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Sandia National Labs and Engineering Science

▪ SNL is a federally-funded research and 
development center:
▪ Nuclear Weapons
▪ Defense Systems and Assessments
▪ Energy and Climate
▪ Global Security

▪ Engineering Science, Center 1500
▪ Revolutionizing the fundamental understanding of 

complex engineered systems 
▪ solid mechanics
▪ fluid mechanics
▪ structural dynamics
▪ thermal and combustion sciences
▪ aerodynamics
▪ shock physics and energetics
▪ electromagnetic sciences

▪ https://www.youtube.com/watch?v=o1qAjLSEv0A
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Digital Image Correlation (DIC)

▪ Diagnostic technique providing full-field shape, displacement 
and strain measurements on the surface of a solid specimen

▪ Optical (non-contact)

▪ Length scale independent

▪ “Keep the dots in the box”* (Prof. Samantha Daly)
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Stereo DIC provides locations and displacements 
in three dimensions.
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Left camera Right camera
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Stereo DIC provides locations and displacements 
in three dimensions.
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Left camera Right camera

Cross-Correlation
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Stereo DIC provides locations and displacements 
in three dimensions.
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International Digital Image Correlation Society

▪ Founded in 2015

▪ Composed of members of 
academia, government, and 
industry

▪ Developing world-recognized 
DIC training, certification, and 
standardization

▪ www.idics.org
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Digital Image Correlation at Sandia

Displacement, velocity 

and strain

Explosive Panel Deformation

2005 2007 2015

Introduction of 

DIC to Sandia

2009

ε 15%5%0%

Crack-tip and Fracture Strain

2011 2013

Stereo-DIC Uncertainty Quantification

From colors to metrology.

360º coverage

Grain Scale strain

2017

Large scale testing & 

model data fusion

Advanced Material Testing

Volumetric DIC

Modal Testing

Credit:  Phillip Reu
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Modeling material and component behavior 
is critical for modern engineering.

▪ Material model:

▪ Model parameters ≠ material properties

▪ Finding model parameters:
▪ Model calibration

▪ Material identification

▪ Material characterization
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𝜎 = f(ζ(ε, 𝑝, ሶ𝑝, 𝑇), 𝜉 𝐸, 𝜐, 𝜎𝑜, 𝐻 )

loading

conditions

model

parameters
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Material models are traditionally calibrated 
from global, homogeneous data.
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100 mm

Experimental data
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Experimental data

Material models are traditionally calibrated 
from global, homogeneous data.
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Low strain regime:
• Uniaxial tension

• Identification of model parameters accomplished analytically

Young’s modulus

Yield stress

Strain hardening

100 mm
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Experimental data

Material models are traditionally calibrated 
from global, homogeneous data.
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High strain regime:
• Multiaxial stress state

• Identification of model parameters requires inverse problem

100 mm
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Material models are traditionally calibrated 
from global, homogeneous data.
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𝑥𝑛𝑥𝑖

𝐹 𝒙 =෍

𝑖=0

𝑛

𝑥𝑖
2

Illustrative simulation results

Experimental data

100 mm

High strain regime:
• Multiaxial stress state

• Identification of model parameters requires inverse problem
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Traditional material identification has limitations.
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≠
http://money.cnn.com/2014/01/22/autos/small-car-crash-test/

Accessed 29 Aug 2016

100 mm

• Global information misses local deformation

• Many tests required to calibrate complex models 

• Simple stress state does not reflect complex, real-world loading conditions
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High-throughput, high-quality material identification 
addresses limitations of traditional material ID.
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Contour Plot of σ22 Capitalize on:

▪ Full-field deformation 
measurements:  Digital 
Image Correlation (DIC)

▪ Inverse techniques:  Virtual 
Fields Method (VFM)
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Strain-rate dependence is modeled with the 
Bammann-Chiesa-Johnson (BCJ) material model.
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𝜎𝑓 𝑝, ሶ𝑝, 𝜉 = ⋯

𝜎𝑓 flow stress

𝑝 equivalent plastic strain
ሶ𝑝 equivalent plastic strain rate

Strain-rate dependence 

of initial yield stress

Voce-type hardening

𝜎𝑌 1 + asinh
ሶ𝑝

𝑏

ൗ1 𝑚

+⋯

𝐻

𝑅𝑑
1 − exp −𝑅𝑑𝑝

𝜎𝑌 quasi-static yield stress
𝑏 rate-dependent coefficient
𝑚 rate-dependent exponent

𝐻 hardening variable
𝑅𝑑 dynamic recovery
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The influence of model parameters is complex 
and multidimensional.
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σY = [50, 750] MPa H = [50, 5000] MPa Rd = [0.1, 10]
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The influence of model parameters is complex 
and multidimensional.
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b = [10-5, 105] m = [1, 20]
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Tensile dog bones were tested experimentally.

▪ Material:  
▪ 304L stainless steel rolled 

sheet, 1.5 mm thick

▪ Dog bone gauge section:  
▪ 50.8 mm x 12.7 mm

▪ Three nominal strain rates 
(s-1):  
▪ 1.0 ∙ 10−4

▪ 3.2 ∙ 10−3

▪ 1.0 ∙ 10−1

▪ Virtual extensometer from 
DIC
▪ 22 mm gauge section
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Because of material model complexity, 
data is fit in successive steps.

Step 1:

▪ Each tensile test is 
fit individually to a 
rate-independent 
model:
▪ 𝜎𝑓 𝑝, ሶ𝑝, 𝜉 = 𝜎𝑌 +⋯
𝐻

𝑅𝑑
1 − exp −𝑅𝑑𝑝

▪ Actual strain rate is 
calculated from DIC 
extensometer data

Auburn University 28

𝝈𝒀

𝑯
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Initial guesses are found for all five parameters.

Step 2:

▪ 𝜎𝑌, 𝑏, 𝑚:

▪ 𝜎𝑓 = 𝜎𝑌 1 + asinh
ሶ𝑝

𝑏

Τ1 𝑚

▪ 𝐻, 𝑅𝐷:
▪ No significant rate-

dependence

▪ Averaged from step 1
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𝝈𝒀

𝑯
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Finite-element method updating (FEMU)
is used for final traditional calibration.

Step 3:
▪ FEA model is created for each 

tensile specimens

▪ Cost function is built as the 
error between experimental 
and FE uniaxial stress-strain 
curves
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Parameter Symbol Value Units

Quasi-static 

Yield Stress
σy 253.8 MPa

Hardening Variable H 2538 MPa

Dynamic Recovery Rd 2.110 --

Rate-Dependent 

Coefficient
b 4.728 s-1

Rate-Dependent Exponent m 9.229 --

𝜎𝑓 𝑝, ሶ𝑝, 𝜉 = 𝜎𝑌 1 + asinh
ሶ𝑝

𝑏

ൗ1 𝑚

+
𝐻

𝑅𝑑
1 − exp −𝑅𝑑𝑝

23 February 2018



Outline

▪ Digital Image Correlation
▪ Fundamentals
▪ International DIC Society (iDICs)
▪ Applications at Sandia

▪ Material Characterization
▪ Background
▪ Viscoplastic Material Model
▪ Traditional Calibration Technique
▪ Advanced, Full-Field Calibration Technique

▪ Finite-Element Model Validation
▪ Global Data
▪ Full-Field Data
▪ Boundary Conditions

▪ Conclusions and Future Work

Auburn University 3123 February 2018



Virtual Fields Method is a powerful 
inverse technique.

Principle of Virtual Power

𝑉𝑜׬
det 𝑭 𝝈𝑭−𝑇 : ሶ𝑭∗ 𝑑𝑉 = 𝒇 ∙ 𝒗∗

Internal Power, Pint External Power, Pext
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σ Cauchy Stress
F Deformation Gradient
f Resultant Load
Vo Sample Volume (Reference)
v* Virtual Velocity
ሶ𝐹
∗

Virtual Velocity Gradient

Material Identification Procedure

1. Select material model and specimen geometry

2. Measure specimen deformation during loading

3. Calculate stress with initial guess of model parameters

4. Select one or more kinematically-admissible virtual velocity fields

5. Compute internal and external power

6. Compute cost function:  Φ = σtime 𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡
2

7. Iterate on model parameters until cost function is minimized

Pierron and Grédiac (2012) The Virtual Fields Method. Springer.

Rossie, Pierron, Štamborská (2016) Int. J. Solids Struct.

Kramer and Scherzinger (2014) SAND2014-17871
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σ Cauchy Stress
F Deformation Gradient
f Resultant Load
Vo Sample Volume (Reference)
v* Virtual Velocity
ሶ𝐹
∗

Virtual Velocity Gradient

Material Identification Procedure
1. Select material model, specimen geometry, and virtual fields

2. Measure specimen deformation during loading

3. Calculate stress with initial guess of model parameters

4. Select one or more kinematically-admissible virtual velocity fields and compute internal and 
external power

5. Compute cost function

▪ Ψ = σtime 𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡
2

6. Iterate on model parameters until cost function is minimized

Pierron and Grédiac (2012) The Virtual Fields Method. Springer.

Rossie, Pierron, Štamborská (2016) Int. J. Solids Struct.

Kramer and Scherzinger (2014) SAND2014-17871

VFM utilizes 

heterogeneous calibration data

and requires fewer tests than 

traditional calibration techniques.
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Complex specimen geometry is available when 
using full-field diagnostics.

Design Criteria

▪ Objective:
▪ Maximize strain/stress heterogeneity 

▪ Maximize range of strain rates

▪ Constraints:
▪ Minimize large gradients near 

sample edges

▪ Uniaxial loading

▪ Planar sample
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W = 75 mm

T = 1.5 mm

H = 150 mm
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Complex specimen geometry induces stress and 
strain rate heterogeneity in sample.

Predicted Results from FEM Simulation
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Complex specimen geometry induces stress and 
strain rate heterogeneity in sample.
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Strain/Strain Rate Distribution

Tensile Dog Bones
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Specimen deformation, temperature and applied 
load are measured experimentally.
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Front View

Key Features

• Dual actuator load frame

• Stereo DIC on both sides of 

specimen

• Rigid camera mounts

• Thermal camera on one side of 

specimen

• Cross-polarized light

Top View

sample
gripgrip

DIC

cameras

thermal

camera

Side View

sample

sample

linear

polarizers

Lights

23 February 2018



Specimen deformation, temperature and applied 
load are measured experimentally.
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DIC

Cameras

LightsIR Camera

Specimen
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Standard speckling techniques fail at high strain.
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Speckle Pattern 1:  White base paint with black speckles

Deformed SpecimenUndeformed Specimen

5 mm
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Cross-polarized light creates
a robust speckle pattern.

Auburn University 40

Speckle Pattern 2:  White speckles on bare metal

Cross-Polarized LightUnpolarized Light

5 mm

W. LePage, S. Daly, J. Shaw (2016) Exp. Mech.
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Full-field displacements are measured using DIC.
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V (mm)

Undeformed Specimen Deformed Specimen

Parameter Value

Camera 2.3 MP Grasshopper

Lens 35 mm Edmund Optics

Stereo Angle ~ 20o

Field of View ~ 100 mm

Image Scale ~ 17 px/mm

Frame Rate 85 Hz

Software Vic3D

Subset Size 23 x 23 px

Step Size 5 px

Subset Shape 

Function

Affine

Displacement 

Noise Floor

~ 0.01 mm
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Kinematics calculated from a least-squares 
polynomial fit to displacement data.

▪ 2D polynomial surface fitted to neighborhood of displacement nodes.

▪ Deformation gradient obtained directly from coefficients of polynomial fit.
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𝜕𝑢𝑖
𝜕𝑥

= 𝐶2 + 2𝐶4𝑥 + 𝐶6𝑦 + 3𝐶7𝑥
2 + 2𝐶9𝑥𝑦 + 𝐶10𝑦

2

𝜕𝑢𝑖
𝜕𝑦

= 𝐶3 +2𝐶5𝑦 + 𝐶6 𝑥 + 3𝐶8𝑦
2 + 𝐶9𝑥

2 + 2𝐶10𝑥𝑦

𝑢𝑖 = 𝐶1 + 𝐶2𝑥 + 𝐶3y + 𝐶4𝑥
2 + 𝐶5𝑦

2 + 𝐶6𝑥𝑦 +

+𝐶7𝑥
3 + 𝐶8𝑦

3 + 𝐶9𝑥
2𝑦 + 𝐶10𝑥𝑦

2
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Kinematics calculated from a least-squares 
polynomial fit to displacement data.

▪ 2D polynomial surface fitted to neighborhood of displacement nodes.

▪ Deformation gradient obtained directly from coefficients of polynomial fit.

▪ Spatially filters noise in DIC displacements.
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Kinematics calculated from a least-squares 
polynomial fit to displacement data.

▪ 2D polynomial surface fitted to neighborhood of displacement nodes.

▪ Deformation gradient obtained directly from coefficients of polynomial fit.

▪ Spatially filters noise in DIC displacements.

▪ Extrapolate data to sample edges.
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Rate of deformation is approximated 
using finite differences.

▪ Rate of deformation can be calculated via:
▪ Backward difference
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Rate of deformation is approximated 
using finite differences.

▪ Rate of deformation can be calculated via:
▪ Backward difference
▪ Central difference

▪ Significant difference near yield

Auburn University 4523 February 2018



Stresses are reconstructed using 
the radial return method.

▪ Non-trivial, but direct, computation

▪ Material Model

▪ Flow stress: 𝜎𝑓 = 𝑔0 𝜉

▪ Von Mises Flow Criterion

▪ Equivalent Stress:  ത𝜎 =
3

2
𝑠: 𝑠 𝑠 = 𝜎 −

1

3
tr 𝜎 𝐼

▪ Equivalent Plastic Strain Rate: ሶ𝑝 =
2

3
ሶ𝜀𝑝: ሶ𝜀𝑝

▪ Flow Criterion:  𝑓𝑐 = ത𝜎 − 𝜎𝑓 = 0

▪ Cauchy Stress: 𝝈 = 𝑔1 𝜎𝑓 𝜉 , ሶ𝑝
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Cost function is the balance between 
internal and external virtual work.

▪ Kinematically-admissible virtual fields

▪ Virtual Velocity:  𝑣𝑥
∗ = cos

𝜋𝑦

𝐻
; 𝑣𝑦

∗ =
2𝑦+𝐻

2𝐻

▪ Kim et al (2014) Exp Mech

▪ Virtual Velocity Gradient:  ሶ𝑭∗ =

𝜕𝑣𝑥
∗

𝜕𝑥

𝜕𝑣𝑥
∗

𝜕𝑦

𝜕𝑣𝑦
∗

𝜕𝑥

𝜕𝑣𝑦
∗

𝜕𝑦

▪ Internal and external virtual work

▪ 𝑊𝑖𝑛𝑡 = 𝑉𝑜׬׬
det 𝑭 𝝈(𝜉)𝑭−𝑇 : ሶ𝑭∗ 𝑑𝑉 𝑑𝑡

▪ 𝑊𝑒𝑥𝑡 = 𝒇׬ ∙ 𝒗∗ 𝑑𝑡

▪ Cost function

▪ Φ = 𝑊𝑖𝑛𝑡 𝜉 −𝑊𝑒𝑥𝑡
2
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

ො𝜎𝑦 0.2911 0.6644 0.5895 0.0398 0.2643 0.8108

෡𝐻 0.5025 0.1817 0.4183 0.2980 0.6770 0.9368

෠𝑅𝑑 0.6621 0.3845 0.0299 0.9711 0.7259 0.4755

෠𝑏 0.5675 0.0005 0.8965 0.2019 0.7547 0.5204

ෝ𝑚 0.7418 0.2607 0.7871 0.4505 0.9159 0.0377

Parameters must be scaled
for a more tractable optimization.

Auburn University 52

Lower 

Bound, 
ξL

Upper 

Bound, 
ξH

Scaling

σY 50 750 Linear

H 50 5000 Linear

Rd 0.1 10 Log

b 10-5 105 Log

m 1 20 Log

Bounds:  Chosen such that ~50 < 𝜎𝑓 < ~3000 MPa over 𝑝 = [0,1] and ሶ𝑝 = [10−5, 105]

Initial guess:  Latin Hyper Cube sampling

Lower 

Bound, 

𝜉𝐿

Upper 

Bound, 

𝜉𝐻

Scaling

ො𝜎𝑦 0 1 Linear

෡𝐻 0 1 Linear

෠𝑅𝑑 0 1 Linear

෠𝑏 0 1 Linear

ෝ𝑚 0 1 Linear

መ𝜉 =
𝜉 − 𝜉𝐿
𝜉𝐻 − 𝜉𝐿

መ𝜉 =
log(𝜉) − log(𝜉𝐿)

log 𝜉𝐻 − log 𝜉𝐿

Parameter scaling
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

ො𝜎𝑦 0.2911 0.6644 0.5895 0.0398 0.2643 0.8108

෡𝐻 0.5025 0.1817 0.4183 0.2980 0.6770 0.9368

෠𝑅𝑑 0.6621 0.3845 0.0299 0.9711 0.7259 0.4755

෠𝑏 0.5675 0.0005 0.8965 0.2019 0.7547 0.5204

ෝ𝑚 0.7418 0.2607 0.7871 0.4505 0.9159 0.0377

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

σY 253.8 515.1 462.7 77.86 235.0 617.6

H 2538 949.4 2121 1525 3401 4687

Rd 2.110 0.5875 0.1148 8.754 2.830 0.8933

b 9.229 1.01e-5 9.23e3 1.04e3 352.4 1.600

m 4.728 2.184 10.57 3.856 15.55 1.120

Parameters must be scaled
for a more tractable optimization.
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Lower 

Bound, 
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Upper 

Bound, 
ξH

Scaling

σY 50 750 Linear

H 50 5000 Linear

Rd 0.1 10 Log

b 10-5 105 Log

m 1 20 Log

Bounds:  Chosen such that ~50 < 𝜎𝑓 < ~3000 MPa over 𝑝 = [0,1] and ሶ𝑝 = [10−5, 105]
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Parameter scaling

23 February 2018



Cost function is sensitive to all parameters.

▪ Sensitivity of flow stress, 𝜎𝑓
▪ 𝜎𝑓 = 𝑔0 𝜉

▪ Function of mathematical form of 
material model only

▪ Parameter scaling required

▪ Sensitivity of cost function, Φ

▪ Φ = 𝑔2 𝑊𝑖𝑛𝑡 ሶ𝑝, 𝒗∗ ,𝑊𝑒𝑥𝑡 𝒗
∗

▪ Function of data richness 

▪ Function of virtual fields
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Parameters are identified using a non-linear, 
gradient-based optimizer in Matlab.

▪ 12 different parameter sets 
identified from VFM
▪ 2 different approximations for the 

strain rate
1. Backwards difference
2. Central difference

▪ 6 different initial guesses
1. Reference parameters
2. Latin hypercube sampling (5 sets)

▪ Hardening parameters (𝐻, 𝑅𝑑) are 
relatively constant

▪ Strain-rate dependent parameters 
(𝜎𝑌, 𝑏, 𝑚) have significant variation.
▪ Parameter co-variance!
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Parameter Symbol Value Units

Quasi-static 

Yield Stress
σy 253.8 MPa

Hardening Variable H 2538 MPa

Dynamic Recovery Rd 2.110 --

Rate-Dependent 

Coefficient
b 4.728 s-1

Rate-Dependent Exponent m 9.229 --

Traditional

Calibration
𝜎𝑓 𝑝, ሶ𝑝, 𝜉 = 𝜎𝑌 1 + asinh

ሶ𝑝

𝑏

ൗ1 𝑚

+
𝐻

𝑅𝑑
1 − exp −𝑅𝑑𝑝

VFM –

BD/CD
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The flow stress is invariant with respect to 
the different parameter sets.
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Backwards difference approximation
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The flow stress is invariant with respect to 
the different parameter sets.
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Backwards difference approximation

Parameter sets identified 

through VFM are 

functionally equivalent.
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Outline

▪ Digital Image Correlation
▪ Fundamentals
▪ International DIC Society (iDICs)
▪ Applications at Sandia

▪ Material Characterization
▪ Background
▪ Viscoplastic Material Model
▪ Traditional Calibration Technique
▪ Advanced, Full-Field Calibration Technique

▪ Finite-Element Model Validation
▪ Global Data
▪ Full-Field Data
▪ Boundary Conditions

▪ Conclusions and Future Work
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Validation experiments conducted 
with an X-specimen.

▪ Experimental DIC data of X-specimen with 
6 repeats

▪ FEA of X-specimen using each of the 
different parameter sets

▪ Map FEA and Experimental displacement 
results to a common grid

▪ Green-Lagrangian finite strains computed 
from local polynomial fit

▪ Strains interpolated onto a common time 
vector
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W = 71 mm

T = 1.5 mm

H = 152 mm
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Global data is similar for all model parameter sets.
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Experiments
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Global data is similar for all model parameter sets.
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Traditional

(Isothermal)

Experiments
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Global data is similar for all model parameter sets.
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Traditional

(Isothermal)

Experiments

Traditional

(Coupled)
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Global data is similar for all model parameter sets.
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Traditional

(Isothermal)

Experiments

Traditional

(Coupled)

VFM

(Isothermal,

Backwards-Difference)

23 February 2018



Global data is similar for all model parameter sets.
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Traditional

(Isothermal)

Experiments

Traditional

(Coupled)

VFM

(Isothermal,

Backwards-Difference)

VFM

(Isothermal,

Central-Difference)
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Global data is similar for all model parameter sets.
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Traditional

(Isothermal)

Experiments

Traditional

(Coupled)

VFM

(Isothermal,

Backwards-Difference)

VFM

(Isothermal,

Central-Difference)
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Global data is similar for all model parameter sets.
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Traditional

(Isothermal)

Experiments

Traditional

(Coupled)

VFM

(Isothermal,

Backwards-Difference)

VFM

(Isothermal,

Central-Difference)

265 N

360 N

144 N

346 N

M
e
a
n
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o

a
d
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Experimental results are repeatable:  
Vertical normal strain at 15 mm total extension.
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Experimental results are repeatable:  
Vertical normal strain at 15 mm total extension.
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Finite-Element Models using different parameter 
sets are also very similar.
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All material models have similar errors 
compared to experimental data.
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Average Strain Errors (με)

Traditional

(isothermal)

Traditional

(coupled)

VFM

(backwards 

difference)

E11 5450 5460 5480

E22 8090 8030 8480

E12 3020 3040 3050

• All material models have 

approximately the same error.

• Full-field data provides much 

more information for validation.

Strain Error = FEM Strain – Experimental Strain
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All material models have similar errors 
compared to experimental data.
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Average Strain Errors (με)

Traditional

(isothermal)

Traditional

(coupled)

VFM

(backwards 

difference)
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E22 8090 8030 8480

E12 3020 3040 3050

• All material models have 

approximately the same error.

• Full-field data provides much 

more information for validation.

Strain Error = FEM Strain – Experimental Strain
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Outline

▪ Digital Image Correlation
▪ Fundamentals
▪ International DIC Society (iDICs)
▪ Applications at Sandia

▪ Material Characterization
▪ Background
▪ Viscoplastic Material Model
▪ Traditional Calibration Technique
▪ Advanced, Full-Field Calibration Technique

▪ Finite-Element Model Validation
▪ Global Data
▪ Full-Field Data
▪ Boundary Conditions

▪ Conclusions and Future Work
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Experimental boundary conditions 
are not perfect.

FE Model BCs (Ideal) Experimental BCs
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No displacement in U or W.
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Experimental boundary conditions 
are not perfect.

FE Model BCs (Ideal) Experimental BCs
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No displacement in U or W.
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Modeling actual boundary conditions
is critical for FE model validation.
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Strain Error = FEM Strain – Experimental Strain
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Outline

▪ Digital Image Correlation
▪ Fundamentals
▪ International DIC Society (iDICs)
▪ Applications at Sandia

▪ Material Characterization
▪ Background
▪ Viscoplastic Material Model
▪ Traditional Calibration Technique
▪ Advanced, Full-Field Calibration Technique

▪ Finite-Element Model Validation
▪ Global Data
▪ Full-Field Data
▪ Boundary Conditions

▪ Conclusions and Future Work
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Goal:  Perform better material characterization by utilizing 
full-field data instead of only global measurements
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Calibrated a viscoplastic material model 

using traditional tensile tests.

Strain Rate

Calibrated a viscoplastic material model 

using a single specimen and VFM.

Strain Error

Validated FE models against experimental 

data – both global and full-field.

Determined that boundary conditions play 

a critical role in FE model validation.
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Much left to do

Near term:

▪ Investigate effect of sample-to-sample 
variation on VFM model calibration

▪ Explore other material models (Johnson-
Cook)

▪ Include temperature dependence and 
anisotropy in material model

Long term:

▪ Optimize specimen geometry

▪ Understand implications of non-unique 
parameters

▪ Determine advantages/disadvantages of 
VFM compared to traditional techniques
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304L stainless steel sheet 
exhibits mild plastic anisotropy.
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Thickness change must be 
measured or estimated.

▪ Internal power requires volume integral
▪ Plane stress assumption  area integral times sample thickness
▪ Thickness can be computed by:

▪ Measuring with DIC on both sides of the sample
▪ Assuming incompressible plasticity and calculating from in-plane strains
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Accuracy of VFM algorithm quantified
by error in internal vs. external power.
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6 Cases

1. FEA algorithms

2. Plane stress assumption; 
discrete volume integral 
approximation

3. Incompressible plasticity

4. Kinematics calculated from 
polynomial fit, with 
backward difference 
temporal derivative

5. Central difference temporal 
derivative
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Stereo DIC simulator brings the simulated 
experiment one step closer to reality.

Auburn University 84

Reference 
model 

parameters

Finite element 
model

Stereo DIC 
Simulator

“Simulated” 
experimental 

DIC 
displacements

Virtual fields 
method

Collaboration with Ruben Balcaen at KU Leuven

• Camera noise

• Matching error

• Spatial filtering

• Shape function

• Interpolation error
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Stereo DIC simulator brings the simulated 
experiment one step closer to reality.
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Reference Image Deformed ImageVertical Displacements
(mm)

Collaboration with Ruben Balcaen at KU Leuven

23 February 2018



Accuracy of VFM algorithm quantified
by error in internal vs. external power.
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6 Cases

1. FEA algorithms

2. Plane stress assumption; 
discrete volume integral 
approximation

3. Incompressible plasticity

4. Kinematics calculated from 
polynomial fit, with backward 
difference temporal derivative

5. Central difference temporal 
derivative

6. Simulated DIC images
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Simplified, 1D visualization of parameter effects
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Constant strain rate, ሶ𝑝 = 10−1.5

+20 %

-20 %
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Simplified, 1D visualization of parameter effects
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Constant strain, p = 0.09

103

10-3

100

m=1

20

2

5

b=1
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BCJ-MEM Material Model

▪ Von Mises Flow Criterion

▪ Equivalent Stress:  ത𝜎 =
3

2
𝑠: 𝑠 𝑠 = 𝜎 −

1

3
tr 𝜎 𝐼

▪ Equivalent Plastic Strain Rate: ሶ𝑝 =
2

3
ሶ𝜀𝑝: ሶ𝜀𝑝

▪ Flow Criterion:  𝑓 = ത𝜎 − 𝜎𝑓 = 0

▪ Hardening Law

▪ 𝜎𝑓 𝑝, ሶ𝑝, 𝜉 = 𝜎𝑜 1 + asinh
ሶ𝑝

𝑏𝜎

ൗ1 𝑚𝜎
+ 𝜅 1 + asinh

ሶ𝑝

𝑏𝜅

ൗ1 𝑚𝜅

▪ ሶ𝜅 = 𝐻 − 𝑅𝑑𝜅 ሶ𝑝

▪ Constant strain rate:  𝜅 =
𝐻

𝑅𝑑
1 − exp −𝑅𝑑𝑝
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VFM utilizes multi-axial calibration data and 
requires fewer tests than traditional calibrations.
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𝜎 = f(ζ(ε, 𝑝, ሶ𝑝, 𝑇), 𝜉 𝐸, 𝜐, 𝜎𝑜, 𝐻 )

loading

conditions

model

parameters

Traditional Advanced, Full-Field

Specimen 

Geometry

Tensile dog bones; 

torsion cylinders

Arbitrary

Type of 

Experimental Data

Global data 

 engineering stress and 

extensometer strain

Full-field data

 DIC data over the entire specimen 

surface

Stress State Uniaxial (tension only; shear only) Multi-axial

Advantages • Simple experiments

• Data easier to interpret

• Loading conditions of calibration 

specimen reflect real-world

• Reduced number of experiments 

Disadvantages • Uniaxial stress state does not 

reflect real-world conditions

• Multiple experiments required to 

fit complex model

• Experiments more complicated

• Data analysis more complicated

Techniques for Model Calibration (Material Characterization)
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Parameter set is effectively not unique.
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Flow Stress Difference =
𝜎𝑓 𝑝, ሶ𝑝, 𝜉VFM − 𝜎𝑓 𝑝, ሶ𝑝, 𝜉traditional

𝜎𝑓 𝑝, ሶ𝑝, 𝜉traditional

Backwards-difference strain rate approximation

(%)
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Parameter set is effectively not unique.
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10.7 10.9 9.6

7.4 10.0 8.3

(%)

Backwards-difference strain rate approximation

Flow Stress Difference =
𝜎𝑓 𝑝, ሶ𝑝, 𝜉VFM − 𝜎𝑓 𝑝, ሶ𝑝, 𝜉traditional

𝜎𝑓 𝑝, ሶ𝑝, 𝜉traditional
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Stereo DIC provides locations and displacements 
in three dimensions.
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Object

Deformation
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Complex specimen geometry induces stress and 
strain rate heterogeneity in sample.
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Stress Distribution Strain/Strain Rate Distribution

Tensile 

Dog Bones

Tensile Dog Bones
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