

ShyLU: Domain Decomposition and Subdomain Solvers

Kokkoskernels: Performance-portable Math and Graph Kernels

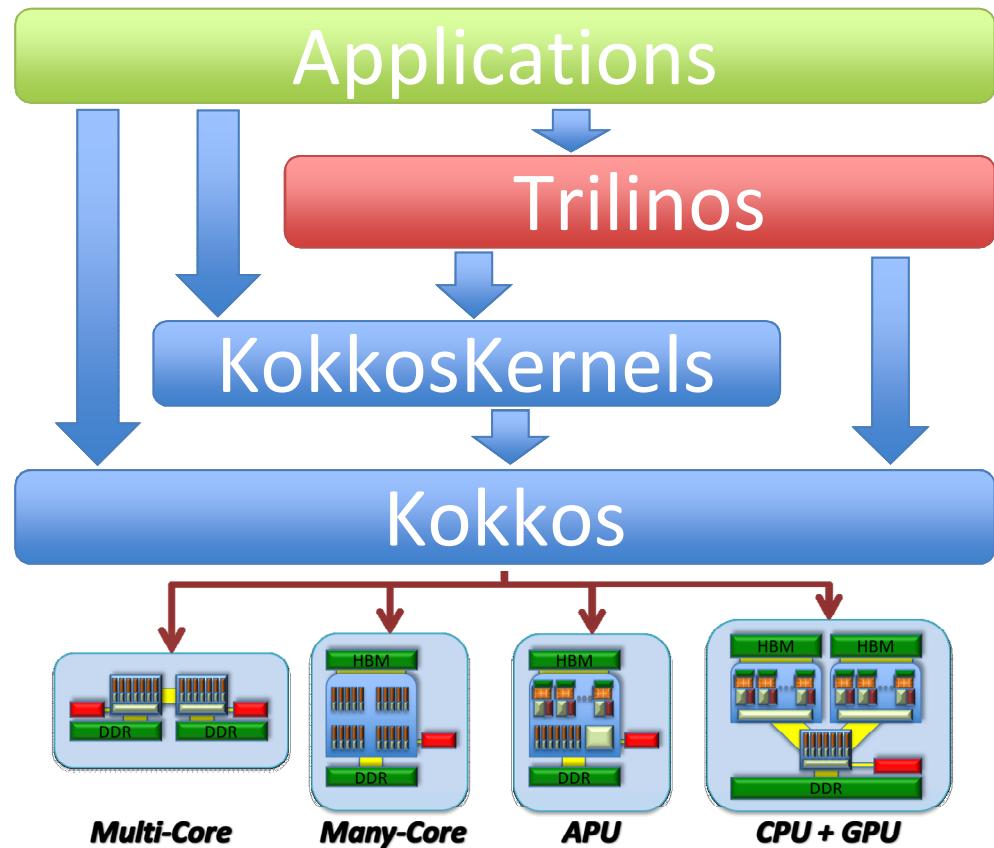
Siva Rajamanickam
Sandia National Laboratories

Massachusetts
Institute of
Technology

Rensselaer

SMU

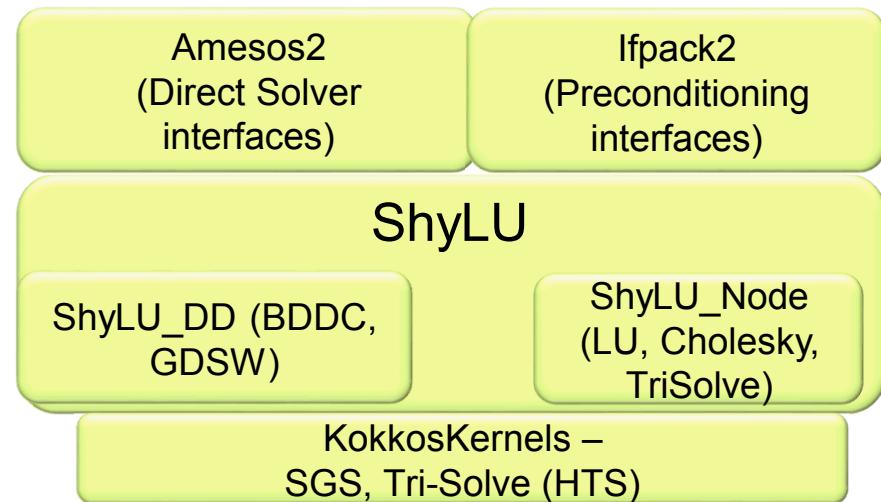
University of
Southern California


Overview of the technology

- **Technology Area: ShyLU and Kokkoskernels**
- **FASTMath Tasks**
 - Scalable Solvers for land ice simulation
 - Performance-portable kernels for MHD and QCD simulations
- **Relevant Software Tools**
 - **ShyLU**
 - Part of Trilinos Linear Solvers
 - <https://github.com/trilinos/Trilinos/>
 - **Kokkoskernels**
 - part of Kokkos performance-portable ecosystem
 - <https://github.com/kokkos/kokkos-kernels>
- **Applications Impacted**
 - Land Ice – Albany/FELIX
 - MHD –Drekar
 - QCD – Jefferson Labs

Technical description of technology : KokkosKernels

KokkosKernels provides math kernels for dense and sparse linear algebra as well as graph computations. It has multiple aims:


- Portable BLAS, Sparse and Graph kernels
- Generic implementations for various scalar types and data layouts
- Access to major vendor optimized math libraries.
- Expand the scope of BLAS to hierarchical implementations.

Technical description of technology : ShyLU

ShyLU is a Trilinos package for domain decomposition solvers and node level solvers

- Balancing Domain Decomposition (BDDC), Generalized Dryja-Smith-Widlund (GDSW) preconditioners
- Multithreaded LU, Cholesky, and Triangular solvers
- Interfaces through Amesos2 and Ifpack2 packages in Trilinos

Proposed work in FASTMath including internal collaborations

- Provide scalable, performance-portable solvers for Albany/FELIX land ice code
 - Scalable preconditioners that support on-node performance-portability is the primary goal
- Provide performance-portable smoothers and kernels needed by the multigrid codes such as MueLU
 - E.g: Smoothers, Matrix-Matrix multiply, and graph algorithms
- Provide performance-portable kernels for small dense matrices required by the QCD code
 - A shuffle operation seems to be the key based on initial discussion with the application

Description of the software tools

- ShyLU
 - Domain Decomposition and Subdomain solvers
 - BDDC and GDSW preconditioners at the MPI level
 - Multithreaded LU, Cholesky, and Triangular solve at the node level
 - Available in Trilinos <https://github.com/trilinos/Trilinos/>
- Kokkoskernels
 - Performance-Portable Math and Graph kernels
 - Sparse/Dense linear algebra kernels, Batched kernels and Graph Kernels
 - Available in Kokkos <https://github.com/kokkos/kokkos-kernels>

Application interactions

- Albany/FELIX
 - PoC : Mauro Perego
 - Scalable solvers for Albany/FELIX on architectures such as KNL and GPUs
 - Ability to run Albany/FELIX implicit solvers on different architectures
- QCD
 - PoC : Balint Joo, Jefferson Labs
 - Performance-portable kernels for small dense matrices
 - Performance-portable kernels are key to the scalability of this code
- MHD - Drekar
 - Usage through MueLU multigrid solvers

Other relevant collaborations

- ECP Collaboration
 - SNL ATDM Application SPARC
 - SNL ATDM Application EMPIRE
 - NREL/SNL ECP Application ExaWind (Nalu)
 - ECP/ATDM Kokkos project
 - ECP Codesign centers
 - ExaGraph
 - CEEP