity constraint on state tomography.

Determining thequantumstateρ0producedbya specificpreparationprocedure for aquantumsystem is aproblem
almost as old asquantummechanics itself [1, 2]. This task, knownasquantumstate tomography [3], is notonlyuseful in
its ownright (diagnosing anddetecting errors in statepreparation), but is alsoused inother characterizationprotocols
including entanglement verification [4–6] andprocess tomography [7].A typical state tomographyprotocolproceeds
as follows:many copies ofρ0 areproduced, they aremeasured indiverseways, andfinally theoutcomesof those
measurements (data) are collated andanalyzed toproduce an estimate r̂. This is a straightforward statistical inference
process [8, 9],where thedata areused tofit theparameters of a statisticalmodel. In state tomography, theparameter is
ρ, and themodel is the set of all possibledensitymatrices onaHilbert space (equippedwith theBorn rule).However,
wedonot always knowwhatmodel touse. It is not alwaysaprioriobviouswhat , or its dimension, is; examples
includeopticalmodes [10–14] and leakage levels inAMOand superconducting [15, 16]qubits. In such situations,we
seek to let thedata itself determinewhichofmany candidateHilbert spaces is best suited for reconstructingρ0.

Choosing anappropriateHilbert spaceon thefly is an instanceof a general statistical problemcalledmodel selection.
Althoughmodel selectionhasbeen thoroughly explored in classical statistics [17], its application to state tomography
encounters someobstacles.They stemfromthe fact thatquantumstates—and therefore, estimatesof them—must
satisfy apositivity constraintρ�0. (Seefigure 1.)Asimilar constraint, completepositivity, applies toprocess
tomography.The impactof positivity constraints on state andprocess tomography is an active areaof research [18–21],
and its implications formodel selectionhave alsobeen considered [22–28]. In this paper,we address a specificquestion
at theheart of thismatter:Howdoes the loglikelihood ratio statistic used inmanymodel selectionprotocols, including (but
not limited to) information criteria such asAkaike’sAIC [29], behave in thepresence of the positivity constraintρ�0?

We begin in section 1 by introducing the loglikelihood ratio statisticλ, and outline how it can be used to
choose aHilbert space. In section 2, we showhow andwhy the classical null theory for its behavior, theWilks
theorem, falls apart in the presence of the positivity constraint, because quantum state space does not generally
satisfy local asymptotic normality (LAN).We define a new generalization of LAN,metric-projected local
asymptotic normality (MP-LAN), in section 3; this generalization explicitly accounts for the positivity
constraint, and is satisfied by quantum state space. Using this generalization, we derive a closed-form
approximation forλʼs expected value in section 4, thereby providing a replacement for theWilks theorem that is
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