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Background o ) S,

= Ultimate goal is to produce working
multi-qubit devices.

= State of the art has moved from single qubit
demonstrations to handfuls of qubits on a chip.

= How do we best ensure these collections of qubits
will work?

= What does it mean to “work”?
= perform algorithms?
= perform error correction?
" no “high-weight” errors?
= Could just “see if they work”, but this is risky, and is
difficult to extrapolate from.
= Characterization? (but how?)



Characterization ) 2=,

= By extracting the information about the system we’d like to:

— Rough gauge of performance (benchmarking)
— “Debug” the system of qubits
— Inform predictive simulations (model-based)
= Tradeoff: Information vs. Effort (but how in practice?)

This talk:
“Reduced-model tomography”
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= Goal of this work is to allow us to make this tradeoff.

= Within the context of model-based approaches, tradeoff is captured by
the number of model parameters




Reduced-parameter models .

This talk: “GST”-like characterization using reduced-parameter models.
= Starting point: standard-GST’s very rich model

I 0 0 0
= Gates are 4" x 4" matrices; ~ 3N - 16" total parameters. T, Ay Ay A
= Hero computation at N=3; impossible beyond that. G = t, Ay A, A
. . . . (gate)
= Even if we could compute it, way too much information . A A, A
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Key idea: (leading to natural reduction in #parameters)
=  Write gates as:

“Error generator” [ = Z 0;H; + Z HijSij
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gate) Hi: p = =< [Ai, p]

Ideal unitary 1
Sijip = AipAl — > (pATA; — AT Aip)

= Strategy: Limit terms in I to reduce the parameters of G;
= Pauli-channel; limited weight; locality of terms; system-specific physics
= Nested models allow application of standard selection criteria.




Linear-chain models

Consider a chain of N qubits.

= |deal operations:
1. Global idle gate

2. X(m/2) and Y(mr/2) gates on each qubit

3. CNOT gates between adjacent qubits.
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Example:
5-qubit chain




Linear-chain models (cont.) ) =

" Errors included in model:

(idle) cx
" ldle gate Q00@0
= weight-1 errors* on all qubits
X 2
= X,Y gates: T v

& ‘ . (wt1, on target)

= weight-1 & 2 errors* on target qubit and its
neighbors

= Same weight-1 errors* as global idle on all other
qubits

= CNOT gates:
= weight-1, 2 & 3 errors* on target qubits and

their neighbors . m ‘ (wt1, on neighbor)
= Same weight-1 errors* as global idle on all other

eXZ
CIUbitS . m . (wt2, adjacent)
eZZ
a ‘ (wt2, non-adjacent)
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* “errors” = Hamiltonian + Pauli-stochcastic only ‘ - (wt3)

(wt1, on target)




Sparse-model Gate Set Tomography ([,

= Method:
= |nput:
= Parameterized qubit error model
= ouctome counts for a pre-defined set of gate sequences

= Maximize Likelihood(model-parameters | data)
= Qutput: best-fit model parameters (= qubit errors)

= Result:

= Using the “base” model and an over-complete set of sequences, this method
succeeds in identifying the errors in simulated 3,4,5 & 6-qubit processors.

= Computation time: < 15 hours on < 100-cores.

= Significance:
=  Proof of principle: ML gradient ascent algorithms are able to fit simulated-
processor data using the aforementioned models. 0.0
(0}

= Capability: methods/framework in open-source pyGSTi package.
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Significance ==

::: m - cost of model-estimation
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= Does:

= @Gives users access to the tradeoff space between tomographic detail and
required data.

=  Pushed “#qubits you can perform tomography on” to > 2 (maybe ~ 67?)
= Provide more direct link with predictive QEC simulations
= Doesn’t:

= push “#qubits you can simulate” any higher — still limited by cost of forward
simulation (density matrix propagation in our case) 9



Parameter Scaling UL
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= Linear scaling of parameters with #qubits

= Ability to tradeoff model richness with qubits or time.
= Easy to create nested models
=  Practical for 2-8(?) qubits

= Pushes reason for tomography’s exponential scaling to qubit simulation

(resources ~ parameters * simulation_cost) 10
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Next steps & open questions

= Faster quantum-state propagation
= Currently use density-matrix propagation (4N)
= Alternatives: state-vector (2V); compact representations?
= _..Or ways to perform tomography without state propagation.

= Sequence selection (how many & which ones)
= Gauge degrees of freedom
= Efficiency: precision vs. time, # of experiments

= Model selection criteria




Summary UL

= Suggested a way to construct reduced-parameter, nested,
multi-qubit models.

= Showed that families of these models can easily have
parameter counts which are polynomial (even linear) in the
number of qubits.

= Showed that it is possible to use standard likelihood
maximization to fit a “base”-type model to raw count data
from a simulated N-qubit linear-chain processor, where N <=
6. (Essentially a “sparse quantum process tomography” on 6
qubits)




Excuses ©

= Review and Approval
= Early march meeting
= My relatives

= Artic vortex
= E| Niho




