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Introduction

What is missing for neuromorphic to go mainstream?

Neuromorphic hardware is
• Available
• Competitive
• Constantly improving 
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Whetstone Overview

Whetstone provides a drop-in mechanism for tailoring a 
DNN to a spiking hardware platform (or other binary 
threshold activation platforms)
• Hardware platform agnostic
• Compatible with a wide variety of DNN topologies
• No added time or complexity cost at inference
• Simple neuron requirements: Integrate and fire



Whetstone Overview

The real challenge for deep learning on spiking is the 
threshold activation function.

Using Whetstone, activation functions converge to a 
threshold activation during training.
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Whetstone Overview

• Generally, gradient descent generates a sequence of weights 

�� with the goal of

minimizing the error of �(���) in predicting the ground truth �.

• We generalize this by replacing the activation function �

with a sequence �� such that �� →��
�, where � is now the 

threshold activation function.

• Now, the optimizer must 

minimize the error of �� ��� in predicting y.

• Since the convergence in neither � nor � is uniform, this is a 

mathematically dangerous idea

• However, with a little care and a few tricks, the method 

reliably converges in many cases.



Whetstone Overview

How do we ‘sharpen’ the activation functions?
1) Bottom-up Sharpening (The ‘toothpaste tube’ 

method)

• Begin sharpening at the bottom layer

• Wait until previous layer is fully sharpened

• Increases stability of convergence

2) Adaptive Sharpening Callback

• Hand-tuning sharpening rates is hard

• Instead, use loss as a guide for an adaptive 
sharpener

• Adaptive sharpener implemented as a 
callback automatically adjusts sharpening 
based on loss thresholds

⋮
model.add(Dense(256))
model.add(Activation(‘relu’))
model.add(Dense(10))
model.add(Activation(‘softmax’))
⋮
model.fit(x,y)
⋮

⋮
model.add(Dense(256))
model.add(Spiking_BRelu())
model.add(Dense(10))
model.add(Spiking_Brelu())
Model.add(Softmax_Decode(key))
⋮
sharpener = AdaptiveSharpener()
model.fit(x,y,callbacks=[sharpener])
⋮
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Preliminary Results

Filter Size
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Established Deep Learning Techniques

Advantage: We can build on existing deep learning technology. 

Software:
• Keras • Tensorflow • Theano • CUDA   • Endless Python Packages

Techniques:
• Dropout   • Batch Norm   • Adaptive Optimizers   • Voting Methods



Established Deep Learning Techniques

• Batch Normalization helps training stability and network performance
• Improvements across network sizes
• Sharpnening loss, particularly on first sharpening layer, is significantly less
• At inference time, bias (threshold) and weights are modulated according to stats 

collected during training



Established Deep Learning Techniques

• Sharpening process is sensitive to 

optimizer selection

• Adaptive optimizers often work 

better

• Learning rate modulation by 

moving average seems to help 

stability

• A custom Whetstone-aware 

optimizer is in early stages



Established Deep Learning Techniques

• The trained neurons can be unreliable

• Redundant output encodings help 

mitigate this problem

• Similar to ensemble methods

• Reactive neurons feed into softmax

during training (for classification)

• During inference, ‘best-matched’ group 

is used

• On simple datasets, 4-way redundancy 

is sufficient



Enabling Wide and Easy-to-Implement Adoption

Neuromorphic hardware platforms are appealing for a wide 
variety of low-power, embedded applications

Sophistication and expertise required to make use of these 
platforms creates a high barrier of entry

Whetstone enables deep learning experts to easily incorporate 
spiking hardware architectures



Enabling Wide and Easy-to-Implement Adoption

Networks are portable and hardware-agnostic

Low barrier of entry; built on standard libraries (Keras, Tensorflow, CUDA, etc.)

No post-hoc analysis; no added time complexity

Only simple integrate-and-fire neurons are required

Compatible with standard techniques like dropout and batch normalization



Enabling Wide and Easy-to-Implement Adoption

Neuromorphic Hardware in Practice and Use
Description of  the workshop

Abstract – This workshop is designed to explore the current advances, challenges and best practices for working with and implementing algorithms on 
neuromorphic hardware. Despite growing availability of  prominent biologically inspired architectures and corresponding interest, practical guidelines and results 
are scattered and disparate. This leads to wasted repeated effort and poor exposure of  state-of-the-art results. We collect cutting edge results from a variety of  
application spaces providing both an up-to-date, in-depth discussion for domain experts as well as an accessible starting point for newcomers.

Goals & Objectives

This workshop strives to bring together algorithm and architecture researchers and help facilitate how challenges each face can be overcome for mutual benefit. 
In particular, by focusing on neuromorphic hardware practice and use, an emphasis on understanding the strengths and weaknesses of  these emerging 
approaches can help to identify and convey the significance of  research developments. This overarching goal is intended to be addressed by the following 
workshop objectives:

◦ Explore implemented or otherwise real-world usage of neuromorphic hardware platforms

◦ Help develop ‘best practices’ for developing neuromorphic-ready algorithms and software

◦ Bridge the gap between hardware design and theoretical algorithms

◦ Begin to establish formal benchmarks to understand the significance and impact of neuromorphic architectures

http://neuroscience.sandia.gov/research/wcci2018.html

Call: https://easychair.org/cfp/nipu2018


