Sandia
National
Laboratories

Exceptional

service

in the

national

interest

SAND2014- 16794P

An Update on Kokkos,
Our C++ Library for
Manycore Performance Portability

Computational Science Seminar Series
August 19, 2014

SAND2014-*****PE (Unlimited Release)

Y| DQ;{
ity Admin

y ‘ﬂ"ﬁi U.S. DEPARTMENT OF " 4
(G ENERGY @VYSH

i
m

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia

Increasingly Complex Heterogeneous Future (1.
¢ Performance Portable and Future Proof Codes?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDRA4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

|

Vision for Managing Heterogeneous Future [d)&:.

= “MPI + X” Programming Model, separate concerns
* Inter-node: MPI and domain specific libraries layered on MPI
= Intra-node: Kokkos and domain specific libraries layered on Kokkos

" Intra-node parallelism, heterogeneity & diversity concerns

= Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
= Memory spaces’ diverse capabilities and performance characteristics
= Vendors’ diverse programming models for optimal utilization of hardware

= Desire standardized performance portable programming model
= Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
= Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayfFire, ...
= Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

= Necessary condition: address execution & memory space diversity
= Execution { CPU, Xeon Phi, NVIDIA GPU }, Memory { GDDR, DDR, NVRAM }
= SNL Computing Research Center’s Kokkos (C++ library) solution
= Engagement with ISO C++ Standard committee to influence C++17

Kokkos: A Layered Collection of Libraries

= Standard C++, Not a language extension
= |n spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

= Uses C++ template meta-programming

= Rely on C++1998 standard (supported everywhere except IBM’s xIC)

= Moving to C++2011 for concise & convenient lambda syntax
Vendors slowly catching up to C++2011 language compliance

Sandia
National
Laboratories

Application and Domain Specific Library Layer(s)

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Sandia

Performance Portability Challenge: i) fetora
Device-Specific Memory Access Patterns are Required

= CPUs (and Xeon Phi)
= Core-data affinity: consistent NUMA access (first touch)
= Hyperthreads’ cooperative use of L1 cache
= Array alignment for cache-lines and vector units

= GPUs
= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= ¢ “Array of Structures” vs. “Structure of Arrays” ?
» This has been the wrong question

Right question: Abstractions for Performance Portability ?

Kokkos Performance Portability Answer h) s,

= Thread parallel computation
= Dispatched to an execution space
= Operates on data in memory space(s)
» How to portably use device-specific memory access pattern?

= Multidimensional Arrays, with a twist
= Layout mapping: array multi-index (i,j,k,...) ¢ memory location
» Choose layout to satisfy device-specific memory access pattern
= Layout changes are invisible to the user code;
» IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

= Manage device specifics under simple portable API
= Dispatch computation to one or more execution spaces
= Polymorphic multidimensional array layout
= Utilization of special hardware; e.g., GPU texture cache

Performance Evaluations

Evaluate Performance Impact of Array Layout

Molecular dynamics computational kernel in miniMD
Simple Lennard Jones force model:

Sandia
rh National

Laboratories

F.= 68[() 2(]
Atom neighbor list to avoid N2 computations ~ 7i<"w Fi I

pos_i = pos(i);
for(jj = 0; jj < num neighbors(i); jj++) {
j = neighbors (i, jj);
r ij = pos_ i - pos(j); //random read 3 floats
if (lr_ij| < r cut) £ i += 6*e*((s/r_ij)*7 - 2*(s/r_ij)*13)
}
f(i) = £ i;

Test Problem

« 864k atoms, ~77 neighbors 200
o 2D neighbor array 150
. Different layouts CPU vs GPU | <
« Random read ‘pos’ through émo
GPU texture cache 50
Large performance loss L - 7

with wrong array layout

Xeon Xeon Phi

K20x

M correct layout
(with texture)

% correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction (@) %

Laboratories

Kokkos competitive with native programming mechanisms

= MinIFE: finite element linear system iterative solver mini-app

= Compare to versions specialized for programming models

= Running on hardware testbeds

Time (seconds)

o MiniFE CG-Solve time for 200 iterations on 200"3 mesh
20
16
12

8

% i

o)

K20X IvyBridge SandyBridge XeonPhiBO XeonPhi CO IBM Power7+
NVIDIA ELL u NVIDIA CuSparse m Kokkos ® OpenMP
m MPI-Only # OpenCL = TBB # Cilk+(1 Socket)

Thread-Scalable Fill of Sparse Linear System)&=

Laboratories

= MiniFENL: Newton iteration of FEM: x,, ., = x,, — J 1 (x,)1r(x,)
= Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?

= Scatter-Atomic-Add Scatter-Atomic-Add Gather-Sum
. | » Finite Element Data Element
+ Simpler D Computations
+ Less memory Element :
| . Computations '+ h Mapping: h > Per-Element
— Slower HW atomic SN Mesh = Sparse Graph [\ " scratch Arrays
2 her-Sum . \ e
Gather-Su tomic-add \ sparse Linear System E;;her-SI.;;\\
+ Bit-wise reproducibility Coefficients = htuli
y a
"= Performance win? 0.35
. T 03 _W ===Phi-60 GatherSum
" Scatter-atomic-add % 0.25 ~N—" =#=Phi-60 ScatterAtomic
n ~equa| Xeon PHI § 0.2 e==Phi-240 GatherSum
= 40% faster Kepler U 'é 0.15 =4=Phi-240 ScatterAtomic
= 0.1 - == K40X GatherSum
v’ Pattern chosen < 0.05 =#—=K40X ScatterAtomic
» Feedback to HW vendors:| £ °
1E+03 1E+04 1E+05 1E+06 1E+07
performant atomics Number of finite element nodes

Thread-Scalable Sparse Matrix Construction (i)

Laboratories

= MiniFENL: Construct sparse matrix graph from FEM connectivity
= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

0 2

k]

9 1.5

b .

Q 1 =i-Phi-60

g 05 —+-Phi-240

2, | —4-KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for)=
Sparse Linear Algebra Solvers

= Funded by ASC/Algorithms and ASCR/EASI
= Tpetra: Sandia’s templated C++ library for sparse linear algebra

= Templated on “scalar” type: float, double, automatic derivatives, UQ, ...

® Incremental refactoring from pure-MPI to MPI+Kokkos

= CUDA UVM (unified virtual memory) codesign success
= Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
= Allows CPU to directly access GPU memory, details hidden by Kokkos API
= Enables incremental refactoring and testing

(=)

= Early access to UVM a win-win
= Expedited refactoring + early evaluation

= |dentified performance issue in driver
= NVIDIA fixed before their release

Time in s
(] \S] SN (@) o0
L] I . I y [T I

LAMMPS (molecular dynamics application) ()i
Porting to Kokkos has begun

* Funded by LAMMPS’ projects

= Enable thread scalability throughout code
= Replace redundant hardware-specialized manycore parallel packages

= Current release has optional use of Kokkos
= Data and device management LAMMPS Strongscaling

IM atoms; Standard Lennard Jones

= Some simple simulations can | | | | |
now run entirely on device

B Xeon - Kokkos

B Xecon- OpenMP

- Xeon Phi - Kokkos
[| B Xeon Phi-OpenMP
Kepler - Kokkos
Kepler - Cuda

—_
o
]
(]
T

= Performs as well or better
than original hardware-
specialized packages

100:—

Aggregate Compute Time

10

L

Recent and In-Progress Enhancements to
Abstractions and API:
Spaces, Policies, Defaults, and C++11

Complex Heterogeneous Architectures, rh) i,
Abstractions to prepare us for this future...

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)

- (Segmented) scratch-pad on die _
Programming
Execution Spaces models

- Throughput cores (GPU) - GPU: CUDA-ish
- Latency optimized cores (CPU) - CPU: OpenMP
- Processing in memory - PIM: ??

=

Execution Space(s)) e,

Laboratories

= Execution Space Instance
= Hardware execution resources (e.g., cores, hyperthreads)
= Expect functions to execute concurrently on those resources
= Degree of potential concurrency (cores, hyperthreads) determined at runtime
= Number of execution space instances determined at runtime

= Execution Space Type (CPU, Xeon Phi, CUDA)

* Functions compiled to execute on a type of execution space

* These types determined at configure/compile time
= Host Space

= The main process and its functions execute in the Host Space

= One type, one instance, and is serial (potential concurrency == 1)
= Execution Space Default : one instance of one type

= Configure/build with one type — it is the default
= |nitialize with one instance — it is the default

Memory Spaces) i,
= Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)

= The type of memory is defined with respect to an execution space type

= Primary: (default) space with allocable memory (e.g., can malloc/free)
= Performant : best performing space (e.g., GDDR)

= Capacity : largest capacity space (e.g., DDR)
= Contemporary system: Primary == Performant == Capacity
= Scratch : non-allocable and maximum performance

= Persistent : usage can persist between process executions (e.g., NVRAM)

= Memory Space Instance
= Has relationship with execution space instances (more later)
= Directly addressable by functions in that execution space
= Contiguous range of addresses
= Memory Space Default
= Default execution spaces’ primary memory space

Examples of Execution and Memory Spaces) S

Laboratories

Compute Node Attached Accelerator
Multicore | primary > DDR GPU primary
Socket shared R
deep_copy
Compute Node / AttaChed Accm
Multi primary, GPU“capacitL GPU Erimar_\il
ulticore : ..
Socket | DDR 4 (via pinned) shared | | perform ERIBIR

GPU::perform
(via UVM)

Execution / Memory Space Relationships i) fe

Laboratories

= (Execution Space , Memory Space , Memory Access Traits)

= Accessibility : functions can/cannot access memory space
= E.g., Host functions can never access GPU scratch memory
= E.g., GPU functions can access Host capacity memory only if it is pinned
= E.g., Host functions can access GPU performant memory only if it is UVM
= Readable / Writeable
= E.g., GPU performant memory using texture cache is read-only
= Bandwidth : potential rate at which concurrent instructions can read or write
= Capacity for views to (allocable) data

= Memory Access Traits (extension point) potential examples:
= read-only, write-only, volatile/atomic, random, streaming, ...
= Converting between “views” with same space and different traits
> Default is simple readable/writeable — no special traits
= Future opportunity
= Execution space access to remote memory space (similar to MPI 1-sided)

Sandia

Views and Defaults (APl update in-progress) rh) e

Laboratories

= typedef View< ArrayType, Layout , Space, Traits > view_type;
= Omit Traits : no special compile-time defined access traits
= Omit Space : default execution space’s default memory space
= Omit Layout : allocable memory space’s default layout
= default everything: View< ArrayType >
= ArrayType, by example: View< double**[3][8] >
= Four dimensional array of ‘double’ : [N][M][3][8]
= N and M are runtime defined dimensions
= view_type a(optional_traits, NO, N1, ...);
= optional_traits : a collection of optional runtime defined traits
= |abel trait : string used in error and warning messages, default is none
= jnitialize trait, default is parallel in-place construction of each member
= reference counting trait, default is reference count

Allocation Semantics (APl update in-progress) ()=

Laboratories
= View<double**[3][8], Space> a(N,M);
= Allocate ‘double[N][M][3][8]) memory in ‘Space’
= Layout will vary with ’Space’ or ‘Layout’ template argument

= Dimensions may be padded for alighment

= a(i,j,k,1) : access data via multi-index

= Optional array bounds checking for debugging
= View semantics (hidden reference counting)

= View<double**[3][8],Space>b =a; // SHALLOW copy

= Both ‘b’ and ‘a’ reference the same allocated memory

= Memory deallocated when last referencing view is destroyed
= ‘Const-ness’ of views and viewed arrays

= View<const double **[3][8],Space> c = a; // OK, view to const array
= const View<double**[3][8],Space> d = c; // ERROR, non-const view of const

Deep Copy and “Mirror” Semantics) e,

Laboratories

= deep_copy(destination_view, source_view);
= Copy allocated array of ‘source_view’ to allocated array of ‘destination_view’
= Kokkos policy: never hide an expensive deep copy operation
= Only deep copy when explicitly instructed by the user

= Avoid expensive permutation of data due to different layouts

= Mirror the layout in Host memory space
typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a,a_h); deep_copy(a_h,a);

= Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);
= |f Space is Host memory or if Host can access Space (e.g., CUDA UVM)
= Then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

Subview : View of a sub-array) e,

Laboratories

SrcViewType src_view(...);

DstViewType dst_view = subview<DstViewType>(src_view, ...args)
= ...args : list of indices or ranges of indices
= Challenging capability due to polymorphic array Layout
= View’s are strongly typed: View<ArrayType,Layout,Traits>
= Compatibility constraint among DstViewType, SrcViewType, ...args
* number of dimensions (rank of array)
= runtime / compile-time dimensions
= destination layout can accommodate when stride != dimension
= ‘const-ness’ and other memory access traits
= Performance of deep_copy between subviews

= Using C++11 ‘auto’ type would help address this challenge
= auto dst_view = subview(src_view, ...args);
= Let implementation choose a compatible view type
= Caution: user will not have a priori knowledge of this type

Execution Policy (APl update in progress) rh) e

Laboratories

= How Potentially Concurrent Functions are Executed
= Where : in what execution space (type and instance)
= Parallel Work: current capabilities [0..N) or (#teams, #ithread/team)
= Scheduling : currently static scheduling of data parallel work

= Map work function calls onto resources of the execution space
= E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern
= E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern

= Compose Pattern & Policy; e.g., parallel_for(policy, functor);
Call functor in parallel according to policy
= Functor can be a C++11 lambda
parallel_for(N, [=](inti) { /* lambda-function body */ });
Call functor ‘N’ times in parallel withi=0.. N-1
Default: N - RangePolicy<DefaultExecutionSpace>(0,N)

Sandia

Execution Policies, Patterns, and Defaults rf)

Laboratories

= Patterns: parallel_for, parallel_reduce, parallel_scan

= parallel_pattern(policy, functor);
= Call functor::operator()(work, ...other_args...)
= Call on policy’s execution space according to policy’s scheduling
= functor argument and API requirements defined by pattern and policy

= parallel_reduce functor API requirements and defaults
= functor::init(value_type & update) const ; // new(& update) value_type();

= functor::join(volatile value_type & update,
volatile const value_type & in) const ; // update +=in;

= functor::final(value_type & update) const; //

= parallel_scan functor has similar requirements and defaults

Defaults enable C++11 Lambda for Functors) Moo

Laboratories

= Dot product becomes simple with C++11 lambda with defaults
double dot(View<double*> x , View<double*> y) {
doubled=0;
parallel_reduce(x.dimension_0(), [=](int i, double & v) { v +=x(i) * y(i); }, d);
returnd ;

}

= Parallel reduce and scan defaults
= Reduction type: deduced from lambda’s argument list
= |nitialize: default constructor
= Join: operator +=

= Expect Cuda / nvcc version 7 to support C++11 lambda

= Anecdote: our experienced developers prefer functors

Execution Policy — an extension point

= Policy calls functor’s work function in parallel
= PolicyType<ExecSpace>::member_type // data parallel work item
void Func::operator()(PolicyType<...>::member_type) const ;
= Range policy (existing)
= parallel_for(RangePolicy<ExecSpace>(0,N), functor);
void Func::operator()(integer_type i) const;
= Thread team policy (existing)

= parallel_for(TeamPolicy<ExecSpace>(#teams,thread/team), functor);

Sandia
National
Laboratories

void Func::operator()(TeamPolicy<ExecSpace>::member_type team) const ;

= Extension point for new policies
= Multi-indices [0..M)x[0..N)
= Dynamic scheduling / work stealing

Sandia

Execution Policy for Functor with kSR
multiple ‘operator()(...)’

= Allow a functor to have multiple parallel work functions
= typedef PolicyType< ExecSpace , TagType > policy;
= parallel_pattern(policy(...) , functor);
void FunctorType::operator()(const TagType &, policy::member_type) const ;
= Parallel work functions differentiated by ‘TagType’
= TagType used instead of class’ method name

= Motivations
= Algorithm (class) with multiple parallel passes using the same data
= Operators can share member data and member functions
= Common need in LAMMPS
= allow LAMMPS to remove clunky “wrapper functor” pattern

In-Progress Task/Data Parallelism
Kokkos/Qthreads LDRD

Abstractions and API

Execution Policy for Task Parallelism) s,

Laboratories

= TaskManager< ExecSpace > execution policy

= Policy object shared by potentially concurrent tasks
TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm, task_functor_a); // single-thread task
Future<> fb = spawn(tm, task_functor_b);

= Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N), functor_c);
Future<value_type> fd = spawn_reduce(tm.team(N,M), functor_d);
wait(tm); // wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Managers
= Define a scope for a collection of potentially concurrent tasks
= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Kokkos/Qthread LDRD |

Execution Policy for Task Parallelism) s,

Laboratories

= Tasks’ execution dependences
= Start a task only after other specified tasks have completed
Future<> array_of_dep[M] = { /* future for other specified tasks */ };
= Single threaded task:
Future<> fx = spawn(tm.depend(M,array_of dep), task_functor x);
= Data parallel task:
spawn_for(tm.depend(M,array_of dep).range(0..N), task_functor_y);
= Tasks and dependences define a directed acyclic graph (dag)

= Challenge: A GPU task cannot ‘wait’ on dependences
= An executing GPU task cannot be suspended — waiting blocks a processor

= A parent task may spawn child tasks but cannot complete until child tasks
have completed

= Solution: ‘respawn’ parent task with new dependences
respawn(tm.depend(M,array_of _child), parent);
return ; // immediately return to be run after children have completed

Kokkos/Qthread LDRD |

Multithreaded Graph Library (MTGL) / Kokkos () i

Laboratories

= Discover gaps in Kokkos for supporting Graph Algorithms
= Strategy: Prototype a port of MTGL onto Kokkos

= Successful port of data structures and data parallel algorithms
= Prototype MTGL/Kokkos is running on GPU, performance looks promising
= Graph iteration algs on K40X 3-7x faster than 20threads on lvybridge

= Major gap: GPU memory too small
= Sufficient space for graph vertex data
= Insufficient space for graph edge data

= Address GPU memory size gap
= Option A: GPU directly access edge data via host-pinned memory
— New Kokkos memory space, fits well with future NVLINK hardware
— Motivated (in part) updating Kokkos abstractions
= Option B: Stream edge data in/out of GPU buffers
— Might perform better now, more complex, consumes GPU memory

Kokkos/Qthread LDRD |

=
EEY

Embedded UQ on Manycore
Stokhos/Kokkos LDRD
Equinox ASCR project

Premise: Embedding UQ Increases i) e
Computational Intensity

= Computations’ “Scalar” type becomes a vector quantity
= Coefficients of a polynomial chaos expansion (PCE)

= Sampling ensemble
= Scalar math operations replaced by vector or tensor operations
= Data parallel vector and tensor operations performant on GPU
= Vector units (i.e., GPU warps)
= Indirection (e.g., sparse mat-vec) lookups yield vector instead of scalar
= Communicate vectors instead of scalars
= Larger messages for halo exchanges vs. more halo exchanges

= Fewer messages, reduced latency cost

= Challenge: Embedding UQ “scalar” type

Challenge: Embedding UQ “Scalar” Type

= Allocating each individual “Scalar” type kills performance
= Many small allocations & deallocations
= Non-contiguous memory

= Leverage Kokkos View mechanism
= Change “View< double * >” to “View< UQScalar<double> * >”
= UQScalar vector length is an additional dimension of the array
= Array layout map keeps UQScalar’s values contiguous

= Prototyped in FENL Mini-application
= Trilinos/packages/trilinoscouplings/examples/fenl
= Hybrid parallel : MPI + Kokkos
= PDE Assembly to sparse linear system

= Belos/MuelLU/Tpetra to solve sparse linear system

Sandia
National
Laboratories

UQ Ensemble Assembly Speedups rh) peim

Sandy®Bridge{16@hreads) BluefGene/Q{64Rhreads)
§_ 3 1.47
-$ 2.50 -$ 1.20+
a S 15
@ o g0 8
= ='0.83
'g 1.5((/ -=16x16x160['g 0.63 -=16x16x16x
2 13 =32x32x328 2 =32x32x328
% “~64x64x640) % 0.42 “~64x64x640)
o 0.57 <2 0.20
£ €
3 0 T T T T T T 1 g om T T T T T T 1
[= [=
L w

47 87 12[F16E20:24R2823 2 47 80 12F16R20224228F32R

EnsembleB®izel EnsembleBizel
NVIDIAK20XEPURI IntelXeon®Phij224@hreads)d

§_3.5IZI 33.55

3 37 % 3 —

2] g

§.2.5* é.Z.SE*

= 20 = 20

'g f—— L ==16x16x16x 'g b ==16x16x160C

o 1.5 . o 1.50

@ “=-32x32x320 A =-32x32x320

% 12 “-64x64x640 % 12 “-64x64x6482

-g 0.5E -g 0.57

)] [«)]

2 0z [: ‘ g o T T T T]

w 160 320 480 6407 w 82 160 247 327 40R 487
EnsembleBizel EnsembleBizel

35

UQ Ensemble CG/MuelLu Solver Speedups

Sandy®Bridgel
1@MPIRank/Node,A 6T hreads/Rank?
(~@®4x64x64@Mesh/Node)a

BluefGene/QR
1@MPIRank/Node,BAf hreads/Rank?
(~@®4x64x64@Mesh/Node)a

?’i 5.0 ~PCGBolvel §4-5 . =PCGBolver
3 4.08 EnsembleZH6E 3 4.08 / EnsembleZE16R
o 4. @ 3, - —
8 |t " =PCGBolvel 33 S.ﬁ g “PCGBolvel
% 3.08- EnsembleEB20 % 3.00i% EnsembleZB27
= = 2.50
-g “AMGBetupl -g “AMGBetup?
9 2.02 E bleE-EL6E g 2-08° E bleE-E1L6E
o nsemble o nsemble

L T e om e

1R 201 4qn 8n 160 12 2R 4R 8F 16R232R64F2802
Nodes® Nodes®
NVIDIAK20XEPUR IntelXeonPhi
1@MPIRank/Nodel 1@PIRank/Node,224@hreads/Ranka
(~EB4x64x64Mesh/Node)a (~=8x48x48@Mesh/Node)a

7 >-00 ~PCGBolvel ~PCGBolvel
< 4.08 EnsembleZFL6R EnsembleZEL6E
[J]
23,08 /’ “=-PCGBolvel “PCGBolveld
2 % — Ensemble®B22 Ensemblemm@27
2 2'0'3?' N ' ~AMGBetup ~AMGBetupk
9 1.00 Ensemble7 62 EnsembleZ7 62
[=
w

0.02 | ‘ | | *2:” Ggsltu;g;zm 1.08" | | | | *IE\:A Ggsltuétizm

1 28 48 83 1em oomoe 1 208 4@ 83 1em o oomoe

Nodes?

Several ensemble AMG setup, solve
kernels have not yet been optimized for
GPU!

Sandia
National
Laboratories

Sandia
m National

Laboratories

Vision for Migrating to MPI+X future

= Kokkos evolves from “pure research” to “production growth”

= Recent usability review by “alpha” users for recommended improvements
= Core abstractions and API stabilizes, as per today’s presentation

= Tutorial Examples and Mini-Applications using Kokkos
*= How to use Kokkos via examples

= How to design and implement thread-scalable algorithms via mini-apps
= SON Website: software.sandia.gov/drupal/kokkos
= Tpetra and LAMMPS are migrating

= Long Term Strategy: C++17 or C++21 instead of Kokkos

= |SO C++ Committee working to incorporate threaded parallelism in standard
= | am a voting member on this committee (several week-long mtgs/year)
= Steer Kokkos and influence C++ standard = convergence

Sandia
rll National
Laboratories

Recent Publication

Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns, Journal of Parallel and
Distributed Computing, July 2014
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

