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Introduction )

Google CEO Sundar Pichai said artificial intelligence “is one of the most
important things humanity is working on. It’s more profound than, |
don’t knOW, EIGCtriCity or fire.” [MSNBC Interview January 2018]

Can neural inspired computational elements deliver on this potential???




Universal Function Approximation
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Neural Module

* Neurons n; use discretized LIF

e Each neuron has a spiking threshold 6
(not shown in figure)

* Inputs to neurons are linear
combinations of external input plus a
bias signal

e Each neuron generates a temporal
coded output s;

e Each spike contains temporal coded

information t(w,*x’) which defines the

latency of the spike signal

t(w;xT + wyp)

t(w;xT +w;p)

t(wpxT + wpg)
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Fundamental algorithms using temporal coding

Spike  Threshold
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Sorted integers: (9)/7, 6,6, 6,@)/3, 2,1,1
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SpikeMin e
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Finding the min where P > N Finding the min where P < N
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Average runtimes for 10000 simulations of the spike-
max neural spiking algorithm




Spiking Sort

Threshol|
t=1

input

Threshold|
t=2

Algorithm 1 spiking-sort

Input: set of integers, {xy,s,..., zp}i k

& largest possible integer is k — 1

Qutput: sparse bit matrix of spikes, S

w =10

for j + 1 to P, in parallel do

wy; =1

=k

J=
xy=1
S=0

for j < 1to P, in parallel do
for 7+ 1to k do
u; = u; + wo;Tn
ifu; >=#; then
S(rj) =1

u; =10

= initialize weight matrix to all zeros

& initialize bias weights

& set neuron threshold

& directly inject initial value as neuron potential
& initialize bias input

© initialize bit matrix to all zeros

& neuron potential update (discretized LIF)

© threshold check for spiking neuron

©= reset neuron potential after spike

Xp

t=9

Threshold|°P

ike

Spike

———— — ——

Threshol] _Spike
t=10

input
wio=0
W11 = 1 \i pl(t) .
S - Z4
n,
Wo; = 0
wjj = 1 pi(®) -
NS >
1
wpo =0
Wpp = 1 PP(t) -

Zp

input
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Optimization Formula for the Median

 Given a set of floating point numbers X = {x4, x5, ..., Xy}
e Compute the Signed Rank function

N

R(x) = z sign(x — x;)

xelxip =

 The median, %, is such that R(¥) is closest to 0




SpikeOpt(Median) ) .

Algorithm Architecture
Input: Set of integers, {x1, X, ..., x5y } where N is odd Let w;; = sign(x; — x;)/x;

Output: median integer, m = median(x;)
typedef enum {INITIAL, SPIKING, DONE} is State

State state « SPIKING [> initialize state to SPIKING — |
fori < 1toN, in parallel do X —-% :jé ) & L 51
ny
w = S, sign(x; - x) Y — | Copr
while state # DONE do ! wiy ot () S>3t
. _ L %) >§1\1 Sopt
if u; == 0 then e L | P
_ . : (g =7 |
m = x; % A v ) ¢ S
state = DONE o
else

u; = u; — sign(u;)




Median Filtering Example ) .

* Median-filtering is an algorithm to perform noise reduction on input layer median-filter layer
an image or signal

* Run through image, pixel by pixel, and replace the current
value us the value of the median of the neighbors

e Maximum size for each median operation is 9 which means we
can we can compute the median filtered image in constant
time using SpikeOpt(Median)

Original Image Noisy Image Filtered Image
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Complexity Analysis

e Signed rank value will be in the range 0 to %

* Worst Case
e SpikeOpt(Median) will operate for at most % clock cycles

e Total work T; = O(N?)
* Work per processor Tp = O(N)

e Speedup ;—1 = 0(N)
P
e This is optimal when P = N

* Best Case
e SpikeOpt(Median) will operate for at a minimum 1 clock cycle
e Work per processor Tp = 0(1),
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Complexity Analysis

Theorem 1 — The SpikeOpt(median) algorithm achieves optimal
runtime with the PRAM framework for a symmetric probability

distribution

Theorem 2 - The SpikeOpt(median) algorithm achieves optimal runtime
with the PRAM framework if each integer x; is unique

Verzi, S. J., Vineyard, C. M., Vugrin, E. D., Galiardi, M., James, C. D., & Aimone, J. B. (2017, May). Optimization-based computation with spiking
neurons. In Neural Networks (IJCNN), 2017 International Joint Conference on (pp. 2015-2022). IEEE.
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Spiking Similarity .

* In many cases, machine learning algorithms
are based upon a distance computation to
infer relationships to other data points

similarity layer

« ege . . > X1 -r-. pl(t) 4
o After the initial presentation of input values  x, wy, n,

which are scaled and integrated then a
nominal input is passed to all neurons driving | I .@ ZIQN I
them to fire K~ Win . n;

 This firing latency is inversely proportionalto  *en Wen 1
similarity between the input and the neural
response encoding




Nearest Neighbor ) i,

k-Nearest Neighbor (k-NN)

 Non-parametric method for classification

e Determines class membership as the class A A
of the majority of the k nearest data points A - R
— A
-a A o -
k-NN Algorithm: - ,‘
Given query point g A =
Calculate distances from unknown point g to all data A — =
Find k nearest neighbors _ A o
Vote on labels of k nearest neighbors




Spiking Nearest Neighbor (s-NN) ).

* Each neuron correspond to a
data point

e Perform spiking similarity &
identifying the first k spikes

k-winner layer

 The k-winner layer similarity layer olaver
determines when the k Yt — @ I
nearest neighbors have been , , |* ® " -a na ' e
found and then primes the ., e " encation
max |ayer . W,; X; n.) Pj R

* As a supervised problem, the = w. |, ® "9 ., g

classes attributed to the data
are known & increment
neurons corresponding to the
individual classes

=
o
=
5
=




Adaptive Resonance Theory (ART) L

* Originally developed by Carpenter and AT \
Grossberg Z )
/°
* An online learning family of algorithms sfefefe]o) \“&\j@)

e “Resonance” drives learning

* |Inputs are compared against stored
tem P lates Recognition

e |f a sufficiently similar representation exists
e Update winning template

e Otherwise a new category needs to be

Resonance Comparison

learned - New uncommited
Adapt winning node node




Spiking-ART L

* Implemented by first performing spiking Spiking-ART
similarity to determine the closest matching
template

O @ 5
ny

e The vigilance similarity comparison constraint
may be directly incorporated by only allowinga «

por | o PO
temporal response within p time steps X, n.] - 2
e If a sufficient match is found weights of the ©
winning neuron are updated accordingly —@ op * Zp
| Np

e Otherwise a new uncommitted neuron is added
with weights set to the present input O O




FUGU

Source o
Code

Library of
Spiking
Algorithms

Spiking Neural
Circuit

Neuromorphic
Translation
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FUGU: PIV Cross-Correlation Example L

* Particle Image Velocimetry (PIV) *" T N[ e T
is a well studied method for sk e i{%ﬁ; oy
o ISEM el 0 1

using particles to determine the s == et

local velocity flow in many R S e
applications throughout science ' — o (AP
and engineering X ) (NSt Aok acsere

Library of > Ty (j

_ Code p
Spiking Q O

/’ // Y\
e Cross-Correlation finds i )
agreement in signals -
e Computed as a sliding scalar .~ B
product
* (f*g)n)=%,f(n)g(m+n) »
 Mapped to the SNL STPU & IBM
TrueNorth Neuromorphic
architectures |
..._'...ZE.D

Severa et al.,ICRC2016
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Conclusion

* There are some bold & exciting claims surrounding neuromorphic
computing

* Presented spiking neural circuit implementations of several fundamental
computer science & machine learning algorithms

* Working on neuromorphic implementation as well as computational complexity
analysis
* Broad applicability and various benefits

e Just scratching the surface of NICE potential —looking
forward to the amazing algorithms & architectures over
next few days!
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Neuromorphic Hardware in Practice and Use
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Description of the workshop

* Abstract — This workshop is designed to explore the current advances, challenges and best ﬁractices for working with and implementing algorithms on
neuromorphic hardware. Despite growing availability of prominent biolof%ically inspired architectures and correspondinginterest, practical guidelines
and results are scattered and disparate. This leads to wasted repeated effort and F;])oor exposure of state-of-the-art results. We collect cutting edge

;esults from a variety of application spaces providing both an up-to-date, in-depth discussion for domain experts as well as an accessible starting point
or newcomers.

Goals & Objectives

e This workshop strives to brin%to ether algorithm and architecture researchers and help facilitate how challenges each face can be overcome for
mutual benefit. In particular, by focusing on neuromorphic hardware practice and use, an emphasis on understanding the strengths and weaknesses
of these emerging approaches can help to identify and convey the significance of research developments. This overarching goal is intended to be
addressed by the following workshop objectives:

e Exploreimplemented or otherwise real-world usage of neuromorphichardware platforms
¢ Help develop ‘best practices’ for developing neuromorphic-ready algorithms and software
e Bridge the gap between hardware design and theoretical algorithms

e Begin to establish formal benchmarksto understand the significance and impact of neuromorphicarchitectures

http://neuroscience.sandia.gov/research/wcci2018.html

Call: https://easychair.org/cfp/nipu2018


http://neuroscience.sandia.gov/research/wcci2018.html
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