
Photos placed in

horizontal position

with even amount

of white space

 between photos

and header

Photos placed in horizontal

position

with even amount of white

space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

An Update on Kokkos,
Our C++ Library for

Manycore Performance Portability

Computational Science Seminar Series

August 19, 2014

SAND2014-*****PE (Unlimited Release)

SAND2014-16794PE

Increasingly Complex Heterogeneous Future
¿ Performance Portable and Future Proof Codes?

1

PIM
DDR

L2*

NVRAM

PIM

L
1
*

T
e
x

Scr

L
1
*

T
e
x

Scr

L
1
*

T
e

x

Scr

NIC
L3

Memory Spaces
 - Bulk non-volatile (Flash?)

 - Standard DDR (DDR4)

 - Fast memory (HBM/HMC)

 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)

 - Latency optimized cores (CPU)

 - Processing in memory

Special Hardware
 - Non caching loads

 - Read only cache

 - Atomics

Programming

models
 - GPU: CUDA-ish

 - CPU: OpenMP

 - PIM: ??

Vision for Managing Heterogeneous Future

 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI

 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements

 Memory spaces’ diverse capabilities and performance characteristics

 Vendors’ diverse programming models for optimal utilization of hardware

 Desire standardized performance portable programming model
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17

 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...

 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 Execution { CPU, Xeon Phi, NVIDIA GPU }, Memory { GDDR, DDR, NVRAM }

 SNL Computing Research Center’s Kokkos (C++ library) solution

 Engagement with ISO C++ Standard committee to influence C++17

2

Application and Domain Specific Library Layer(s)

3

Kokkos: A Layered Collection of Libraries

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)

 Moving to C++2011 for concise & convenient lambda syntax

 Vendors slowly catching up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

4

Performance Portability Challenge:
Device-Specific Memory Access Patterns are Required

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)

 Hyperthreads’ cooperative use of L1 cache

 Array alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment

 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?

This has been the wrong question

Right question: Abstractions for Performance Portability ?

5

Kokkos Performance Portability Answer

 Thread parallel computation
 Dispatched to an execution space

 Operates on data in memory space(s)

 How to portably use device-specific memory access pattern?

 Multidimensional Arrays, with a twist

 Layout mapping: array multi-index (i,j,k,...)  memory location

Choose layout to satisfy device-specific memory access pattern

 Layout changes are invisible to the user code;

IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

 Manage device specifics under simple portable API
 Dispatch computation to one or more execution spaces

 Polymorphic multidimensional array layout

 Utilization of special hardware; e.g., GPU texture cache

Performance Evaluations

6

Evaluate Performance Impact of Array Layout

7

 Molecular dynamics computational kernel in miniMD

 Simple Lennard Jones force model:

 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors

 2D neighbor array

 Different layouts CPU vs GPU

 Random read ‘pos’ through
GPU texture cache

 Large performance loss

with wrong array layout

F i= ∑
j , rij< r cut

6ε[(ς

r ij)
7

− 2(
ς

r ij)
13

]
pos_i = pos(i);

for(jj = 0; jj < num_neighbors(i); jj++) {

 j = neighbors(i,jj);

 r_ij = pos_i – pos(j); //random read 3 floats

 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)

}

f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

o
p

/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming mechanisms

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

8

0

4

8

12

16

20

24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP

MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
 (

se
co

n
d

s)

Thread-Scalable Fill of Sparse Linear System

9

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?

 Scatter-Atomic-Add
+ Simpler

+ Less memory

– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add

 ~equal Xeon PHI

 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

ri
x

Fi
ll:

 m
ic

ro
se

c/
n

o
d

e

Number of finite element nodes

Phi-60 GatherSum

Phi-60 ScatterAtomic

Phi-240 GatherSum

Phi-240 ScatterAtomic

K40X GatherSum

K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity

 Thread scalable algorithm for constructing a data structure
1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs

2. Parallel-scan : sparse matrix rows’ column counts into row offsets

3. Parallel-for : query unordered map to fill sparse matrix column-index array

4. Parallel-for : sort rows’ column-index subarray

10

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
n

o
d

e

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms and ASCR/EASI

 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...

 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration

 Allows CPU to directly access GPU memory, details hidden by Kokkos API

 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation

 Identified performance issue in driver

 NVIDIA fixed before their release

11

LAMMPS (molecular dynamics application)
Porting to Kokkos has begun

 Funded by LAMMPS’ projects

 Enable thread scalability throughout code
 Replace redundant hardware-specialized manycore parallel packages

 Current release has optional use of Kokkos
 Data and device management

 Some simple simulations can
now run entirely on device

 Performs as well or better
than original hardware-
specialized packages

12

Recent and In-Progress Enhancements to

Abstractions and API:

Spaces, Policies, Defaults, and C++11

13

Complex Heterogeneous Architectures,
Abstractions to prepare us for this future...

14

PIM
DDR

L2*

NVRAM

PIM

L
1
*

T
e
x

Scr

L
1
*

T
e
x

Scr

L
1
*

T
e

x

Scr

NIC
L3

Memory Spaces
 - Bulk non-volatile (Flash?)

 - Standard DDR (DDR4)

 - Fast memory (HBM/HMC)

 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)

 - Latency optimized cores (CPU)

 - Processing in memory

Special Hardware
 - Non caching loads

 - Read only cache

 - Atomics

Programming

models
 - GPU: CUDA-ish

 - CPU: OpenMP

 - PIM: ??

15

Execution Space(s)

 Execution Space Instance
 Hardware execution resources (e.g., cores, hyperthreads)

 Expect functions to execute concurrently on those resources

 Degree of potential concurrency (cores, hyperthreads) determined at runtime

 Number of execution space instances determined at runtime

 Execution Space Type (CPU, Xeon Phi, CUDA)
 Functions compiled to execute on a type of execution space

 These types determined at configure/compile time

 Host Space
 The main process and its functions execute in the Host Space

 One type, one instance, and is serial (potential concurrency == 1)

 Execution Space Default : one instance of one type
 Configure/build with one type – it is the default

 Initialize with one instance – it is the default

16

Memory Spaces

 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)
 The type of memory is defined with respect to an execution space type

 Primary: (default) space with allocable memory (e.g., can malloc/free)

 Performant : best performing space (e.g., GDDR)

 Capacity : largest capacity space (e.g., DDR)

 Contemporary system: Primary == Performant == Capacity

 Scratch : non-allocable and maximum performance

 Persistent : usage can persist between process executions (e.g., NVRAM)

 Memory Space Instance
 Has relationship with execution space instances (more later)

 Directly addressable by functions in that execution space

 Contiguous range of addresses

 Memory Space Default
 Default execution spaces’ primary memory space

17

Examples of Execution and Memory Spaces

Compute Node

Multicore

Socket
DDR

Attached Accelerator

GPU

GDDR

GPU::capacity

(via pinned)

primary

primary

GPU::perform

(via UVM)

Compute Node

Multicore

Socket
DDR

primary

shared

deep_copy

Attached Accelerator

GPU

GDDR
primary

perform shared

18

Execution / Memory Space Relationships

 (Execution Space , Memory Space , Memory Access Traits)
 Accessibility : functions can/cannot access memory space

 E.g., Host functions can never access GPU scratch memory

 E.g., GPU functions can access Host capacity memory only if it is pinned

 E.g., Host functions can access GPU performant memory only if it is UVM

 Readable / Writeable

 E.g., GPU performant memory using texture cache is read-only

 Bandwidth : potential rate at which concurrent instructions can read or write

 Capacity for views to (allocable) data

 Memory Access Traits (extension point) potential examples:
 read-only, write-only, volatile/atomic, random, streaming, ...

 Converting between “views” with same space and different traits

 Default is simple readable/writeable – no special traits

 Future opportunity
 Execution space access to remote memory space (similar to MPI 1-sided)

19

Views and Defaults (API update in-progress)

 typedef View< ArrayType , Layout , Space , Traits > view_type ;
 Omit Traits : no special compile-time defined access traits

 Omit Space : default execution space’s default memory space

 Omit Layout : allocable memory space’s default layout

 default everything: View< ArrayType >

 ArrayType, by example: View< double**[3][8] >
 Four dimensional array of ‘double’ : [N][M][3][8]

 N and M are runtime defined dimensions

 view_type a(optional_traits , N0 , N1 , ...);
 optional_traits : a collection of optional runtime defined traits

 label trait : string used in error and warning messages, default is none

 initialize trait, default is parallel in-place construction of each member

 reference counting trait, default is reference count

20

Allocation Semantics (API update in-progress)

 View<double**[3][8], Space> a(N,M);
 Allocate ‘double[N][M][3][8]’ memory in ‘Space’

 Layout will vary with ’Space’ or ‘Layout’ template argument

 Dimensions may be padded for alignment

 a(i,j,k,l) : access data via multi-index

 Optional array bounds checking for debugging

 View semantics (hidden reference counting)
 View<double**[3][8],Space> b = a ; // SHALLOW copy

 Both ‘b’ and ‘a’ reference the same allocated memory

 Memory deallocated when last referencing view is destroyed

 ‘Const-ness’ of views and viewed arrays
 View<const double **[3][8],Space> c = a ; // OK, view to const array

 const View<double**[3][8],Space> d = c ; // ERROR, non-const view of const

21

Deep Copy and “Mirror” Semantics

 deep_copy(destination_view , source_view);
 Copy allocated array of ‘source_view’ to allocated array of ‘destination_view’

 Kokkos policy: never hide an expensive deep copy operation

 Only deep copy when explicitly instructed by the user

 Avoid expensive permutation of data due to different layouts

 Mirror the layout in Host memory space
typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_h = create_mirror(a);
deep_copy(a , a_h); deep_copy(a_h , a);

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);

 If Space is Host memory or if Host can access Space (e.g., CUDA UVM)

 Then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op

22

Subview : View of a sub-array

SrcViewType src_view(...);

DstViewType dst_view = subview<DstViewType>(src_view, ...args)
 ...args : list of indices or ranges of indices

 Challenging capability due to polymorphic array Layout
 View’s are strongly typed: View<ArrayType,Layout,Traits>

 Compatibility constraint among DstViewType, SrcViewType, ...args

 number of dimensions (rank of array)

 runtime / compile-time dimensions

 destination layout can accommodate when stride != dimension

 ‘const-ness’ and other memory access traits

 Performance of deep_copy between subviews

 Using C++11 ‘auto’ type would help address this challenge
 auto dst_view = subview(src_view , ...args);

 Let implementation choose a compatible view type

 Caution: user will not have a priori knowledge of this type

23

Execution Policy (API update in progress)

 How Potentially Concurrent Functions are Executed
 Where : in what execution space (type and instance)

 Parallel Work: current capabilities [0..N) or (#teams, #thread/team)

 Scheduling : currently static scheduling of data parallel work

 Map work function calls onto resources of the execution space

 E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern

 E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern

 Compose Pattern & Policy; e.g., parallel_for(policy , functor);
 Call functor in parallel according to policy

 Functor can be a C++11 lambda

parallel_for(N , [=](int i) { /* lambda-function body */ });

 Call functor ‘N’ times in parallel with i = 0 .. N-1

 Default: N → RangePolicy<DefaultExecutionSpace>(0,N)

24

Execution Policies, Patterns, and Defaults

 Patterns: parallel_for, parallel_reduce, parallel_scan

 parallel_pattern(policy , functor);
 Call functor::operator()(work , ...other_args...)

 Call on policy’s execution space according to policy’s scheduling

 functor argument and API requirements defined by pattern and policy

 parallel_reduce functor API requirements and defaults
 functor::init(value_type & update) const ; // new(& update) value_type();

 functor::join(volatile value_type & update ,
 volatile const value_type & in) const ; // update += in ;

 functor::final(value_type & update) const ; //

 parallel_scan functor has similar requirements and defaults

25

Defaults enable C++11 Lambda for Functors

 Dot product becomes simple with C++11 lambda with defaults
double dot(View<double*> x , View<double*> y) {
 double d = 0 ;
 parallel_reduce(x.dimension_0() , [=](int i, double & v) { v += x(i) * y(i); } , d);
 return d ;
}

 Parallel reduce and scan defaults
 Reduction type: deduced from lambda’s argument list

 Initialize: default constructor

 Join: operator +=

 Expect Cuda / nvcc version 7 to support C++11 lambda

 Anecdote: our experienced developers prefer functors

26

Execution Policy – an extension point

 Policy calls functor’s work function in parallel
 PolicyType<ExecSpace>::member_type // data parallel work item

void Func::operator()(PolicyType<...>::member_type) const ;

 Range policy (existing)
 parallel_for(RangePolicy<ExecSpace>(0,N) , functor);

void Func::operator()(integer_type i) const ;

 Thread team policy (existing)
 parallel_for(TeamPolicy<ExecSpace>(#teams,thread/team) , functor);

void Func::operator()(TeamPolicy<ExecSpace>::member_type team) const ;

 Extension point for new policies
 Multi-indices [0..M)x[0..N)

 Dynamic scheduling / work stealing

27

Execution Policy for Functor with
multiple ‘operator()(...)’

 Allow a functor to have multiple parallel work functions
 typedef PolicyType< ExecSpace , TagType > policy ;

 parallel_pattern(policy(...) , functor);

void FunctorType::operator()(const TagType &, policy::member_type) const ;

 Parallel work functions differentiated by ‘TagType’

 TagType used instead of class’ method name

 Motivations
 Algorithm (class) with multiple parallel passes using the same data

 Operators can share member data and member functions

 Common need in LAMMPS

 allow LAMMPS to remove clunky “wrapper functor” pattern

In-Progress Task/Data Parallelism

Kokkos/Qthreads LDRD

Abstractions and API

28

29

Execution Policy for Task Parallelism

 TaskManager< ExecSpace > execution policy
 Policy object shared by potentially concurrent tasks

TaskManager<...> tm(exec_space , ...);

Future<> fa = spawn(tm , task_functor_a); // single-thread task

Future<> fb = spawn(tm , task_functor_b);

 Tasks may be data parallel

Future<> fc = spawn_for(tm.range(0..N) , functor_c);

Future<value_type> fd = spawn_reduce(tm.team(N,M) , functor_d);

wait(tm); // wait for all tasks to complete

 Destruction of task manager object waits for concurrent tasks to complete

 Task Managers
 Define a scope for a collection of potentially concurrent tasks

 Have configuration options for task management and scheduling

 Manage resources for scheduling queue

Kokkos/Qthread LDRD

30

Execution Policy for Task Parallelism

 Tasks’ execution dependences
 Start a task only after other specified tasks have completed

Future<> array_of_dep[M] = { /* future for other specified tasks */ };

 Single threaded task:

Future<> fx = spawn(tm.depend(M,array_of_dep) , task_functor_x);

 Data parallel task:

spawn_for(tm.depend(M,array_of_dep).range(0..N) , task_functor_y);

 Tasks and dependences define a directed acyclic graph (dag)

 Challenge: A GPU task cannot ‘wait’ on dependences
 An executing GPU task cannot be suspended – waiting blocks a processor

 A parent task may spawn child tasks but cannot complete until child tasks
have completed

 Solution: ‘respawn’ parent task with new dependences

respawn(tm.depend(M,array_of_child), parent);

return ; // immediately return to be run after children have completed

Kokkos/Qthread LDRD

31

Multithreaded Graph Library (MTGL) / Kokkos

 Discover gaps in Kokkos for supporting Graph Algorithms
 Strategy: Prototype a port of MTGL onto Kokkos

 Successful port of data structures and data parallel algorithms
 Prototype MTGL/Kokkos is running on GPU, performance looks promising

 Graph iteration algs on K40X 3-7x faster than 20threads on Ivybridge

 Major gap: GPU memory too small
 Sufficient space for graph vertex data

 Insufficient space for graph edge data

 Address GPU memory size gap
 Option A: GPU directly access edge data via host-pinned memory

– New Kokkos memory space, fits well with future NVLINK hardware

– Motivated (in part) updating Kokkos abstractions

 Option B: Stream edge data in/out of GPU buffers

– Might perform better now, more complex, consumes GPU memory

Kokkos/Qthread LDRD

Embedded UQ on Manycore

Stokhos/Kokkos LDRD

Equinox ASCR project

32

33

Premise: Embedding UQ Increases
Computational Intensity
 Computations’ “Scalar” type becomes a vector quantity

 Coefficients of a polynomial chaos expansion (PCE)

 Sampling ensemble

 Scalar math operations replaced by vector or tensor operations

 Data parallel vector and tensor operations performant on GPU
 Vector units (i.e., GPU warps)

 Indirection (e.g., sparse mat-vec) lookups yield vector instead of scalar

 Communicate vectors instead of scalars
 Larger messages for halo exchanges vs. more halo exchanges

 Fewer messages, reduced latency cost

 Challenge: Embedding UQ “scalar” type

34

Challenge: Embedding UQ “Scalar” Type

 Allocating each individual “Scalar” type kills performance
 Many small allocations & deallocations

 Non-contiguous memory

 Leverage Kokkos View mechanism
 Change “View< double * >” to “View< UQScalar<double> * >”

 UQScalar vector length is an additional dimension of the array

 Array layout map keeps UQScalar’s values contiguous

 Prototyped in FENL Mini-application
 Trilinos/packages/trilinoscouplings/examples/fenl

 Hybrid parallel : MPI + Kokkos

 PDE Assembly to sparse linear system

 Belos/MueLU/Tpetra to solve sparse linear system

35

UQ Ensemble Assembly Speedups

0	

0.5	

1	

1.5	

2	

2.5	

3	

4	 8	 12	16	20	24	28	32	En
se
m
b
le
	A
ss
e
m
b
ly
	S
p
e
e
d
-U
p
	

Ensemble	Size	

Sandy	Bridge	(16	threads)	

16x16x16	

32x32x32	

64x64x64	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

4	 8	 12	16	20	24	28	32	En
se
m
b
le
	A
ss
e
m
b
ly
	S
p
e
e
d
-U
p
	

Ensemble	Size	

Blue	Gene/Q	(64	threads)	

16x16x16	

32x32x32	

64x64x64	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

16	 32	 48	 64	En
se
m
b
le
	A
ss
e
m
b
ly
	S
p
e
e
d
-U
p
	

Ensemble	Size	

NVIDIA	K20X	GPU	

16x16x16	

32x32x32	

64x64x64	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

8	 16	 24	 32	 40	 48	En
se
m
b
le
	A
ss
e
m
b
ly
	S
p
e
e
d
-U
p
	

Ensemble	Size	

Intel	Xeon	Phi	(224	Threads)	

16x16x16	

32x32x32	

64x64x64	

36

UQ Ensemble CG/MueLu Solver Speedups

Several ensemble AMG setup, solve

kernels have not yet been optimized for

GPU!

1.0	

3.0	

5.0	

7.0	

9.0	

1	 2	 4	 8	 16	

En
se
m
b
le
		S
p
e
e
d
-U
p
	

Nodes	

Intel	Xeon	Phi	
1	MPI	Rank/Node,	224	Threads/Rank	

(~	48x48x48	Mesh/Node)	

PCG	Solve	
Ensemble	=	16	

PCG	Solve	
Ensemble	=	32	

AMG	Setup	
Ensemble	=	16	

AMG	Setup	
Ensemble	=	32	

1.0	

2.0	

3.0	

4.0	

5.0	

1	 2	 4	 8	 16	

En
se
m
b
le
		S
p
e
e
d
-U
p
	

Nodes	

Sandy	Bridge	
1	MPI	Rank/Node,	16	Threads/Rank	

(~	64x64x64	Mesh/Node)	

PCG	Solve	
Ensemble	=	16	

PCG	Solve	
Ensemble	=	32	

AMG	Setup	
Ensemble	=	16	

AMG	Setup	
Ensemble	=	32	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

1	 2	 4	 8	 16	

En
se
m
b
le
		S
p
e
e
d
-U
p
	

Nodes	

NVIDIA	K20X	GPU	
1	MPI	Rank/Node	

(~	64x64x64	Mesh/Node)	

PCG	Solve	
Ensemble	=	16	

PCG	Solve	
Ensemble	=	32	

AMG	Setup	
Ensemble	=	16	

AMG	Setup	
Ensemble	=	32	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

1	 2	 4	 8	 16	32	64	128	

En
se
m
b
le
		S
p
e
e
d
-U
p
	

Nodes	

Blue	Gene/Q	
1	MPI	Rank/Node,	64	Threads/Rank	

(~	64x64x64	Mesh/Node)	

PCG	Solve	
Ensemble	=	16	

PCG	Solve	
Ensemble	=	32	

AMG	Setup	
Ensemble	=	16	

AMG	Setup	
Ensemble	=	32	

37

Vision for Migrating to MPI+X future
 Kokkos evolves from “pure research” to “production growth”

 Recent usability review by “alpha” users for recommended improvements

 Core abstractions and API stabilizes, as per today’s presentation

 Tutorial Examples and Mini-Applications using Kokkos
 How to use Kokkos via examples

 How to design and implement thread-scalable algorithms via mini-apps

 SON Website: software.sandia.gov/drupal/kokkos

 Tpetra and LAMMPS are migrating

 Long Term Strategy: C++17 or C++21 instead of Kokkos
 ISO C++ Committee working to incorporate threaded parallelism in standard

 I am a voting member on this committee (several week-long mtgs/year)

 Steer Kokkos and influence C++ standard → convergence

Recent Publication
Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns, Journal of Parallel and
Distributed Computing, July 2014
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

38

http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

