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Sodium Metal Batteries (NaS, NaNiCl2..)

 Two primary chemistries

— NaS, mature technology, deployed in grid
applications

— NaNiCl,, mature, more stable than Na$S

* NaS first developed by Ford Motor Co. in
1960’s

— Commercialized by NGK in Japan, most
installed capacity

* NaNiCl2 (Zebra) developed in South Africa
in 1980’s

— FIAMM in limited production
* Neither NaS nor NaNiCl, are at high

volumes of production for economies of
scale
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Na-Metal Batteries

* Batteries consisting of molten sodium
anode and B"-Al203 solid electrolyte Beta
Alumina
(BASE)
— Low cost starting materials
— High specific energy density (120~240
Wh/kg)
— Good specific power (150-230 W/kg)
— Good candidate for energy applications
* (4-6 hrs discharge)
— Operated at relatively high temperature
«  (300~350°C)
* NaS battery
— 2Na+ xS =2 Na2Sx (x=3~5)
* E=2.0871.78 V at 350°C

* NaNiCl2 (Zebra) battery

— 2Na + NiCl2 = 2NaCl + Ni
e E=2.58Vat300°C

* Use of catholyte (NaAICl4)
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NaS Batteries

* Most widely deployed of long
duration batteries

* NaS Batteries
— High energy density

— Long discharge cycles I3 .,: . 9
— Fastresponse Los Alamos, NM. 1 MW, 6MWh
— Long life
— 530 MW/3700MWh installed
prlma rlly |n Japan 1Msystem(10mX3mX5mH)

e Applications
— Power quality
— Congestion relief
— Renewable integration
e Challenges
— High operating temperature
(250-300C)
— Liquid containment issues
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Na$S - Status

— NAS Battery System (Pattern Diagram) EEE—

* NGK s the only committed NASgg;un;;gtgyst;gdggg.ggﬂ.‘._V; h
m a n Ufa CtU re r .. /‘? Battery cell
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Na-Metal Batteries: Advantages/Issues

* Temperature

— Less over temperature concerns, typical operating window 200-
350°C. additional heaters needed when not in use.

— At < 98°C, Na metal freezes out, degree of distortion to cell
dictated by SOC of battery (amount of Na in anode)

* Charging/Discharging Limitations
e Safety Concerns

— Solid ceramic electrolyte keeps reactive elements from contact.
Failure in electrolyte can lead to exothermic reaction (Na-S)
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NaNiCl, (Zebra) Batteries

(O] . METAL CURRENT
* Large cells and stable chemistry THLT] coueerer
— Lower temperature than NaS BT
— Cells loaded in discharge mode Z ::Duswmi
— Addition of NaAICl4 leads to a CATHODE
closed circuit on failure (LG — uaus sooum
* High efficiency, low discharge | sTeeL ceLL CAse

* Long warm up time (16 hr)

* Only one major manufacturers
— FIAMM
— Limited deployments

FIAMM 222-kWh System Duke Energy Rankin

Substation
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Lower Temperature Na-based Batteries

* Low temperature, safe, nonflammable alternatives to Na-S batteries.
* Enabled by low to intermediate temperature (<2000C) ceramic Na-ion conductor
(NaSICON)

— Robust physical barrier - no electrode crossover

— Reduced operating costs

— Lower cost materials/seals

— Enables new cathode chemistries
* Engineered safe

— Fully inorganic, no volatile organic electrolytes

— Robust ceramic separator isolates anode and cathode

— Cross-reaction generates benign byproducts

* Sodium-air * Sodium-bromine: Na + %2 Br, €=» Na* + Br
* Sodium-ion * Sodium-iodine: Na + %21, €= Na®
* Aqueous Redox Flow * Sodium-nickel chloride: Na + %2 NiCl, €=» Na* + CI- +
Low temperature sodium-sulfur Ni(s)
( i ¢ Sodium-copper iodide: Na + Cul,” €=» Na* -I—ZI + Cu(y)
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NaSICON Lower Temperature Electrolyte

NaSICON (Na Super lon CONductor): Na;Zr,PSi,O,,

‘eu. . = NaSICON Cycle test (Prototype cell)
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Engineered materials chemistry and advanced, scalable processing
(Ceramatec, CoorsTek) make NaSICON a chemically/mechanically
stable, low temperature, high conductivity (>103 S/cm @RT) separator

technology.
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13 Wh Na-NiCl2 (NaX) Cell operation for 9+ months. 70%
Depth of Discharge, >85% energy efficiency at 65 mA /cm2
Charge/Discharge NaSICON current density
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High Energy Density Li and Metal Air Batteries

* All metal air batteries (Li-air, Zn-air) have the potential to deliver high
energy densities at low cost, challenges with recharging have so far
precluded commercialization of the technology

— Lot of startup activity in Metal-Air batteries
— Technology not mature, decade or more away
— Potential fundamental problems
* Li-Air combines difficulties of air and lithium electrodes

— Breakthroughs needed in cheap catalysts, more stable and conductive ceramic
separators

— Developing a robust air electrode is a challenge, need major breakthroughs
* Li-S suffers from major problems of self discharge and poor life
— breakthroughs needed for life of Li electrode, low cost separator
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Further Away: Other Li-like Chemistries

* Na/NaxCoO, and Na/NaxMnO, attracting a lot of attention
— Na/NaxCo02: 440 Wh/kg, 1600 Wh/I
— Na/NaxMn02: 420 Wh/kg, 1410 Wh/I

 Na and Mg Chemistries potentially lower cost
— Intercalation chemistry similar to Li ion
— New class of electrolytes, separators needed
— Very early stage, metal anodes vs. insertion materials
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Rechargeable Alkaline Batteries

Primary Chemistries
* NiMH

* Ni-Fe

* Zn-Ni

* Zn-MnO,

For low cost grid storage applications, Zn-MnO, has compelling
attributes
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/n-MnO, Batteries

* Zn/MnO, alkaline batteries

* Traditionally primary batteries

* Lowest bill of materials cost, lowest manufacturing capital expenses
* Established supply chain for high volume manufacturing

* Readily be produced in larger form factors for grid applications

* Do not have the temperature limitations of Li-ion/Pb-acid

* Areinherently safer, e.g. are EPA certified for landfill disposal.

e Until recently reversibility of Zn/MnO2 has been challenging
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History of Rechargeable Zn-MnQO?2 Batteries
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Limiting the Depth of Discharge to
.. Achieve Long Cycle Life
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Low DOD discharge makes for a highly viable
technology

e B
Sty s gt s

2e-
= 820 mAh/g

—>

2e =616 mAh/g

| 1= 308 mAhg

| ELECTRIC
\ POWER
Low % Utilization - .

~

Low % Utilization

. . - Gen 1 Alkaline Battery
Single-use Alkaline Battery $23/kWh Projected cost: $100/kWh in volume
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Utilization of 2e in MnO,
Enabling Zn-MnO, to Reach Li-ion in Energy Density

820mAh/g

+ Shape change
= Passivation
« Dendrite formation

617mAh/g -

» Crystal structure breakdown
» Formation of Inactive phases
= Zinc poisoning

« Diffusion of zincate ions

10-20% of total capacity - 5-10% of total capacity

y-Mn'VO,

Rimdellite-iike (2x1 channels)

Pyrolusite intergr (1x1 channels)

Intercalation regime

Mno, <

n=1/x e
ZnMn,0, le :
M“:'q.?é)?ﬁz a-Mn""OOH e y
' —— a-Mn'(OH),

soluble species
Mn,;0,
ZnMn,0,

5'M I'INOZ

Volume expansion
Mn3*(0.645 A) > Mn**(0.530 A

Mn,0,
ZnMn,0,

soluble species

gy

Source: CUNY Energy Institute
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Communications, vol. 8, Article number: 14424 (2017). doi:10.1038/ncomms14424
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CUNY Breakthrough Advancement

With full utilization of
2e in MnO,, we have

o

o

o
!

-

(=]

o
!

©

< | o

g so0 8 - the possibility of safe,
= 9 @ CUNY Advanced MnO, ~$50/KWh _
= 400 |- P @ Ford Motors rechargeable batteries
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MATERIALS ENGINEERING OF MnO, FOR ACCESSING 100% DOD

BRI~
A i

Cu Ka1 Mn Ka1 Bi La1

0 Ka1 K Kal C Ka1
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Capacity (mAh g™)
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o Charge Capacity of ~19wt.% MnO,, Rate = 20C, Areal Capacity = ~12mAh/cm 2

0 Discharge Capacity of ~19wt.% MnO,, Rate = 20C, Areal Capacity = ~12mAh/cm A
O Charge Capacity of 60wt.% MnO,, Rate = C/3, Areal Capacity = ~29mAh/cm s

O Discharge Capacity of 60wt.% MnO,, Rate = C/3 Areal Capacity = ~29mAhlcm?

mmmm
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Source: CUNY Energy Institute
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HIGHLY ENERGY DENSE BIRNESSITE/Zn BATTERY
SEQUESTER Zn THROUGH COMPLEXATION

A CONVERSION BATTERY CHEMISTRY

T Zn AFFECTS ENERGY
' Zn- BIRNESSITE IS RESISTIVE

CURRENT CELLS GET 160Wh/L
BUILDING & TESTING LARGE CELLS

Chalcophanite -
ZnMn,0,.3H,0
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Utilization of 2e in MnO, -

£ 400 » Current CUNY testing results
';? 200  Highest cyclone recorded in
g 200} literature to date

&

& 100}

P *  with Ca(OH), interlayer

s

o I — A A ' A A
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Cyde Number

Current university research targets:
« 180Wh/L
* 500 Cycles
* 40% Fade
« <$50/kWH
* Disrupt Li-FePO 4 *
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CUNY Roadmap for Zn-MnO,

Product Roadmap: 2™ Electron & High-Voltage Electrolytes

Gen 3
High-voltage electrolytes

350
$50/kWh
300
250
Gen 2
Mn full 2" electron
~ 200 $50/kWh
8
.‘:_‘_‘ Optimize Gen 1
-g 50% increase in Zn
& Mn (1t electron)
150 Utilization
Gen 1 $150/kWh
100 Current cell design
$280/kWh
50
0
2019 2020 2022

2018
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