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Properties of Wide- and Ultra-Wide-Bandgap Semiconductors
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Semiconductor Material Properties Dictate -

System Volume and Weight
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Over an order of magnitude improvement in power density is enabled
by WBG semiconductors compared to Si, and further improvements
may be possible with UWBG semiconductors




Rad-Hard Power Electronics May Enable -

Extended Space Missions

» Energetic charged particles from solar wind and cosmic rays
are present in the solar system

* High concentrations of charged particles exist around Earth ...
 Inner Van Allen belt — 1,000 km - 6,000 km above Earth
* 100s keV electrons
* Up to 100 MeV protons

* Quter Van Allen belt — 13,000 km — 60,000 km above nasa.gov
Earth

100 keV — 10 MeV electrons

* Protons and other ions, ie alpha particles and other
elements

 For protons of energy 1.0 MeV and higher, flux is as
high as 2x107 p/sec/cm?(magnetic equator at ~3
Earth radii, normal conditions)

» Radiation belts exist around outer plants as well, i.e. Jupiter,
Saturn

» Radiation exposure of space craft components influences
design, flight plans, and mission time

phys.org



Rad-Hard Power Electronics May Enable

Improved Disaster Response

* Nuclear reactor incidents are low probability, but high consequence when they do occur. The
Fukushima Dai-ichi reactor incident demonstrated how unprepared response crews are to handle such
a crisis with environments too hazardous for humans to enter.

» Robotics technology is critical in response to these types of incidents, but is often used in an ad-hoc
scenario with what ever is available.

« Rad-hard power electronics may be an important component for extending the operation of robots in
harsh radioactive (as high as 1000 Rad/hour gamma) environments.

The operating environment within the Chornobyl Unit 4

sarcophagus is extremely harsh

+ Gamma radiation up to 1000 R/hr
* Temperature 0-35°C

» Humidity up to 100%

+ High airborne dust concentration
+ Little or no ambient light

* Fresh concrete and solidified fuel

* Debris everywhere




Radiation Damage Depends on Several Factors

* Radiation Damage depends on GG

* Dose
* Dose rate
- Damage mode

» Radiation Damage modes depend on
* Type of Particle
* Particle energy
* Initial condition or bias of the material

« Particle density flux is given ¢ in particles/sec-cm?

 Particle fluence is the flux integrated over total
exposure time given @ in particles/cm?

« The Dose is the energy deposited per gram of
material

1rad = 0.01 J/kg = 6.24-10"3 eV/gram

« Dose rate is given in units of rads/sec



Displacement Damage Involves

a Change to the Lattice

* Displacement Damage is caused by a nuclear

collision that knocks an atom from its lattice site Projectile

Particle

Displaced

* Changes the orientation of atoms in a lattice

* Displacement Damage typically caused by
particles with mass
* Neutrons
* Protons
* Alpha particle
* Heavy lons

Displacement damage will cascade in
a complex pattern

80

e Can be caused by very high energy photons

* Displacement damage affects carrier mobility,
material resistivity, generation and
recombination lifetimes

&

* Displacement damage is a mechanism of Non-
lonizing Energy Loss (NIEL)

-4

| C. Claeys, E. Simoen; “Radiation
Effects in Advanced Semiconductor
Materials and Devices; Springer-
Verlag; 2002
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Displacement Damage Effects May

Change Device Properties

Projectile
Particle /

R e Deep levels (“Traps”) are introduced into the
I i?n'nm semiconductor bandgap by displaced atoms
NS o Due to broken crystal symmetry
These deep levels can cause a number of changes to
device performance
o Change in doping, hence change in breakdown
I E.-E, voltage (may affect drift region and edge
- termination)
o Carrier recombination and generation via deep
levels affects forward and reverse bias currents
(e.g. reverse saturation current in a pn diode)
o Change in carrier lifetime may impact switching
speed (e.g. reverse-recoOvery in pn diode)
* Radiation-induced changes at the atomic scale may
have significant system-level impact!

Current (A)

2
Voltage (V)



Transmutation Changes the Chemical Composition

* Inelastic neutron absorption can lead to Neutron
Transmutation Doping (NTD)

- Transmutation of Siinto P results in n-type doping
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lonization Creates Charge Carriers

* The photon is a “packet” of electromagnetic energy; Photon energy is
proportional to frequency, inversely proportional to wavelength, usually

given in electron volts (eV)
E
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* Total energy or power is related to the product of photon energy and the

number of photons
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Single Event Effects (SEEs) can be

Caused by a Single Particle

A single high-energy particle strikes
a device

n+ lon track [ - .

| b} Prompt
charge
4 collection

An ionized track is generated

c.) Diffusion
: charge
collection

Electrons are swept toward the
positive node

{ a.) Onset
of evant

|

The effect is a function of the
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device’s bias state and the energy 10 1072 10" 107 10%

a) R. C. Birann, JEEE Trans. Device Mater. Feliab. Time (seconds)

of the ion vol 53). . 305310, Sept. 208
« Single Event Upset (SEU)
- Single Event Latch-up (SEL)
- Single Event Burnout (SEB)
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Sandia Facilities Enable the Testing of Various Radiation | IEGzIN

Effects and Damage Modes: lon Beam Lab

[on Beam Laboratory Capabilities

« Sandia’s lon Beam Lab (IBL) is a i 565
state-of-the-art facility using ion and Wi 1 . ackieriions
electron accelerators to study and -- |
modify materials systems.

# [Radiation Physics

Support Manulacturing

« |IBL has several capabilities ranging
from advanced microscopy methods -
to material modification

Defect Phvsics

Materials Analysis

* Alteration of the structure through ion

beam interactions
* Implantation of dopants
«  Sputtering of material
- Decomposition of gasses

12



Sandia Facilities Enable the Testing of Various Radiation
Effects and Damage Modes: Annular Core Research Reactor

* The Annular Core Research Reactor (ACRR) facility can subject various test objects to a
mixed photon and neutron irradiation environment
« Capable of very rapid pulse rate
* Long-term, steady-state rate

« Tests commonly done on
+ Electronic circuit boards and components (e.g., transistors and diodes)
* Neutron or gamma active dosimetry devices (e.g., neutron/gamma detectors and semiconductor devices)

» Useful for simulating displacement damage in solar cells for satellites
* Neutrons simulate a high fluence of protons typical of satellite orbits

13



Sandia Facilities Enable the Testing of Various Radiation
Effects and Damage Modes: Gamma Irradiation Facility

 The Gamma Irradiation Facility (GIF) simulates nuclear radiation environments
for materials and component testing.

 GIF can produce a wide range of gamma radiation environments (from 10-3 to over 103
rad/second) using cobalt-60 sources

» GIF can irradiate objects as small as electronic components and as large as a satellite

* GIF is for:
 Testing for electronic-component hardness
» Materials-properties testing
* Investigations of various physical and chemical processes
+ Testing and radiation certification of satellite and weapons system electronic components
* Investigations of radiation damage to materials.

14



Vertical GaN P-i-N diodes
were evaluated before and

neutrons and protons

Example of Radiation Effects in a WBG Device:

Proton and Neutron Irradiation of GaN PiN Diodes

after irradiation with

Anode
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Cathode

M. P. King et al., IEEE TNS 62(6), 2912 (2015)
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generation current and higher resistivity in
on-state characteristics
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* Increase in R, ,, results from higher series
resistance from scattering centers in the n-
drift region and p-GaN layers
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+ lrradiation leads to increased leakage and
decreased Vg,
» Softer reverse breakdown characteristics

T T
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il.(u)“ | 16” 10"
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* Vg trends following exposure to protons
and neutrons show similar trends
* Compensation of holes in p-GaN field rings
likely causes reduced Vg,
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Change in Deep Level Spectra Correlates with

Change in Electrical Characteristics
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Irradiated GaN Devices Retain Good Performance

1000

O AvogyDiodes

« Unipolar Figure of Merit (UFOM) is a well- o
established standard for comparison of devices

* 3x10%p
* |deal device would have high Vg and low

e 3x10%3n
Ron sp aligning far to the bottom right of the
UFOM
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- Wide-bandgap materials exceed the
performance of Si-based devices 0.1

100 1000 10000

Breakdown Voltage (V)
* Irradiated GaN devices still out-perform Si

devices

Unipolar FOM = Vg2/R, ., = g, E>/4
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_
Summary

 WBG materials improve the SWaP of power converters

They may also improve the resiliency of power converters in
radiation environments, such as outer space

« Different types of radiation damage may occur

o Displacement damage

o Transmutation

o lonization

o Single events

« Test facilities are utilized to evaluate these types of damage

* Preliminary testing on GaN diodes has suggested good
robustness
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