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Electric Power Distribution Systems @k

= |ast stage of electric grid, delivering power to customers

= Distribution system analysis and design has experienced a
gradual development over the couple of decades

= Historically, radial flow from substation to customer; voltage highest
at substation and decreases en route to customer
= Not much concern over voltage regulation beyond substation

= Now, customer distributed energy resources (PV, storage, etc.);
customers can inject current

= voltage at customer may be a concern
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PV Integration to Distribution ) e

= PV systems can impact distribution system operations
= Can reverse flow direction on parts of feeder

= Can have more variability than the load variability for which the
system is designed

= Specifically of concern are:

= Qver/under-voltage conditions, thermal limit violations, reverse

power flow, rapid power fluctuations, excessive voltage controller
actions, etc.
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Distribution System Simulations ) e

= To understand impact of PV, use distribution grid simulations

= Quasi-static time series (QSTS) simulations compute the voltage and
current at each location on a feeder over time

Voltage at each location on the feeder Voltage as timeseries to understand impact of PV
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= Need accurate PV and load inputs for accurate simulations




Load and DER Generation Data ) =
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= |deal case:

= 1-second temporal resolution

Jan Apr Jul QOct

= high-frequency variability
= Full spatial resolution

" separate data for all customers on
feeder

= 1-year or longer period of record
= seasonal trends

= Challenges with sub-optimal data:
= Temporal resolution
= Spatial resolution

= Accuracy for the location




Temporal Resolution )

= Low-resolution data leads to rounded off load { ] g 1
peaks and smoothed PV variability # . ; I
Substation i L \
" Less voltage excursions and hence fewer tap :? o T _':'-K{-‘.\ Y
change operations for low-resolution data ™ | k :

5s and 15-min PV resolution

= 98, 15min, 30min, 1hr load resolution =
= 5000 . . ‘ ‘ . ‘ ' X, 2000
| .
§ ‘/ﬁ%_ 2 1000 +
< 4500 = ;s z
o (=]
g @ ot
£ 4000 r =
g 1500 76005 g
= - PV
g 7 3600s _".c:' 2000 | 3;05 pv| 1
g 3Dm 1 1 1 1 1 1 1 [«}]
: : $ -3000 :
S 0600 0615 06:30 0645 07.00 0715 07:30 07.45 08.00 g %600 200 ron

2

regulator tap position
> o
a4 (]

3
ﬁ:
=]

5s PV: 36 taps
900s PV: 14 taps

| 4
55 PV: 19 taps
900s PV: 17 taps
1800s PV: 15 taps 1

3600s PV: 11 taps

06:00 06:15 06:30 06:45 07:00 0715 07:30 07:45 08:00

c
i)
=
B
(=]
Q
Q.
8 097
P
S
«©
=]
g




Spatial Diversity

= Single customer vs. all customers

on feeder

= Both load and PV variable at single

customer

= PV more variable and less smoothed
when aggregated over several
customers
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Geographic Differences

= | oad

= Peaks load timing may vary by location (e.g., California vs. Vermont)

= Layout of customers on feeder (e.g., city vs. agricultural)

= PV

= Weather differences — different amount of generation and variability

= PV penetrations vary by incentives, etc.
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Geographic Variation in Puerto Rico @&
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Load Data Availability £z,

= “Common” situation:
= Measured aggregate load at substation, 1-hr resolution

= “Great” situation:

= AMI load measurement at each customer, 5-min or 15-min
resolution




High-Frequency Load Modeling .
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PV Data Availability UL

= “Common” situation:
= No local irradiance or PV measurements

= Must create synthetic data, likely from satellite (1km or worse spatial
resolution, 5-min or worse temporal resolution)

= Temporal, spatial, geographic, PV modeling errors

= “Good” situation:

= 1 local, high-frequency irradiance measurement
= Spatial, PV modeling errors

= “Great” situation:
= PV output measurement at each customer, 5-min or 15-min resolution

= Temporal errors
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data availability :

1.

Solar Data Scarce in Puerto Rico ) ==

= Very limited publically-available irradiance data in Puerto Rico:
= 7 ground sensors on western half of island at 1-hour?!
= 1-km, 1-hour satellite-based irradiance?
= NRELs NSRDB satellite data began covering Puerto Rico in 2015
= |n September 2012, the Kleissl Lab Group at UC San Diego started

collecting 1-second irradiance measurements at the University of Puerto
Rico, Mayaguez.
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2013 |
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Natural Resource Conservation Service (NRCS): http://www.wcc.nrcs.usda.gov/scan/Puerto_Rico/puerto_rico.html

2. PRAGWATER: http://pragwater.com/solar-radiation-data-for-pr-dr-and-haiti/



PV Modeling Considerations W&
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High-Frequency Solar Modeling ) .
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Solar Spatial Diversity

Challenge: modeling PV power
output from several PV
Interconnection points on a
distribution feeder
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Solar Spatial Diversity
Single Sensor

all sites
perfectly
correlated
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Solar Spatial Diversity ) .
Single Sensor Synthetic Cloud Fields
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Load and PV Data Discussion ) e,

= Do we really need high-resolution irradiance measurements,
or simply data on variability statistics?
= Cloud fields can create synthetic high temporal and spatial resolution
data which recreates variability statistics
= How many unique profiles are needed?

= “Ideal” case of 1s measurements of everything is likely too much data —
data reduction, what do we really need? Can we do some grouping?

= Load allocation, regulator, sectionalizing device, service transformer vs.
AMI

= For many analysis applications (e.g., tap changes), data reduction may
be efficient and maintain accuracy.

= \What do we do with all the AMI data?




