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Outline

1. Embedded-atom method potential for Fe-Ni-Cr-H
2. Analytical bond order potential for Al-Cu-H

3. Analytical bond order potential for Mg-H
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Four criteria of fidelity of Fe-Ni-Cr
interatomic potential

1. permit stable high temperature MD simulations

2. capture the correct stacking fault energy (v

3. prescribe well the elastic constants

4. give reasonable energy and volume for various
compositions
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Issues of literature potentials

. The potential we published (CALPHAD 1993, 17, 383) did not

consider the four criteria
Smith and Was’ potential (PRB 1989, 40, 10322) was fitted to
effective atoms and did not consider stacking fault energy

. The 2013 version of Bonny et al’s potential (MSMSE 2013, 21
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. The 2011 version of Bonny et al’s potential (MSMSE 2011, 19,

085008) incorrectly predicts negative slope of stacking fault energy
with Ni composition

. Tong et al’s potential (Mol. Sim. 2016, 42, 1256) incorrectly

predicts large negative stacking fault energy (~ -200 mJ/m?)
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Current status of our Fe-Ni-Cr-H
embedded-atom method potential



%" Energy and volume trends

( a) Energy

(b) Lattice constant

energy change &g
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Swelling parameter comparison with experiments

3.46%

DFT exp.
10.09% 4.65%
8.06% 4.36%

Experimental data from King, J. Mater. Sci. 1966, 1, 79

DFT



Sandia
m National
Laboratories

Heats and Gibbs free energy of solution

(a) Fe-Ni (b) Fe-Cr
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Experimental data for 316L from Ledbetter, Ultrasonics 1985, 23, 9; Bonny et al,
MSMSE 2011, 19, 085008; Bonny et al, MSMSE 2013, 21, 085004.
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(1) Convergence of MD stacking fault energy (b) Converged MD stacking fault energy vs. Xy (c) DFT (EMTO-CPA) stacking fault energy vs. Xy;
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The predicted stacking fault energies match well with experimental
results (see, for example, Vitos et al, PRL 2006, 96, 117210, and
references therein).
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Melting
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Crg.2 bee Fe, atom map

10.2

(d) Feo N

Growth simulations

(a) Fe on bee Fe, atom map
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Current status of our Al-Cu-H
analytical bond order potential

1. X.W. Zhou, D. K. Ward, and M. E. Foster, J. Alloys Compds. 2016, 680, 752;
2. X.W. Zhou, D. K. Ward, M. Foster, J. A. Zimmerman, J. Mater. Sci., 2015, 50, 2859.
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%‘ Wish list for Al-Cu-H potential

1. A high stacking fault energy of Al observed in experiments;
2. Properties trends of a variety of stable and metastable structures;
3. Al-rich side of the Al-Cu phase diagram;
4. Areasonable positive heat of solution of Cu in Al;
5. H2 < 2H chemical reaction:;
6. Al_H,— Al+H,and Cu, H, — Cu+ H, phase separations;
7. Robust MD simulations.
(a) Al-Cu phase diagram (b) crystal structure of the 6 and 0’ phases
1100 grmmrrrmmrer T [T
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Stacking fault energy of Al

Model/Exp. Y100 Y110 Vil Vst
EAM-CY 583 631 526 1
EAM-Mishinl 947 1013 873 141
EAM-BAM 1017 1154 1003 85
EAM-VC 862 969 829 71
EAM-MSAH 194 328 138 126
EAM-Zhou 868 058 832 44
EAM-MKBA 495 582 427 125
EAM-JNP 977 1055 910 0
MEAM 903 944 599 141
REAX-LJGS 481 483 4277 0
REAX- Ojwang 810 848 711 1
BOP 979 1069 850 133
DFT [38] 1063 1098 987 | -
Exp. [59,60,61,62] | 980-1140 | 980-1140 | 980-1140 | 120-144

BOP captures a high stacking fault energy of Al.
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(b) Atomic volume Q

o Property trends of Al and
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Heat of formation AH¢ (eV/atom)

A

Property trends of Al-Cu

(a) Cohesive energy E. (b) Atomic volume Q
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g Property trends of Al-H and Cu-H i

(b) Atomic volume Q
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% Dilute heat of solution of Cu in Al
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1084.9 °C 40k \ slop |
1000 by 4.0 ° AEd =0.45eV
g0 s
L \ \
900 N
€ \
N
1
1

Al-Cu alloy
phase region

o0

o

o

Ln(XCu)

o
/

' g
660.5 °C

Temperature (°C)
-]
-
)

567 °C

(Al) (Cu) 6.0 .._

400 Al+0 1.25 1.30 135 1.40 1.45 1.50 1.55
7 aj

300 |||||| Ll 111 1/T(10'3 K'l)
0 10 20 30 40 50 60 70 80 90 100
Al at.% Cu

1. Traditionally, heat of solution of Cu in Al is taken as Literature comparison

energy change due to taking a Cu atom from Cu ADP 1.09
pool and putting it in Al pool; EAM-CY | -0.06
BOP 0.14

2. Should really be the energy change due to taking a
Cu atom from Al,Cu pool and putting it in Al pool,
3. Must be a positive number

DFT 0.40
Exp. 0.45
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H,+H—>H+H, chemical reaction

Hydrogen crystal to H, gas H,+H—H+H, energy profiles
-1.5 T T T T
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S st
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Our BOP captured the H,+H—H+H, reaction
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Al + H, and Cu

(a) Ny/N¢, = 0.20 with both
Cu and H shown
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H, Phase Separation

(b) Only H shown
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Current status of our Mg-H
analytical bond order potential
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% Issues of literature potentials ==
' _ _ Rutile Crystal for MgH et
1. Literature Mg-H EAM potential developed by uoleo gsg gr o e vl
Ruda et al (ANALES DE LAASOCIACION S Mo e
oo e Oo ICS =
QUIMICA ARGENTINA, 84, 393, 1996) GOOO"O"O"O. At 0 K %
cannot maintain the correct MgH, crystal GO — e
structure even during 0 K; C‘ZQ‘ZQ‘EQ‘:Q‘:Q' Lo

2. Literature Mg-H ReaxFF potential developed
by Cheung et al (S. Cheung, W. Q. Deng, A.
C. T. van Duin, W. A. Goddard, J. Phys.
Chem., 109, 851 2005) cannot maintain the
correct MgH, crystal structure during 300 K
molecular dynamics (MD) simulations;

(110)MgH, // (0001) Mg, [110] MgH, // [2-1-10] Mg
Phil. Mag. Lett., 90, 1, 2010
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3. Our preliminary Mg-H bond order potential
enables MD simulations of MgH, crystals.
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H,+H—>H+H, chemical reaction

Hydrogen crystal to H, gas H,+H—H+H, energy profiles
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Our BOP captured the H,+H—H+H, reaction
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Energy trends
a) Cohesive energy E. b) Heat of formation AEf from all potentials
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Crystalline growth of Mg-hcp Crystalline growth of MgH,-rutile
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Summary

1. Our Fe-Ni-Cr EAM captures the four criteria
critical for simulations of stainless-steels.
Hydrogen Is yet to be added,;

2. Our Al-Cu-H BOP captures the high Al stacking
fault energy, the stability of Al,Cu compound, and
the H,/H chemical reaction;

3. Our Mg-H BOP captures the crystalline growth of
the rutile phase of MgH, hydride.



