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Introduction

What is missing for neuromorphic to go mainstream? |

Neuromorphic hardware is
* Available
* Competitive
* Constantly improving
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Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a
DNN to a spiking hardware platform (or other binary
threshold activation platforms)

 Hardware platform agnostic | \a "
e Compatible with a wide variety of DNN topologies o e

* No added time or complexity cost at inference * _F
 Simple neuron requirements: Integrate and fire I L
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Whetstone Overview

The real challenge for deep learning on spiking is the
threshold activation function.

Using Whetstone, activation functions converge to a
threshold activation during training.
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Whetstone Overview

» Generally, gradient descent generates a sequence of weights
A; with the goal of

minimizing the error of f(A4;x) in predicting the ground truth y.

« We generalize this by replacing the activation function f
with a sequence f such that f;, -, f, where f is now the

threshold activation function.

* Now, the optimizer must

minimize the error of f,(4;x) in predicting v.

 Since the convergence in neither i nor k is uniform, this is a

mathematically dangerous idea
 However, with a little care and a few tricks, the method

reliably converges in many cases.



Whetstone Overview

How do we ‘sharpen’ the activation functions?

1) Bottom-up Sharpening (The ‘toothpaste tube’
method)

« Begin sharpening at the bottom layer
« Wait until previous layer is fully sharpened
* Increases stability of convergence
2) Adaptive Sharpening Callback
« Hand-tuning sharpening rates is hard nodel. add (Dense(256))

* Instead, use loss as a guide for an adaptive model.add(Spiking_BRelu())
model.add(Dense(10))
sharpener

model.add(Spiking Brelu())
+ Adaptive sharpener implemented as a HOCE O (ST ER e G
callback automatically adjusts sharpening
based on loss thresholds

model.add(Dense(256)) ‘
model.add(Activation(‘relu’))
model.add(Dense(10))
model.add(Activation( ‘softmax’))

model.fit(x,y)

Original Model Example

sharpener = AdaptiveSharpener()
model.fit(x,y,callbacks=[sharpener])

Modified Model Example



Preliminary Results
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Established

Advantage: We can build on existing deep learning technology.

Software:
e Keras e Tensorflow e« Theano ¢ CUDA e« Endless Python Packages

Techniques:
e Dropout e« Batch Norm e« Adaptive Optimizers e« Voting Methods



Percent

Established

« Batch Normalization helps training stability and network performance

* Improvements across network sizes

« Sharpnening loss, particularly on first sharpening layer, is significantly less

» At inference time, bias (threshold) and weights are modulated according to stats
collected during training
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Established

« Sharpening process is sensitive to
optimizer selection

« Adaptive optimizers often work
better

* Learning rate modulation by
moving average seems to help
stability

* A custom Whetstone-aware

optimizer is in early stages
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Established

« The trained neurons can be unreliable

* Redundant output encodings help
mitigate this problem

« Similar to ensemble methods

» Reactive neurons feed into softmax
during training (for classification)

» During inference, ‘best-matched’ group
is used

* On simple datasets, 4-way redundancy

is sufficient
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Enabling Wide and Easy-to-Implement Adoption

Neuromorphic hardware platforms are appealing for a wide ‘
variety of low-power, embedded applications |

Sophistication and expertise required to make use of these
platforms creates a high barrier of entry

Whetstone enables deep learning experts to easily incorporate |
spiking hardware architectures



Enabling Wide and Easy-to-Implement Adoption

Networks are portable and hardware-agnostic ‘
Low barrier of entry; built on standard libraries (Keras, Tensorflow, CUDA, etc.)
No post-hoc analysis; no added time complexity
Only simple integrate-and-fire neurons are required

Compatible with standard techniques like dropout and batch normalization
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Neuromorphic Hardware in Practice and Use

Description of the workshop

b
-
[ ]

Abstract — This workshop is designed to explore the current advances, challenges and best }_vhrlactices for working with and implementing algorithms on
neuromorphic hardware. esEite growing availability of prominent biologically inspired architectures and corresponding interest, practical guidelines and results
are scattered and disparate. This leads to wasted repeated effort and poor exposure of state-of-the-art results. We collect cutting edge results from a variety of
application spaces providing both an up-to-date, in-depth discussion for domain experts as well as an accessible starting point for newcomers.

Goals & Objectives

This workshop strives to bring together algorithm and architecture researchers and help facilitate how challenges each face can be overcome for mutual benefit.
In particular, by focusing on neuromorphic hardware practice and use, an emphasis on understanding the strengths and weaknesses of these emerging
approaches can help to 1dentify and convey the significance of research developments. This overarching goal is intended to be addressed by the following
workshop objectives:

> Explore implemented or otherwise real-world usage of neuromorphic hardware platforms
> Help develop ‘best practices’ for developing neuromorphic-ready algorithms and software
°  Bridge the gap between hardware design and theoretical algorithms

> Begin to establish formal benchmarks to understand the significance and impact of neuromorphic architectures

http://neuroscience.sandia.gov/research /wcci2018.html

Call: https://easychair.org/cfp/nipu2018




