

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-756361

New Determination of the ^{229}Th Half-life

R. M. Essex, J. L. Mann, R. Colle, L. Laureano-Perez, M. E. Bennett, H. Dion, R. Fitzgerald, A. M. Gaffney, A. Gourgiotis, A. Hubert, K. G. W. Inn, W. S. Kinman, S. P. Lamont, R. Steiner, R. W. Williams

August 10, 2018

Journal of Radioanalytical and Nuclear Chemistry

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Manuscript Title Page**

2 **Names of authors:** Richard M. Essex¹, Jacqueline L. Mann¹, Ronald Collé¹, Lizbeth Laureano-
3 Perez¹, Megan E. Bennett², Heather Dion³, Ryan Fitzgerald¹, Amy M. Gaffney⁴, Alkiviadis
4 Gourgiotis⁵, Amélie Hubert⁶, Kenneth G. W. Inn⁷, William S. Kinman³, Stephen P. Lamont³,
5 Robert Steiner³, Ross W. Williams⁴

6 **Title:** New determination of the ^{229}Th half-life

7 **Affiliation and addresses of authors:**

8 ¹ National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8462,
9 Gaithersburg, MD 20899, USA

10 ² Shine Medical Technologies, 101 East Milwaukee Street, Janesville, WI 53545, USA

11 ³ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

12 ⁴ Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, CA 94551-0808,
13 USA

14 ⁵ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 31 avenue
15 de la Division Leclerc, Fontenay-aux-Roses

16 ⁶ CEA/DAM-Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex, France

17 ⁷ K&E Innovations, Ewa Beach, HI 96706, USA

18 **Corresponding Author:** Richard.essex@NIST.gov

19

20

New determination of the ^{229}Th half-life

22 Richard M. Essex¹, Jacqueline L. Mann¹, Ronald Collé¹, Lizbeth Laureano-Perez¹, Megan E.
23 Bennett², Heather Dion³, Ryan Fitzgerald¹, Amy M. Gaffney⁴, Alkiviadis Gourgiotis⁵, Amélie
24 Hubert⁶, William S. Kinman³, Stephen P. Lamont³, Robert Steiner³, Ross W. Williams⁴

¹ National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8462,
Gaithersburg, MD 20899, USA

²⁷ ² Shine Medical Technologies, 101 East Milwaukee Street, Janesville, WI 53545, USA

³ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

⁴ Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, CA 94551-0808,
USA

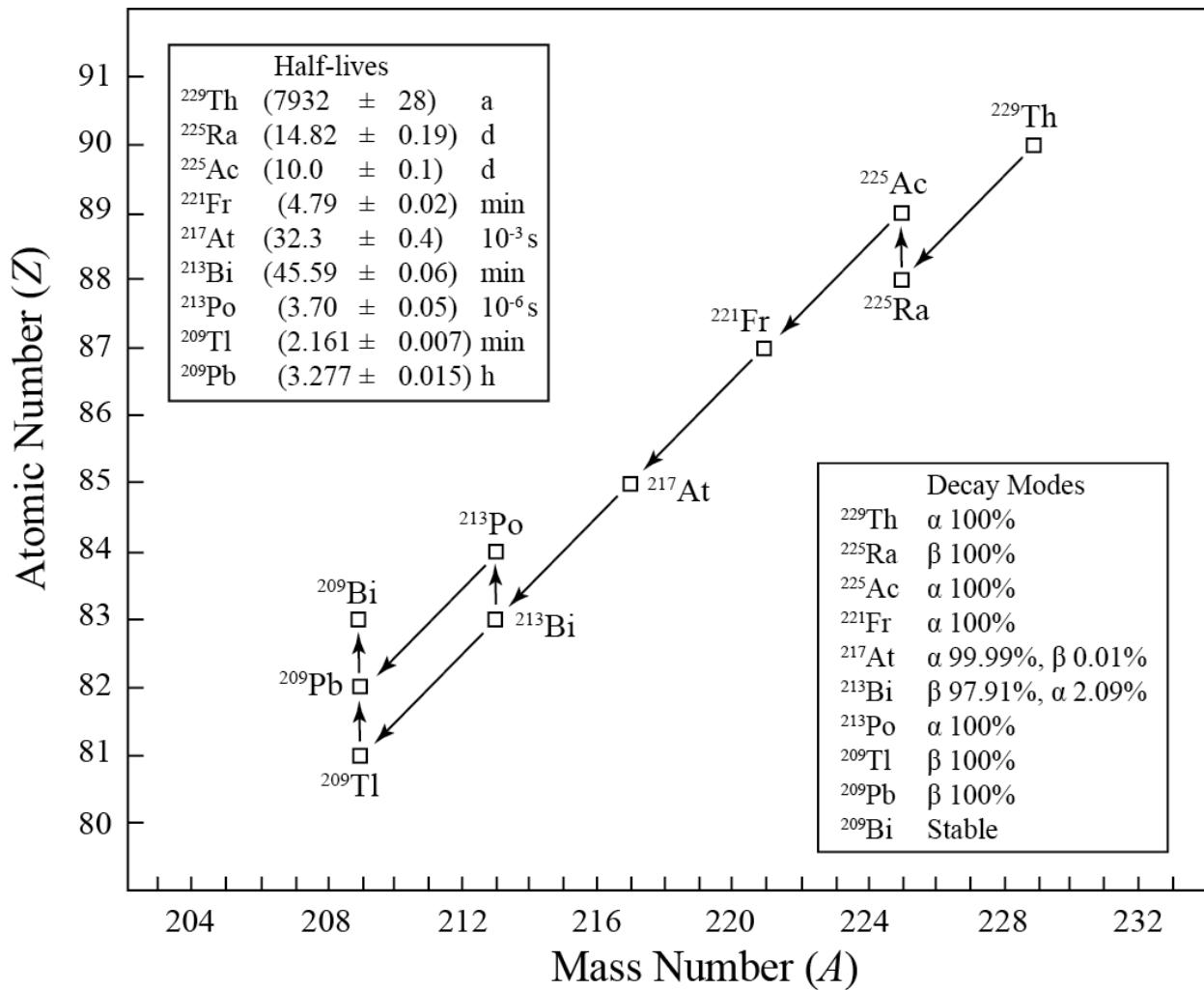
⁵ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE/LELI, 31 avenue de la Division Leclerc, Fontenay-aux-Roses

⁶ CEA/DAM-Ile de France, Bruyères-le-Châtel, 91297 Arpajon Cedex, France

34

35 Abstract

36 A new determination of the ^{229}Th half-life was made based on measurements of the ^{229}Th massic
37 activity of a high-purity solution for which the ^{229}Th molality had previously been measured.
38 The ^{229}Th massic activity was measured by direct comparison with SRM 4328C using $4\pi\alpha\beta$


39 liquid scintillation counting, NaI counting, and standard addition liquid scintillation counting.
40 The ^{229}Th massic activity was confirmed by isotope dilution alpha spectrometry measurements.
41 The ^{229}Th half-life calculated from the activity measurements is (7825 ± 87) years ($k = 2$).

42 **Key Words**

43 ^{229}Th , half-life, liquid scintillation counting, NaI counting, isotope dilution alpha spectrometry

44 **Introduction**

45 The ^{229}Th isotope is a relatively long-lived nuclide in the ^{237}Np decay series and primarily occurs
46 as a decay product of ^{233}U [1]. The isotope decays by α emission to ^{225}Ra which, in turn, decays
47 to ^{225}Ac followed by a series of short-lived nuclides to ^{209}Bi (Fig. 1). The ^{229}Th isotope does not
48 occur in nature making it useful to the environmental and geological sciences where it is used as
49 a yield tracer for thorium α spectrometry [2] and as an isotope dilution mass spectrometry
50 (IDMS) spike for thorium amount measurements [3]. In addition, ^{229}Th is a source of high-purity
51 ^{225}Ac for research in nuclear medicine [4] and is being evaluated for use as a high accuracy
52 nuclear clock [5]. The nuclide is particularly important for nuclear forensics where it is used as
53 an IDMS spike for ^{230}Th “dating” of uranium materials associated with the nuclear fuel cycle,
54 e.g. [6,7]. Due to ongoing interest in the radionuclide, the National Institute of Standards and
55 Technology (NIST) has produced four issues of ^{229}Th Standard Reference Material (SRM)
56 certified for massic activity (Bq g^{-1}). These standards are SRM 4328 issued in 1984, SRM
57 4328A issued in 1995, SRM 4328B issued in 1996, and SRM 4328C issued in 2008 [8-11].

58

59 **Fig 1.** Simplified decay scheme for ^{229}Th . The uncertainties for the half-lives are standard
60 uncertainties. Half-life and decay mode data for ^{229}Th are from [12]. Half-life and decay mode
61 data for all other isotopes are from [13].

62

63 To date, four half-life measurements have been published for ^{229}Th , but these values have been
64 somewhat inconsistent. Hagemann *et al.* [1] published a ^{229}Th half-life of $(7340 \pm 160)^1$ years as

¹ Uncertainties for values in text are combined standard uncertainties (u_c) unless otherwise indicated with a coverage factor value (k) of 2 or greater for the expanded uncertainties ($U = k u_c$).

65 part of a study of the ^{233}U decay chain. This value is significantly shorter than subsequent
66 measurements ($\approx 7\%$) with the discrepancy attributed to a combination of factors including a
67 biased ^{233}U half-life value used to calculate the quantity of ^{229}Th in the analysis samples, a
68 possible underestimate of ^{228}Th contributions to ^{229}Th activity measurements, or ^{233}U
69 interference in ^{229}Th activity measurements [14-15]. Goldstein *et al.* [14] performed a study to
70 refine the ^{229}Th half-life value by measuring the molality of ^{229}Th in a solution with a well-
71 characterized massic activity, SRM 4328. The resulting measurement indicated a half-life of
72 (7880 ± 120) years ($k = 2$). More recently, Kikunaga *et al.* [15] calculated a half-life of $(7932 \pm$
73 55) years ($k = 2$) based on measured $A(^{233}\text{U})/A(^{232}\text{U})$ and $A(^{229}\text{Th})/A(^{228}\text{Th})$ activity ratios.
74 Finally, Varga *et al.* [16] measured the molality of the SRM 4328C massic activity standard by
75 IDMS using two different Th spikes. One spike was a commercially prepared natural Th solution
76 [Method A: (7889 ± 32) years] and the second spike was a high purity U material with a
77 calculated quantity of ingrown ^{230}Th [Method B: (7952 ± 36) years]. The half-lives calculated for
78 each set of IDMS measurements were combined for a reported half-life value of (7917 ± 48)
79 years ($k = 2$).

80 Fitzgerald *et al.* [17] describe a massic activity calibration for the ^{229}Th Master (M) solution used
81 to prepare SRM 4328C. To produce the stock solution for the SRM, an aliquot of the M solution
82 was quantitatively diluted by a factor (D_S) of 308.85 ± 0.09 . The ^{229}Th massic activity of the M
83 solution was then measured by live-timed $4\pi\alpha\beta\text{-}\gamma$ anticoincidence counting. The massic activity
84 of the SRM solution was calculated using the measured massic activity of the M solution and the
85 gravimetrically determined dilution factor. Relative liquid scintillation (LS) counting of the M
86 and SRM 4328C solutions was used to verify the gravimetric dilution factor for the SRM, with
87 the relative difference between the activity ratio and the dilution factor of 0.04 % and a

88 combined standard uncertainty of about 0.4 % in the activity ratio. The calculated activity value
89 for the SRM was also confirmed by four additional radioactivity measurement methods,
90 including LS counting with ^3H CIEMAT/NIST efficiency tracing², triple-to-double coincidence
91 counting (LS TDCR), $2\pi\alpha$ proportional counting, and α spectrometry.

92 In a separate project, two ampoules of the M solution were combined and diluted by a factor (D_x)
93 of approximately 56.0³ to produce a new reference material that was characterized for ^{229}Th
94 molality (^{229}Th mol g⁻¹) and Th isotopic composition [18]. The ^{229}Th molality of the new
95 reference material was measured by IDMS on a total of 14 sample units in two measurement
96 campaigns. To minimize potential systematic bias, three separate ^{232}Th IDMS spike solutions
97 were prepared for the measurements and mass spectrometric analyses were distributed between
98 three different laboratories. The resulting ^{229}Th molality value for the reference material solution,
99 (0.11498 \pm 0.00008) nmol g⁻¹, was verified using the SRM 4342A ^{230}Th massic activity standard
100 as an independent IDMS spike.

101
102 The following describes the determination of the massic activity of the new ^{229}Th molality
103 reference material (referred to here as ^{229}Th RM) by direct comparison with the SRM 4328C
104 massic activity standard and the confirmation of the measured value by isotope dilution alpha

² The acronym CIEMAT/NIST refers to the two laboratories that collaborated in developing the protocol for this LS tracing methodology; viz., the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and the National Institute of Standards and Technology (NIST).

³ The dilution factor for the ^{229}Th RM (D_x) is only used for comparison purposes. During the dilution of the M solution to create the ^{229}Th RM stock solution, the masses measured on a large-capacity Jupiter 3000 balance appear to be inconsistent with normal operation of the balance. Accordingly, the calculated dilution factor value is an approximation.

105 spectrometry (IDAS). A new value for the ^{229}Th half-life is calculated from the measured ^{229}Th
106 massic activity and the previously measured ^{229}Th molality.

107

108 **Direct Activity Comparison**

109 A massic activity value for ^{229}Th in the ^{229}Th RM was determined by measuring the ratio of relative
110 activities (i.e. activity per gram solution) for the ^{229}Th RM solution and the SRM 4328C activity
111 standard. Three counting methods were used to make the relative activity measurements. The first
112 method compared the relative LS counting rates for carefully prepared sources of the two solutions.
113 Then, the relative integral photon emission rates of the LS counting sources were directly
114 compared using a NaI(Tl) well counter. Finally, a standard addition LS counting method was used
115 to determine the activity ratio from a series of mixtures of the two reference materials.

116 **Relative LS Counting**

117 The ^{229}Th decay series consists of a seven-nuclide-long decay chain (Fig. 1) with an LS efficiency
118 of $> 6.9 \text{ s}^{-1} \text{ Bq}^{-1}$. To achieve accurate results for the comparative LS counting measurements, it is
119 imperative that the two ^{229}Th solutions are in identical states of radioactive equilibrium and that
120 the solutions were counted with identical detection efficiency. Nearly identical counting efficiency
121 was achieved by gravimetrically determining all of the components in the counting source
122 cocktails to assure similar quenching. Identical radioactive equilibrium is also a reasonable
123 assumption when the history and handling of the solutions are considered. Both ^{229}Th solutions
124 were prepared from quantitative dilutions of aliquots from the same M solution; both solutions
125 were diluted with $1 \text{ mol L}^{-1} \text{ HNO}_3$; and no additional separations or processing were performed on
126 either solution prior to sealing in glass ampoules. Ampoules of both reference materials were

127 opened specifically for the activity measurements performed in April 2017, however, the SRM
128 4328C solution was prepared, dispensed into ampoules, and sealed in October 2007 while the ^{229}Th
129 RM was prepared and sealed in March 2012. Although it is not possible to categorically rule out
130 chemical fractionation of the sealed M solution aliquots over the 4.5 year period between
131 preparation of the ^{229}Th solutions (e.g., preferential adsorption or precipitation of an element in the
132 ^{229}Th decay chain), there is no *a priori* reason to suspect a difference in the radioactive equilibrium
133 of the two solutions.

134 Counting sources for high precision LS were prepared from the ^{229}Th RM and SRM 4328C
135 solutions (Table 1). Two different scintillation fluids were used to create liquid scintillation
136 sources for both ^{229}Th solutions, Ultima Gold AB⁴ (PerkinElmer, Waltham, MA) and Ecoscint
137 (National Diagnostics, Tampa, FL). Three sources were gravimetrically prepared in 20 mL glass
138 LS vials for each scintillant- ^{229}Th solution combination, resulting in a total of 12 sources. To
139 prepare the sources, aliquots from ampoules of the SRM and ^{229}Th RM were dispensed using
140 polyethylene aspirating pycnometers with masses measured on an electronic microbalance (AT20,
141 Mettler Toledo, USA). Other cocktail components were weighed with a mechanical analytical
142 balance (Mettler B5, Mettler Toledo, USA). Close matching of the aqueous mass fraction in the
143 sets of cocktails was achieved by the addition of 1 mol L⁻¹ HNO₃ to some of the sources. In
144 addition, each cocktail contained approximately 60 mg of di-(2-ethylhexyl) phosphoric acid
145 (DEHPA or HDEHP), (C₈H₁₇O)₂PO₂H, which is a complexing agent. Matched blank sources of
146 similar composition over the same quench range were also prepared for background subtraction.

⁴ Certain commercial equipment, instruments, software, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

147 Each source was counted in triplicate on a LS 6500 counter (Beckman Coulter, Fullerton, CA,
 148 USA) and on an Accuflex LSC-8000 (Hitachi Aloka Medical Ltd., Tokyo, Japan). Two LS
 149 counters were used for this set of experiments to demonstrate that results are independent of the
 150 operating characteristics of a particular instrument (detection threshold, photomultiplier
 151 efficiency, deadtime, amplification, signal conversion, etc.). Individual LS measurements
 152 consisted of integrating the entire LS spectrum, and were of sufficient duration to accumulate over
 153 10^6 counts, such that the relative Poisson counting statistics on each was $< 0.1\%$. In addition to
 154 closely matching quenching conditions and cocktail compositions in counting sources, both
 155 instruments use quench indicating parameters (QIP) to monitor quenching. The Accuflex LSC-
 156 8000 (Counter H) uses the External Standard Channel Ratio (ESCR) quench parameter, which
 157 relates quenching to the ratio of two counting windows in the Compton spectrum of ^{133}Ba . The
 158 Beckman LS 6500 (Counter B) uses a Horrocks Number ($H\#$) to monitor the quench level, which
 159 is based on the downward spectrum shift of the Compton edge of an external ^{137}Cs source with
 160 increasing quenching in the cocktail.

161

LS Source Series	Mass of Scintillant (g)	Mass of ^{229}Th Solution Aliquot (g)	Mass of Blank HNO_3 (g)	Total Mass Cocktail (g)	f_{aq} (%)	$H\#$
^{229}Th RM UGAB	9.850 (3)	0.2039 (9)	0.798 (23)	10.912 (19)	9.18 (19)	89.0 (3)
4328C UGAB	9.852 (1)	0.9909 (10)	---	10.906 (11)	9.09 (8)	91.2 (5)
^{229}Th RM ECOS	8.916 (17)	0.1993 (40)	0.790 (26)	9.969 (42)	9.92 (2)	118.4 (3)
4328C ECOS	8.910 (7)	1.0103 (26)	---	9.987 (8)	10.12 (2)	121.1 (3)

162 **Table 1** ^{229}Th RM and SRM 4328C LS source preparation details and characteristics. Each LS
 163 Source Series consisted of 3 separately prepared counting sources. UGAB and ECOS refer to the
 164 Ultima Gold AB and Ecoscint scintillation solutions, respectively. The values for the masses (g)
 165 and aqueous mass fraction f_{aq} (in %) are averages for the three sources in the series with the values

166 in parentheses representing the standard deviation of the means. $H\#$ is the average quench
167 indicating parameter (as measured in Counter B) which is an additional indicator of the close
168 composition matching.

169

170 **Relative Photon Emission**

171 As an independent measurement of the ^{229}Th RM and SRM 4328C activity ratio, relative photon
172 emission rates were measured on the LS sources described above. Six replicate measurements of
173 each source were made on a NaI (Tl) well-type counter (2480 WIZARD2, PerkinElmer, Waltham,
174 MA). The detector crystal is 75 mm in diameter with a height of 80 mm and is shielded with a
175 minimum of 50 mm of lead. A total of 6 trials for each source were measured sequentially,
176 alternating between SRM and ^{229}Th RM vials and the spectrum for each measurement was
177 accumulated for an interval of 10800 s (live time). Stability between trials was monitored with a
178 1.97 kBq ^{129}I check source (Half-life = 1.6×10^7 years). The region from, nominally, 20 keV to
179 2000 keV was integrated to obtain an integral counting rate that was corrected for background.
180 The Poisson counting statistics on any single measurement was approximately 0.13 %.

181 **Results for LS and Photon Emission Counting Rates**

182 The measurement results are provided in terms of grand-means and great-grand-means of the
183 massic count ratios (Table 2). The measured count rates from the LS and NaI(Tl) experiments
184 are proportional to the massic activity of the respective solutions. Therefore, if ^{229}Th decay chain
185 equilibrium is the same for both solutions, then the ratio of the massic count rates is equivalent to
186 the ^{229}Th relative activity ratio (A_x/A_s) which, in turn is equivalent of the inverse ratio of M
187 solution dilution factors (D_s/D_x) for the two reference materials. The uncertainty values for the

188 grand-mean massic count ratios in Table 2 are computed precision estimators, equivalent to a
189 standard deviation of the mean ($S_{\bar{x}}$), that consider both the within-source and between-source
190 components of variance. The within-source component is a “typical” (i.e., average) value for the
191 standard deviation of the replicate source measurements and the between-source component is
192 the standard deviation of the mean values for the three sources. The two variance components are
193 combined in quadrature to calculate the standard deviation of the mean for each counter-
194 scintillant combination. Separate great grand-means are calculated for the LS and NaI(Tl)
195 measurements with a relative precision estimator calculated as described above.

196

LS Counters				NaI(Tl) Counter		
Counter	Scintillant	Grand Mean Massic Count Ratio	$S_{\bar{x}}$	Scintillant	Grand Mean Massic Count Ratio	$S_{\bar{x}}$
B	UGAB	5.5186	0.0121	UGAB	5.5148	0.0143
B	ECOS	5.5199	0.0155		5.5303	0.0166
H	UGAB	5.5216	0.0088		5.5226	0.0109
H	ECOS	5.5301	0.0166		5.5226	0.0170
Great Grand Mean		5.5226	0.0109			

197 **Table 2** Count Ratios of ^{229}Th RM - SRM 4328C as measured by LS and NaI(Tl) counters.

198 Counters H and B are as described in the text. UGAB and ECOS are as previously defined. $S_{\bar{x}}$ is
199 a relative precision estimator equivalent to the standard deviation of the mean.

200 **Activity Ratio by LS Standard Addition**

201 A LS standard addition experiment was performed using a series of counting sources prepared as
202 scintillation cocktails that contain mixtures of SRM 4328C and the ^{229}Th RM in varying
203 proportions (Table 3). A total of five standard addition LS sources were prepared using the Ecosint
204 scintillation solution. Aliquots of both SRM 4328C and the ^{229}Th RM were added to each source

205 but source preparation was, otherwise, as previously described. The LS counting rate (R_c) for the
206 mixtures of the SRM 4328C, with massic activity (A_S), and the ^{229}Th RM, with massic activity
207 (A_X), can be given by

208
$$R_c = \varepsilon (m_S A_S + m_X A_X) \quad (1)$$

209 where m_S and m_X are the respective aliquot masses of the two solutions in the cocktail and where
210 ε is the overall ^{229}Th decay chain detection efficiency for the mixture in matched cocktails. Simple
211 rearrangement, by normalization of each term in Eq. (1) by m_S , yields a linear function

212
$$\frac{R_c}{m_S} = \varepsilon A_S + \varepsilon A_X (m_X/m_S) \quad (2)$$

213 with intercept εA_S and slope εA_X . From a series of matched counting sources with rates R_c for
214 varying m_S and m_X , a linear fit of R_c/m_S as a function of m_X/m_S will determine slope and intercept
215 parameters whose ratio gives A_X/A_S . Additionally, the linear equation, in two independent variables
216 of Eq. (1), can be fit by multiple regression to yield εA_S and εA_X directly. The two calculational
217 approaches give identical results, though extraction of the covariance between εA_S and εA_X from
218 the covariance matrix is easier with multiple regression.

219 Ten (10) replicate measurements of the five sources were made in both Counter B and Counter H.
220 The counting rates for the sources integrated over the entire LS spectrum ranged from about 520
221 s^{-1} to 950 s^{-1} . So, a duration of 3600 s was used for the measurements in order to accumulate
222 approximately $1.9 \cdot 10^6$ to $3.4 \cdot 10^6$ integral counts in each spectrum (corresponding to relative
223 Poisson counting statistics of about 0.07 % to 0.05 % for each of the 10 measurements).

Source ID	Mass of Scintillant (g)	Mass of ^{229}Th RM Aliquot (g)	Mass of SRM 4328C Aliquot (g)	Mass of Blank HNO_3 (g)	Total Mass Cocktail (g)	f_{aq} (%)	$H\#^2$
SA1	13.5365	0.076775	1.697757	0	15.3669	11.54	123.5 (5)
SA2	13.5657	0.201698	1.304430	0.2647	15.3962	11.50	123.2 (4)
SA3	13.5808	0.348458	0.995254	0.4289	15.416	11.50	123.6 (4)
SA4	13.5832	0.476746	0.600704	0.6948	15.4124	11.50	122.9 (4)
SA5	13.5711	0.632714	0.327851	0.8073	15.4002	11.48	123.1 (3)

225 **Table 3** Standard Addition Source Preparation Details and Characteristics. Mass values have a
 226 standard uncertainty of < 0.01 %. $H\#$ is a quench indicating parameter (as measured in Counter B
 227 for $n = 10$ replications) which is an additional indicator of the close composition matching. The
 228 values in parentheses represent the numerical values of the standard deviation of the mean for the
 229 quoted $H\#$.

230

231 **Results for LS Standard Addition Measurement**

232 The standard deviation of the mean for the average of the 10 replicate measurements of a source
 233 on Counter B ranged from 0.25 % to 0.37 %, and from 0.060 % to 0.083 % on Counter H. Multiple
 234 regressions of the Counter B and Counter H data sets for the R_c (m_x, m_s) two-independent-variable
 235 function of Eq. (3) were performed with the LAB Fit code [19]. Table 4 summarizes the results of
 236 these regressions. The ratio A_x/A_s was obtained from the fitted parameters εA_x and εA_s and its
 237 relative standard deviation was computed from

$$238 S = \left[\left(\frac{S_x}{A_x} \right)^2 + \left(\frac{S_s}{A_s} \right)^2 - 2 \frac{S_{xs}}{A_x A_s} \right]^{1/2} \quad (3)$$

239 where S_x and S_s are the standard deviations on A_x and A_s , respectively, and where S_{xs} is the
 240 covariance between A_x and A_s (refer to Table 4). The reduced χ^2 values for the two regressions for

241 $\nu = 3$ degrees of freedom were 3.1 and 0.61, with corresponding percentile points of $p = 0.024$ and
242 $p = 0.61$ for Counters B and H data, respectively.

243

Quantities	Counter B	Counter H
εA_X	1347.9	1369.4
εA_S	245.57	249.98
S_X^2	0.08892	0.6583
S_S^2	0.008953	0.03474
S_{XS}	-0.01646	-0.07668
A_X / A_S	5.4888	5.4780
S	0.0030	0.0067
Grand Mean	Massic Activity Ratio	Standard Deviation
	5.4834	0.0087

244 **Table 4** Standard Addition Activity Ratio Measurement Results. The fitted parameters εA_X and ε
245 A_S are for the ^{229}Th RM and SRM 4328C solutions, respectively, with corresponding variances S_X^2
246 and S_S^2 and covariance S_{XS} . The estimator S is the propagated standard deviation of the A_X / A_S
247 massic activity ratio.

248

249

250 Isotope Dilution Alpha Spectrometry

251 The massic activity of the ^{229}Th RM was measured on five subsamples that were prepared for
252 IDAS from a single unit of the reference material. This measurement method is independent of
253 the three activity ratio methods and is not reliant upon comparison with SRM 4328C. The IDAS
254 analysis is a nuclide-specific measurement of ^{229}Th activity so any perturbation of the radioactive
255 equilibrium of the decay chain for the isotope will not bias the measurement results.

256 Accordingly, the analyses represent a robust verification of massic activity calculated from the
257 previously described relative activity measurements.

258 The IDAS analysis samples were prepared by transferring aliquots of the SRM 4342A ^{230}Th
259 activity standard to 5 separate beakers as an isotope dilution spike, followed by aliquots of the
260 ^{229}Th RM (Table 5). The masses of the SRM 4342A and ^{229}Th RM aliquots were measured by
261 difference on XP 205 balance (Mettler, Toledo USA). Approximately 2 mL of 0.4 mol L⁻¹
262 NaHSO₄ (Fisher Scientific, Hampton, NH) and 2 mL 2 mol L⁻¹ HNO₃ were also added to sample
263 beakers which were then refluxed on a hotplate for roughly 1 hour. Additional 2 mol L⁻¹ HNO₃
264 was added to each beaker, as necessary, to yield 10 mL of solution in preparation for ion
265 exchange separation using UTEVA resin (Eichrom Technologies, Chicago, USA). Prior to
266 loading, approximately 1 mg of Zr in a 4 mol L⁻¹ nitrate solution (SPEX Industries, Metuchen,
267 NJ) was added to each sample to assist in the recovery of Th from the UTEVA columns. The Th
268 was eluted from the columns into a beaker using 20 mL of 6 mol L⁻¹ HCl. Approximately 1 mL
269 concentrated H₂SO₄ was added to the samples to break down any organic compounds that may
270 have washed through the UTEVA column during elution and the solution was heated until the
271 sulfuric acid was completely fumed off. Once dry, the samples were cooled and then re-
272 dissolved in 10 mL of 2 mol L⁻¹ HNO₃. Preparation of the samples for counting on the alpha
273 spectrometer entailed co-precipitation of the Th with \approx 50 μg of NdF₃, (Lindsay Rare Earth
274 Chemicals, West Chicago, IL) in 1 mol L⁻¹ HCl and collection of the sample on a 0.1 μm
275 Metricel filter (Pall Corp. Baltimore, USA). The α -decays from ^{230}Th and ^{229}Th were counted
276 for approximately 10^6 seconds on an Ortec Octete alpha spectrometer (Ortec, Oak Ridge, USA)
277 with silicon detectors. The measured α activities for ^{230}Th and ^{229}Th were corrected for peak
278 tailing, background, and decay probability. The ratio of the corrected activities in conjunction

279 with the known aliquot weights were then used to calculate the ^{229}Th massic activity using a
280 standard isotope dilution algorithm.

281

Source ID	^{229}Th Aliquot (g)	4342A aliquot (g)	^{229}Th corrected counts	^{230}Th corrected counts	Massic activity (Bq g $^{-1}$)
1A	0.04681	0.23224	201134	208015	195.7
2A	0.03359	0.23442	146521	214837	194.2
3A	0.04935	0.22853	193851	187416	195.5
4A	0.03323	0.21738	121015	160688	201.0
5A	0.03362	0.23496	138180	203920	193.2

282 **Table 5** ^{229}Th IDAS sample data. Mass values have a relative standard uncertainty of 0.3 %.

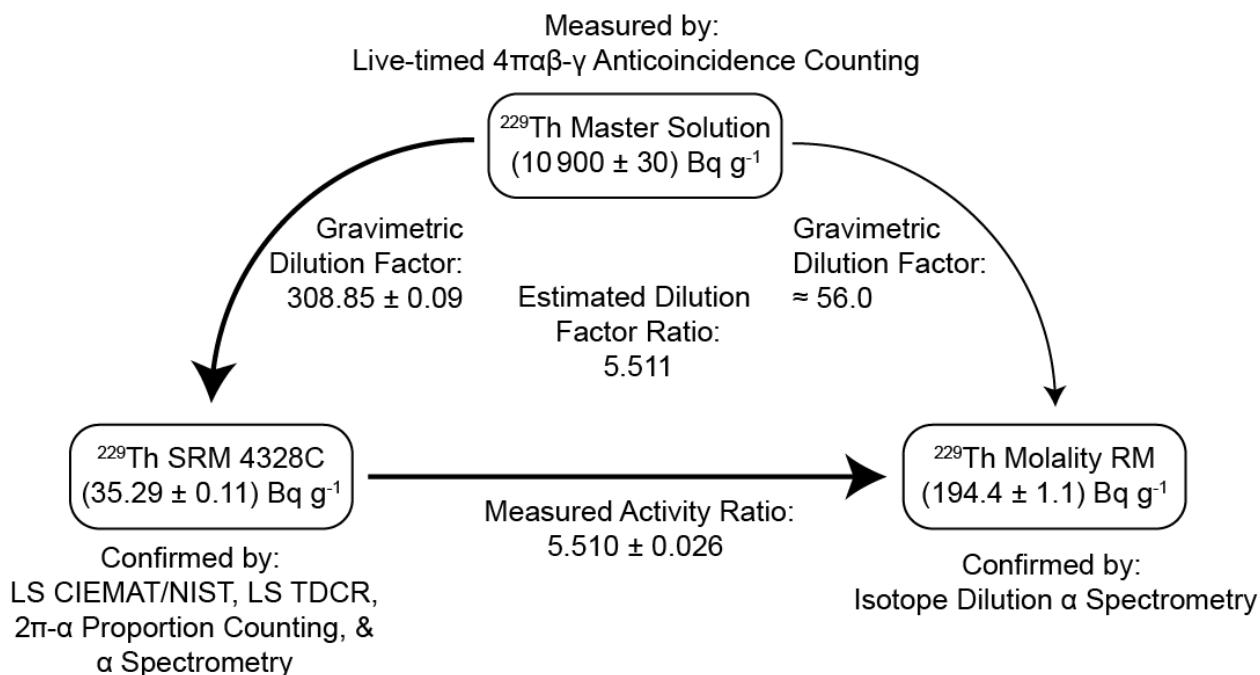
283 **Results from IDAS**

284 The combined IDAS measurement data indicate a ^{229}Th massic activity of (195.9 ± 3.2) Bq g $^{-1}$ (k
285 = 2) for a measurement date of March 5, 2012. The uncertainty of the measured value is
286 dominated by the variability of the replicate massic activity measurements (Table 6) with the
287 uncertainty for solution masses, the SRM 4342A tracer, and peak tail corrections representing
288 minor contributions.

289

Component	Comment	Type	u_i %
Massic Activity	Standard uncertainty of replicate IDAS measurements of ^{229}Th massic activity	A	0.69
Weighing	Estimated relative uncertainty for potential bias in mass of IDAS solution aliquots	B	0.30
Peak Tail	Estimated uncertainty of ^{229}Th peak tail correction applied to the α count data	B	0.21
^{230}Th Spike	Combined standard uncertainty of the massic activity for SRM 4342A	B	0.20
Background	Estimated uncertainty of ^{229}Th and ^{230}Th background corrections	B	0.04

Relative combined standard uncertainty (u_c)	0.81 %
^{229}Th Massic Activity (Bq g ⁻¹)	Expanded Uncertainty (Bq g ⁻¹)
195.9	3.2 (Relative: 1.6 %)


290 **Table 6** Uncertainty Budget for ^{229}Th massic activity by IDAS. The uncertainty estimate for the
 291 half-life was calculated in accordance with Taylor and Kuyatt, [20] and GUM protocols [21]
 292 using the GUM Workbench software [22]. u_i % represents the relative standard uncertainty for
 293 the listed components. The expanded uncertainty ($U = k \times u_c$) for the massic activity value is the
 294 product of the combined standard uncertainty (u_c) and a coverage factor (k), with $k = 2$ to achieve
 295 an approximately 95 % level of confidence.

296 **Discussion**

297 The physical and analytical linkages between the M solution, SRM 4328C, and the ^{229}Th RM allow
 298 for the measurement of the ^{229}Th RM massic activity through a direct comparison to SRM 4328C
 299 (Fig. 2). The three counting methods used to measure the activity ratios of the ^{229}Th RM and SRM
 300 4328C should yield the same values, within uncertainties. Results from the LS and NaI(Tl) relative
 301 counting methods are consistent among all three counters and both scintillation cocktails used to
 302 prepare the sources (Table 2). The LS standard additions results are also consistent for both LS
 303 counters (Table 4) but the relative difference between the standard addition and the relative
 304 counting methods (δ) is 0.7 %, while the relative standard deviation for the results of the two
 305 standard addition measurements are both approximately 0.16 %. No clear explanation for the
 306 apparent discrepancy between the A_X / A_S ratio for the methods has been identified. Firstly, the
 307 composition matching of the five standard addition sources dictated nearly identical detection
 308 efficiencies across the series. Secondly, the quality of the fits, as reflected in the adjusted R^2 ,
 309 reduced χ^2 , and F -values (for ANOVA ratio of variances), suggests that there should have been

310 better agreement. The 95.4 % coverage factor on the standard deviation S_x and S_s for A_x and A_s is
 311 $k = 3.31$, such that the expanded relative uncertainties kS on A_x / A_s of 0.18 % and 0.40 % are
 312 roughly a factor of 2 to 3 smaller than the δ from the A_x / A_s ratio. In the absence of identifiable
 313 analytical problems for the three activity ratio measurement methods, the overall mean values for
 314 each method were averaged to yield a combined activity ratio $(A_x / A_s)_c$ of 5.510 with a standard
 315 uncertainty of 0.026. This standard uncertainty is calculated by adding, in quadrature, two variance
 316 components. These components are the within-method variability, represented by the typical
 317 standard deviation of the mean for the great-grand-means multiplied by the Student's T distribution
 318 for 2 degrees of freedom ($n = 3$ measurement methods), and the between-method variability
 319 represented by the standard deviation of the 3 activity ratio values.

320

321

322 **Fig. 2** Schematic of material and analytical linkages between the M solution, SRM 4328C, and
323 the ^{229}Th RM. Bold arrows indicate the activity measurement linkages. The lighter arrow
324 indicates direct production of the ^{229}Th RM from the M solution. Activity values shown in the
325 figure are for the December 31, 2007 reference date of the massic activity value of the M
326 solution. All uncertainties are combined standard uncertainties.

327 As previously described, the inverse ratio of dilution factors (D_S / D_X) for the two reference
328 materials should be identical to the ^{229}Th activity ratio, representing an independent confirmation
329 of the measured ratio. Although the dilution factor for the ^{229}Th RM is an approximation, a
330 calculated D_S / D_X of 5.511 is essentially indistinguishable from the measured activity ratio value
331 indicating the measured ratio is consistent with the values expected based on preparation of the
332 reference material from the M solution.

333 The massic activity of the ^{229}Th RM solution (A_X) can be calculated (Eq. 4) from the combined
334 activity ratio (A_X / A_S)_c, as described above, and the measured activity of the M solution (A_m) and
335 the dilution factor for production of SRM 4328C stock solution (D_S), as reported in [17].

$$336 \quad A_X = \frac{A_m (A_X / A_S)_c}{D_S} \quad (4)$$

337 The resulting massic activity value for the ^{229}Th RM is $(194.4 \pm 1.1) \text{ Bq g}^{-1}$. For comparison, the
338 ^{229}Th massic activity measured by IDAS can be corrected to the reference date for SRM 4328C
339 (December 31, 2007). The resulting massic activity value is 196.0 Bq g^{-1} with an expanded
340 uncertainty of 3.2 Bq g^{-1} ($k = 2$). The relative difference between the activity measurements is
341 0.8 % which is well within the 1.6 % relative uncertainty of the IDAS measurement.

342 The massic activity from Eq. 4 (A_X) and the ^{229}Th molality (b_X) of $(0.11498 \pm 0.00008) \text{ nmol g}^{-1}$,
343 as measured for the ^{229}Th RM in [18], can then be used to calculate a decay constant (λ) for ^{229}Th

344 but a decay correction for the (4.7 ± 0.25) year interval between the reference dates for the
 345 massic activity and the molality measurements (t) must also be incorporated into the calculation
 346 (Eq. 5).

347

$$\lambda e^{\lambda t} = \frac{A_X}{b_X L} \quad (5)$$

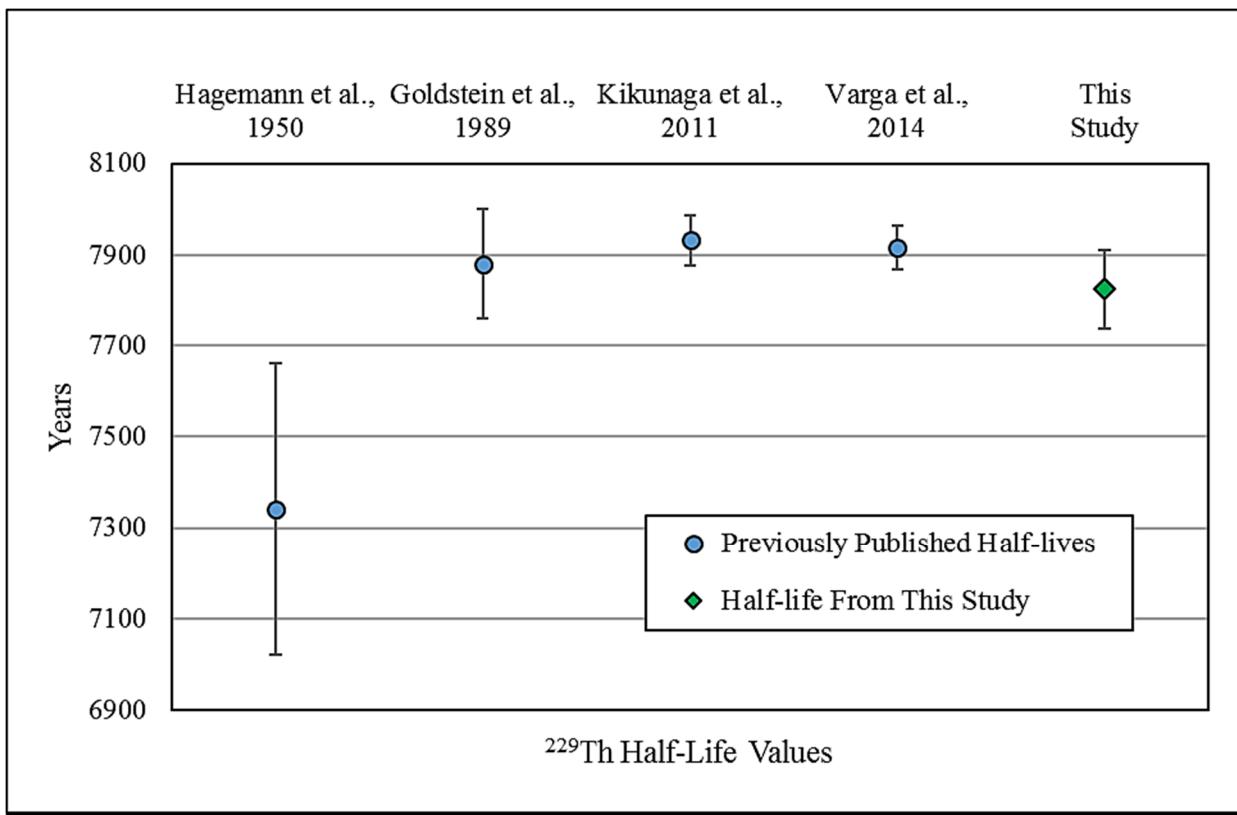
348 Where L is the Avogadro's Constant. This function is solved for the decay constant by numerical
 349 iteration, which converges rapidly because of the small magnitude of the exponential term. A
 350 half-life (T) is then calculated from the decay constant (Eq. 6).

351

$$T = \frac{\ln(2)}{\lambda} \quad (6)$$

352 The best-fit decay constant for the ^{229}Th data is $8.858 \cdot 10^{-5} \text{ a}^{-1}$ with a combined standard
 353 uncertainty of $0.049 \cdot 10^{-5} \text{ a}^{-1}$ which corresponds to a half-life and expanded uncertainty of (7825 ± 87) years ($k = 2$). The uncertainty for the half-life determination is dominated by components
 354 from the M solution activity measurement and the measured activity ratio for the ^{229}Th RM (see
 355 Table 7). The uncertainties for the measured molality of the ^{229}Th RM solution, the SRM 4328C
 356 dilution factor, and the decay interval between the SRM reference date and the ^{229}Th molality
 357 measurements represent minor contributions to the overall uncertainty for the half-life.

359


Component	Comment	Type	$u_i \%^2$
Activity Ratio	Standard uncertainty of combined activity ratio measurements from this study	A	0.48
LTAC ^{229}Th Activity	Standard Uncertainty of the M solution massic activity	B	0.28
^{229}Th Molality	Combined standard uncertainty of the measured ^{229}Th molality	B	0.07
Dilution Factor	Standard uncertainty of the dilution factor for production of SRM 4328C from the M solution	B	0.03
Decay Interval	Relative uncertainty associated with the interval between the M solution reference date and molality measurements	B	0.00

Relative combined standard uncertainty (u_c)	0.56 %
²²⁹ Th Half-life (a)	Expanded Uncertainty ³ (a)
7825	87 (Relative: 1.1 %)

360 **Table 7** Uncertainty budget for ²²⁹Th half-life determination. The uncertainty estimate for the
 361 half-life was calculated in accordance with Taylor and Kuyatt, [20] and GUM protocols [21]
 362 using the GUM Workbench software [22]. u_i % represents the relative standard uncertainty for
 363 the listed components. The expanded uncertainty ($U = k \times u_c$) for the half-life value is the product
 364 of the combined standard uncertainty (u_c) and a coverage factor (k), with $k = 2$ to achieve an
 365 approximately 95 % level of confidence.

366 The ²²⁹Th half-life measured in this study is largely consistent with previous determinations (Fig.
 367 2) with the exception of the first published half-life for the isotope presented in Hagemann *et al.*
 368 [1]. As previously discussed, the value from Hagemann *et al.* is significantly shorter than
 369 subsequent half-life measurement and is probably erroneous. The present half-life measurement
 370 is consistent with the published half-life reported by Goldstein *et al.* [14] but is only marginally
 371 consistent with the values of Varga, *et al.* [16] and Kikunaga *et al.* [15] as indicated by
 372 overlapping expanded uncertainty envelopes. Pommé [23] noted that discrepancies between half-
 373 life measurements for the same nuclide are common and speculated that a major cause for the
 374 apparent differences is underestimated measurement uncertainty. It is not possible to assess the
 375 uncertainty cited by Hagemann *et al.* [1] and the uncertainty cited by Goldstein *et al.* [14]
 376 appears to be reasonably conservative. The uncertainty of the half-lives from Kikunaga *et al.*
 377 [15] and Varga *et al.* [16], however, may be underestimated.

379

380 **Fig. 2** Reported half-lives for ^{229}Th . Error bars are expanded uncertainties ($k = 2$).

381 Kikunaga *et al.* measured the half-life by an indirect method based on known ingrowth periods
 382 for Th in a high purity ^{233}U material that also contains a small proportion of ^{232}U . In their study,
 383 the measured α count ratios of $A(^{233}\text{U})/A(^{232}\text{U})$ and $A(^{229}\text{Th})/A(^{228}\text{Th})$ and the half-lives of ^{232}U
 384 and ^{228}Th were used to calculate a ^{229}Th half-life without the necessity of measuring the absolute
 385 amount or activity for the nuclide. Accordingly, their calculations are highly sensitive to the
 386 ^{228}Th half-life and the measured ^{229}Th to ^{228}Th count ratio, for which they indicate an average
 387 uncertainty of 0.2 %. The ^{228}Th half-life appears to be well constrained [21], and Kikunaga, *et*
 388 *al.* addressed potential sources for significant bias in their data such as corrections for
 389 background and interferences in the α spectra. However, the combined alpha spectra for ^{229}Th
 390 and ^{228}Th are complex and there is potential that their choice of region-of-interest for the

391 nuclides, the magnitude of applied corrections, and/or uncertainties in decay data for the nuclides
392 could result in a bias that is not covered by the 0.15 % relative “systematic” uncertainty cited for
393 their measurements.

394 Varga *et al.* [13] provided detailed uncertainty budgets for each of the measurement methods
395 used for their half-life determination (Methods A and B). The uncertainties for each method is
396 dominated by the Type B uncertainties for SRM 4328C massic activity. Three replicates of the
397 ^{229}Th molality measurement were performed for each method but no variability component
398 associated with the replicate IDMS measurements was specified. Varga *et al.* then combined the
399 two measured half-lives to obtain a weighted mean value of 7917 years with an expanded
400 uncertainty of only 48 years ($k = 2$), despite a 63 year difference in the half-lives for the two
401 methods. It appears that the combined measurement uncertainty did not incorporate a
402 component for the variability evident between measurement methods and it is unclear whether
403 the type B uncertainty components shared by the methods were appropriately propagated.

404 **Conclusion**

405 A new measured half-life of (7825 ± 87) years ($k = 2$) is reported for ^{229}Th . This value is based
406 on the previously determined ^{229}Th molality of a new thorium IDMS reference material and the
407 detailed characterization of the massic activity value for the reference material, presented here.
408 The measured massic activity is tied directly to the SRM 4328C activity standard through
409 multiple replicate activity ratio measurements using three independent methods and was also
410 independently confirmed by IDAS measurements. This new ^{229}Th half-life measurement is
411 between 0.7 % and 1.4 % shorter than other modern half-life determinations but is otherwise
412 consistent with these values (overlapping uncertainties at the 95 % level of confidence).

413 **Acknowledgements**

414 Project activities at NIST were supported by the United States Department of Homeland Security
415 Countering Weapons of Mass Destruction Office. Lawrence Livermore National Laboratory is
416 operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy,
417 National Nuclear Security Administration under Contract DE-AC52-07NA27344. LLNL-JRNL-
418 756361.

419 **References**

420 1. Hagemann F, Katzin L I, Studier M H, Seaborg G T, Ghiorso A (1950) The $4n + 1$
421 radioactive series: The decay products of U^{233*} . *Phys Rev.* 79(3):435-443

422 2. de Lavison P, Husband L J, Jerome S M, Keightley J D, Woodman A P, Woods D H,
423 Woods S A (2000) The standardization of the ^{229}Th for an environmental yield tracer. *Appl*
424 *Rad Iso.* 53:243-249

425 3. Aggarwal S K (2016) A review on the mass spectrometric analysis of thorium. *Radiochim*
426 *Acta*, 104 (7):445-456.

427 4. Apostolidis C, Molinet R, Rasmussen G, Morgenstern A (2005) Production of Ac-225 from
428 Th-229 for targeted alpha therapy. *Anal Chem.* 77:6288-6291

429 5. Campbell C J, Radnaev A G, Kuzmich A, Dzuba V A, Flambaum V V, Derevianko A
430 (2012) A Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. *Phys Rev*
431 *Lett.* 108 (120802):1-5

432 6. Lamont S P, Hall G J (2005) Uranium age determination by measuring the $^{230}Th/^{234}U$ ratio.
433 *Radioanal Nuc Chem.* 264:423-427

434 7. Williams R W, Gaffney A M (2011) ^{230}Th - ^{234}U model ages of some uranium standard
435 reference materials. Proc Radiochim Acta, 1:31-35

436 8. NBS (1984) Standard Reference Material 4328 Radioactivity Standard, National Bureau of
437 Standards, Gaithersburg, MD, certificates available at <https://www.nist.gov/srm>

438 9. NIST (1995) Standard Reference Material 4328A Thorium-229 Radioactivity Standard,
439 National Institute of Standards and Technology, Gaithersburg, MD, certificate available at
440 <https://www.nist.gov/srm>

441 10. NIST, (1996) Standard Reference Material 4328B Thorium-229 Radioactivity Standard,
442 National Institute of Standards and Technology, Gaithersburg, MD, certificate available at
443 <https://www.nist.gov/srm>

444 11. NIST (2008) Standard Reference Material 4328C Thorium-229 Radioactivity Standard,
445 National Institute of Standards and Technology, Gaithersburg, MD, certificate available at
446 <https://www.nist.gov/srm>

447 12. Tuli J K (2011) Nuclear Wallet Cards, Nation Nuclear Data Center,
448 <https://www.nndc.bnl.gov>. Accessed 1 Jan 2018

449 13. BIPM (2013) Monograph 5: Table of Radionuclides, 7-A:14-245.

450 14. Goldstein S J, Murrell M T, Williams R W (1989) Half-life of ^{229}Th . Phys Rev C. 40(6):
451 2793-2795.

452 15. Kikunaga H, Suzuki T, Nomura M, Mitsugashira T, Shinohara A (2011) Determination of
453 the half-life of the ground state of ^{229}Th by using ^{232}U and ^{233}U decay series. Phys Rev C.
454 84 (014316): 1-6

455 16. Varga Z, Nicholl A, Mayer K, (2014) Determination of the ^{229}Th half-life. Phys Rev C. 89
456 (064310): 1-6

457 17. Fitzgerald R, Collé R, Laureano-Pérez L, Pibida L, Hammond M M, Nour S, Zimmerman
458 B E (2010) A new primary standardization of ^{229}Th . Appl Radiat Iso. 68:1303-1308

459 18. Essex R M, Mann J L, Williams R W, Kinman W S, Hubert A, Bennett M E, Alkiviadis G
460 (2018) A new thorium-229 reference material. Appl Rad Iso. 134:23-31

461 19. da Silva W, da Silva C P (2011) Lab Fit Curve Fitting Software. Universidade Federal de
462 Campina Grande, Campina Grande, Brazil, zeus.df.ufcg.edu.br/labfit/.

463 20. Taylor B N, Kuyatt C E (1994) Guidelines for Evaluating and Expressing the Uncertainty
464 of NIST Measurement Results: NIST Technical Note 1297. National Institute of Standards
465 and Technology, Gaithersburg, MD

466 21. JCGM (2008) Evaluation of measurement data — Guide to the expression of uncertainty in
467 measurement. JCGM 100, (E/F).

468 22. Metrodata GmbH, (2009) GUM Workbench. Weil am Rhein, Germany.

469 23. Pomme S (2015) The uncertainty of the half-life. Metrologia, 52:S51-S65.