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Electric Power Distribution Systems

 Last stage of electric grid, delivering power to customers

 Distribution system analysis and design has experienced a 
gradual development over the couple of decades
 Historically, radial flow from substation to customer; voltage highest 

at substation and decreases en route to customer

 Not much concern over voltage regulation beyond substation

 Now, customer distributed energy resources (PV, storage, etc.); 
customers can inject current

 voltage at customer may be a concern
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PV Integration to Distribution

 PV systems can impact distribution system operations
 Can reverse flow direction on parts of feeder

 Can have more variability than the load variability for which the 
system is designed

 Specifically of concern are:
 Over/under-voltage conditions, thermal limit violations, reverse 

power flow, rapid power fluctuations, excessive voltage controller 
actions, etc.
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Distribution System Simulations
 To understand impact of PV, use distribution grid simulations

 Quasi-static time series (QSTS) simulations compute the voltage and 
current at each location on a feeder over time 

 Need accurate PV and load inputs for accurate simulations
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Load and DER Generation Data

 Ideal case:
 1-second temporal resolution 

 high-frequency variability

 Full spatial resolution 

 separate data for all customers on 
feeder

 1-year or longer period of record 

 seasonal trends

 Challenges with sub-optimal data:
 Temporal resolution

 Spatial resolution

 Accuracy for the location
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Temporal Resolution

 Low-resolution data leads to rounded off load 
peaks and smoothed PV variability 

 Less voltage excursions and hence fewer tap 
change operations for low-resolution data
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Spatial Diversity

 Single customer vs. all customers 
on feeder
 Both load and PV variable at single 

customer

 PV more variable and less smoothed 
when aggregated over several 
customers
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Geographic Differences

 Load 
 Peaks load timing may vary by location (e.g., California vs. Vermont)

 Layout of customers on feeder (e.g., city vs. agricultural)

 PV
 Weather differences – different amount of generation and variability

 PV penetrations vary by incentives, etc.
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Geographic Variation in Puerto Rico
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Load Data Availability

 “Common” situation:

 Measured aggregate load at substation, 1-hr resolution

 “Great” situation:

 AMI load measurement at each customer, 5-min or 15-min 
resolution 
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High-Frequency Load Modeling

 Load variability is modeled 
using 1-second load data

 Model development 
creates hourly 
classifications of 
variability, stores models 
as wavelet coefficients, 
and clusters similar hours 
together*
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PV Data Availability

 “Common” situation:
 No local irradiance or PV measurements

 Must create synthetic data, likely from satellite (1km or worse spatial 
resolution, 5-min or worse temporal resolution)

 Temporal, spatial, geographic, PV modeling errors

 “Good” situation:
 1 local, high-frequency irradiance measurement

 Spatial, PV modeling errors

 “Great” situation:
 PV output measurement at each customer, 5-min or 15-min resolution

 Temporal errors
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Solar Data Scarce in Puerto Rico
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 Very limited publically-available irradiance data in Puerto Rico: 

 7 ground sensors on western half of island at 1-hour1

 1-km, 1-hour satellite-based irradiance2

 NREL’s NSRDB satellite data began covering Puerto Rico in 2015

 In September 2012, the Kleissl Lab Group at UC San Diego started 
collecting 1-second irradiance measurements at the University of Puerto 
Rico, Mayaguez.

2013
data availability

1. Natural Resource Conservation Service (NRCS): http://www.wcc.nrcs.usda.gov/scan/Puerto_Rico/puerto_rico.html
2. PRAGWATER: http://pragwater.com/solar-radiation-data-for-pr-dr-and-haiti/



PV Modeling Considerations

 Temporal: need high-
frequency; most data sources 
(e.g., satellite/AMI) low-
frequency

 Spatial: Unique profiles 
needed for each 
interconnection point

 Geographic: Represent local 
solar variability 

 Modeling: Need data for 
PV sizes, locations, 
orientations, control 
settings
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High-Frequency Solar Modeling

 Model is driven off 
NSRDB and SURFRAD 
data – nrsdb.nrel.gov

 11 variability “cloud” classes 
are generated from nearest 
high-temporal res. irradiance 
dataset*

15*work done by the National Renewable Energy Laboratory (NREL)



Solar Spatial Diversity
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Single Sensor Synthetic Cloud Fields
• Point measurements from a single 

sensor applied to all PV locations
• PV power timeseries perfectly 

correlated

• Simulated cloud formations
• Unique PV power timeseries at 

each interconnection point

Challenge: modeling PV power 
output from several PV 
interconnection points on a 
distribution feeder

Options:
PV locations are actual irradiance sensors in Oahu, HI



Solar Spatial Diversity
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entire area 
follows same 
pattern

cloud shapes 
create different 
PV profiles at 
each locations

Actual



Solar Spatial Diversity
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Actual

Synthetic Cloud Fields

correlation 
decreases 
as 
distance 
increases

Single Sensor

all sites 
perfectly 
correlated



Solar Spatial Diversity
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Actual

Single Sensor Synthetic Cloud Fields



Load and PV Data Discussion

 Do we really need high-resolution irradiance measurements, 
or simply data on variability statistics?  
 Cloud fields can create synthetic high temporal and spatial resolution 

data which recreates variability statistics

 How many unique profiles are needed?
 “Ideal” case of 1s measurements of everything is likely too much data –

data reduction, what do we really need? Can we do some grouping? 

 Load allocation, regulator, sectionalizing device, service transformer vs. 
AMI

 For many analysis applications (e.g., tap changes), data reduction may 
be efficient and maintain accuracy.

 What do we do with all the AMI data? 
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