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Increasingly Complex Heterogeneous Future 
¿ Performance Portable and Future Proof Codes? 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 

  - Standard DDR (DDR4) 

  - Fast memory (HBM/HMC) 

  - (Segmented) scratch-pad on die 

 

Execution Spaces 
  - Throughput cores (GPU) 

  - Latency optimized cores (CPU) 

  - Processing in memory  

 

Special Hardware 
  - Non caching loads 

  - Read only cache 

  - Atomics 

Programming 

models 
  - GPU: CUDA-ish 

  - CPU: OpenMP 

  - PIM: ?? 



Vision for Managing Heterogeneous Future 

 “MPI + X” Programming Model, separate concerns 
 Inter-node: MPI and domain specific libraries layered on MPI 

 Intra-node: Kokkos and domain specific libraries layered on Kokkos 

 Intra-node parallelism, heterogeneity & diversity concerns 
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements 

 Memory spaces’ diverse capabilities and performance characteristics 

 Vendors’ diverse programming models for optimal utilization of hardware 

 Desire standardized performance portable programming model 
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 

 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 

 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Necessary condition: address execution & memory space diversity 
 Execution { CPU, Xeon Phi, NVIDIA GPU }, Memory { GDDR, DDR, NVRAM } 

 SNL Computing Research Center’s Kokkos (C++ library) solution 

 Engagement with ISO C++ Standard committee to influence C++17 
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Application and Domain Specific Library Layer(s) 
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Kokkos: A Layered Collection of Libraries 

 Standard C++, Not a language extension 
 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ... 

 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 

 Uses C++ template meta-programming 
 Rely on C++1998 standard (supported everywhere except IBM’s xlC) 

 Moving to C++2011 for concise & convenient lambda syntax 

 Vendors slowly catching up to C++2011 language compliance 

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... 

Kokkos Sparse Linear Algebra 

Kokkos Containers 

Kokkos Core 
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Performance Portability Challenge: 
Device-Specific Memory Access Patterns are Required  

 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 

 Hyperthreads’ cooperative use of L1 cache 

 Array alignment for cache-lines and vector units 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 

 Temporal locality and special hardware (texture cache) 

  ¿ “Array of Structures” vs. “Structure of Arrays” ? 

This has been the wrong question 

Right question: Abstractions for Performance Portability ? 
 



5 

Kokkos Performance Portability Answer 

 Thread parallel computation 
 Dispatched to an execution space 

 Operates on data in memory space(s) 

 How to portably use device-specific memory access pattern? 

 Multidimensional Arrays, with a twist 

 Layout mapping: array multi-index (i,j,k,...)  memory location 

Choose layout to satisfy device-specific memory access pattern 

 Layout changes are invisible to the user code; 

IF the user code uses Kokkos’ simple array API: a(i,j,k,...) 

 Manage device specifics under simple portable API 
 Dispatch computation to one or more execution spaces 

 Polymorphic multidimensional array layout 

 Utilization of special hardware; e.g., GPU texture cache 

 

 

 



Performance Evaluations 
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Evaluate Performance Impact of Array Layout 
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 Molecular dynamics computational kernel in miniMD 

 Simple Lennard Jones force model: 

 Atom neighbor list to avoid N2 computations 

 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 

 2D neighbor array 

 Different layouts CPU vs GPU 

 Random read ‘pos’ through 
GPU texture cache  

 Large performance loss 

with wrong array layout 

F i= ∑
j , rij< r cut

6ε[(ς

r ij)
7

− 2(
ς

r ij)
13

]
pos_i = pos(i);  

for( jj = 0; jj < num_neighbors(i); jj++) { 

  j = neighbors(i,jj);  

  r_ij = pos_i – pos(j); //random read 3 floats 

  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 

} 

f(i) = f_i; 
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Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming mechanisms 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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Thread-Scalable Fill of Sparse Linear System 
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 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏  

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ? 

 Scatter-Atomic-Add 
+ Simpler 

+ Less memory 

– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 

 ~equal Xeon PHI 

 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

ri
x 

Fi
ll:

 m
ic

ro
se

c/
n

o
d

e
 

Number of finite element nodes 

Phi-60 GatherSum

Phi-60 ScatterAtomic

Phi-240 GatherSum

Phi-240 ScatterAtomic

K40X GatherSum

K40X ScatterAtomic



Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 

 Thread scalable algorithm for constructing a data structure 
1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 

2. Parallel-scan : sparse matrix rows’ column counts into row offsets 

3. Parallel-for : query unordered map to fill sparse matrix column-index array 

4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  

 



Tpetra: Domain Specific Library Layer for 
Sparse Linear Algebra Solvers 

 Funded by ASC/Algorithms and ASCR/EASI  

 Tpetra: Sandia’s templated C++ library for sparse linear algebra 
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ... 

 Incremental refactoring from pure-MPI to MPI+Kokkos 

 CUDA UVM (unified virtual memory) codesign success 
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration 

 Allows CPU to directly access GPU memory, details hidden by Kokkos API 

 Enables incremental refactoring and testing 

 Early access to UVM a win-win 
 Expedited refactoring + early evaluation 

 Identified performance issue in driver 

 NVIDIA fixed before their release 
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LAMMPS (molecular dynamics application) 
Porting to Kokkos has begun 

 Funded by LAMMPS’ projects  

 Enable thread scalability throughout code 
 Replace redundant hardware-specialized manycore parallel packages 

 Current release has optional use of Kokkos 
 Data and device management 

 Some simple simulations can  
now run entirely on device 

 Performs as well or better 
than original hardware- 
specialized packages 
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Recent and In-Progress Enhancements to 

Abstractions and API: 

Spaces, Policies, Defaults, and C++11 

13 



Complex Heterogeneous Architectures, 
Abstractions to prepare us for this future... 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 

  - Standard DDR (DDR4) 

  - Fast memory (HBM/HMC) 

  - (Segmented) scratch-pad on die 

 

Execution Spaces 
  - Throughput cores (GPU) 

  - Latency optimized cores (CPU) 

  - Processing in memory  

 

Special Hardware 
  - Non caching loads 

  - Read only cache 

  - Atomics 

Programming 

models 
  - GPU: CUDA-ish 

  - CPU: OpenMP 

  - PIM: ?? 
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Execution Space(s) 

 Execution Space Instance 
 Hardware execution resources (e.g., cores, hyperthreads) 

 Expect functions to execute concurrently on those resources 

 Degree of potential concurrency (cores, hyperthreads) determined at runtime 

 Number of execution space instances determined at runtime 

 Execution Space Type (CPU, Xeon Phi, CUDA) 
 Functions compiled to execute on a type of execution space 

 These types determined at configure/compile time 

 Host Space 
 The main process and its functions execute in the Host Space 

 One type, one instance, and is serial (potential concurrency == 1) 

 Execution Space Default : one instance of one type 
 Configure/build with one type – it is the default 

 Initialize with one instance – it is the default 
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Memory Spaces 

 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad) 
 The type of memory is defined with respect to an execution space type 

 Primary: (default) space with allocable memory (e.g., can malloc/free) 

 Performant : best performing space (e.g., GDDR) 

 Capacity : largest capacity space (e.g., DDR) 

 Contemporary system: Primary == Performant == Capacity 

 Scratch : non-allocable and maximum performance 

 Persistent : usage can persist between process executions (e.g., NVRAM) 

 Memory Space Instance 
 Has relationship with execution space instances (more later) 

 Directly addressable by functions in that execution space 

 Contiguous range of addresses 

 Memory Space Default 
 Default execution spaces’ primary memory space 
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Examples of Execution and Memory Spaces 

Compute Node 

Multicore 

Socket 
DDR 

Attached Accelerator 

GPU 

GDDR 

GPU::capacity 

(via pinned) 

primary 

primary 

GPU::perform 

(via UVM) 

Compute Node 

Multicore 

Socket 
DDR 

primary 

shared 

deep_copy 

Attached Accelerator 

GPU 

GDDR 
primary 

perform shared 
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Execution / Memory Space Relationships 

 ( Execution Space , Memory Space , Memory Access Traits ) 
 Accessibility : functions can/cannot access memory space 

 E.g., Host functions can never access GPU scratch memory 

 E.g., GPU functions can access Host capacity memory only if it is pinned 

 E.g., Host functions can access GPU performant memory only if it is UVM 

 Readable / Writeable 

 E.g., GPU performant memory using texture cache is read-only 

 Bandwidth : potential rate at which concurrent instructions can read or write 

 Capacity for views to (allocable) data 

 Memory Access Traits (extension point) potential examples: 
 read-only, write-only, volatile/atomic, random, streaming, ... 

 Converting between “views” with same space and different traits 

 Default is simple readable/writeable – no special traits 

 Future opportunity 
 Execution space access to remote memory space (similar to MPI 1-sided) 
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Views and Defaults (API update in-progress) 

 typedef View< ArrayType , Layout , Space , Traits >  view_type ; 
 Omit Traits : no special compile-time defined access traits 

 Omit Space : default execution space’s default memory space 

 Omit Layout : allocable memory space’s default layout 

 default everything:  View< ArrayType > 

 ArrayType, by example: View< double**[3][8] > 
 Four dimensional array of ‘double’ : [N][M][3][8] 

 N and M are runtime defined dimensions 

 view_type a( optional_traits , N0 , N1 , ... ); 
 optional_traits : a collection of optional runtime defined traits 

 label trait : string used in error and warning messages, default is none 

 initialize trait, default is parallel in-place construction of each member 

 reference counting trait, default is reference count 
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Allocation Semantics (API update in-progress) 

 View<double**[3][8], Space>  a(N,M); 
 Allocate ‘double[N][M][3][8]’ memory in ‘Space’ 

 Layout will vary with ’Space’ or ‘Layout’ template argument 

 Dimensions may be padded for alignment 

 a(i,j,k,l) : access data via multi-index 

 Optional array bounds checking for debugging 

 View semantics (hidden reference counting)  
 View<double**[3][8],Space> b = a ; // SHALLOW copy 

 Both ‘b’ and ‘a’ reference the same allocated memory 

 Memory deallocated when last referencing view is destroyed 

 ‘Const-ness’ of views and viewed arrays 
 View<const double **[3][8],Space> c = a ; // OK, view to const array 

 const View<double**[3][8],Space> d = c ; // ERROR, non-const view of const 

 

 

 



21 

Deep Copy and “Mirror” Semantics 

 deep_copy( destination_view , source_view ); 
 Copy allocated array of ‘source_view’ to allocated array of ‘destination_view’ 

 Kokkos policy: never hide an expensive deep copy operation 

 Only deep copy when explicitly instructed by the user 

 Avoid expensive permutation of data due to different layouts 

 Mirror the layout in Host memory space 
typedef class View<...,Space> MyViewType ; 
MyViewType a(“a”,...);  
MyViewType::HostMirror a_h = create_mirror( a ); 
deep_copy( a , a_h ); deep_copy( a_h , a );  

 Avoid unnecessary deep-copy 
MyViewType::HostMirror a_h = create_mirror_view( a ); 

 If Space is Host memory or if Host can access Space (e.g., CUDA UVM)  

 Then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op 
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Subview : View of a sub-array 

SrcViewType src_view( ... ); 

DstViewType dst_view = subview<DstViewType>(src_view, ...args ) 
 ...args : list of indices or ranges of indices 

 Challenging capability due to polymorphic array Layout 
 View’s are strongly typed: View<ArrayType,Layout,Traits> 

 Compatibility constraint among DstViewType, SrcViewType, ...args  

 number of dimensions (rank of array) 

 runtime / compile-time dimensions 

 destination layout can accommodate when stride != dimension 

 ‘const-ness’ and other memory access traits 

 Performance of deep_copy between subviews 

 Using C++11 ‘auto’ type would help address this challenge 
 auto dst_view = subview( src_view , ...args ); 

 Let implementation choose a compatible view type 

 Caution: user will not have a priori knowledge of this type 
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Execution Policy (API update in progress) 

 How Potentially Concurrent Functions are Executed 
 Where : in what execution space (type and instance) 

 Parallel Work: current capabilities [0..N) or (#teams, #thread/team) 

 Scheduling : currently static scheduling of data parallel work 

 Map work function calls onto resources of the execution space 

 E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern 

 E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern 

 

 Compose Pattern & Policy; e.g., parallel_for( policy , functor ); 
 Call functor in parallel according to policy 

 Functor can be a C++11 lambda 

parallel_for( N , [=]( int i ) { /* lambda-function body */ } ); 

 Call functor ‘N’ times in parallel with i = 0 .. N-1 

 Default: N → RangePolicy<DefaultExecutionSpace>(0,N) 
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Execution Policies, Patterns, and Defaults 

 Patterns: parallel_for, parallel_reduce, parallel_scan 

 

 parallel_pattern( policy , functor ); 
 Call functor::operator()( work , ...other_args... ) 

 Call on policy’s execution space according to policy’s scheduling 

 functor argument and API requirements defined by pattern and policy 

 

 parallel_reduce functor API requirements and defaults 
 functor::init( value_type & update ) const ; // new( & update ) value_type(); 

 functor::join( volatile value_type & update ,  
                             volatile const value_type & in ) const ; // update += in ;  

 functor::final( value_type & update ) const ; // 

 

 parallel_scan functor has similar requirements and defaults 
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Defaults enable C++11 Lambda for Functors 

 Dot product becomes simple with C++11 lambda with defaults 
double dot( View<double*> x , View<double*> y ) { 
  double d = 0 ; 
  parallel_reduce( x.dimension_0() , [=](int i, double & v) { v += x(i) * y(i); } , d ); 
  return d ; 
} 

 

 Parallel reduce and scan defaults 
 Reduction type: deduced from lambda’s argument list 

 Initialize: default constructor 

 Join: operator += 

 

 Expect Cuda / nvcc version 7 to support C++11 lambda 

 

 Anecdote: our experienced developers prefer functors 
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Execution Policy – an extension point 

 Policy calls functor’s work function in parallel 
 PolicyType<ExecSpace>::member_type // data parallel work item 

void Func::operator()( PolicyType<...>::member_type ) const ; 

 Range policy (existing) 
 parallel_for( RangePolicy<ExecSpace>(0,N) , functor ); 

void Func::operator()( integer_type i ) const ; 

 Thread team policy (existing) 
 parallel_for( TeamPolicy<ExecSpace>(#teams,thread/team) , functor ); 

void Func::operator()( TeamPolicy<ExecSpace>::member_type team ) const ; 

 Extension point for new policies 
 Multi-indices  [0..M)x[0..N) 

 Dynamic scheduling / work stealing 
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Execution Policy for Functor with 
multiple ‘operator()( ... )’ 

 Allow a functor to have multiple parallel work functions 
 typedef PolicyType< ExecSpace , TagType > policy ; 

 parallel_pattern( policy(...) , functor ); 

void FunctorType::operator()( const TagType &, policy::member_type ) const ; 

 Parallel work functions differentiated by ‘TagType’ 

 TagType used instead of class’ method name 

 

 Motivations 
 Algorithm (class) with multiple parallel passes using the same data  

 Operators can share member data and member functions 

 Common need in LAMMPS 

 allow LAMMPS to remove clunky “wrapper functor” pattern 

 

 

 



In-Progress Task/Data Parallelism 

Kokkos/Qthreads LDRD 

Abstractions and API 

28 
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Execution Policy for Task Parallelism 

 TaskManager< ExecSpace > execution policy 
 Policy object shared by potentially concurrent tasks 

TaskManager<...> tm( exec_space , ... ); 

Future<> fa = spawn( tm , task_functor_a ); // single-thread task 

Future<> fb = spawn( tm , task_functor_b ); 

 Tasks may be data parallel 

Future<> fc = spawn_for( tm.range(0..N) , functor_c );  

Future<value_type> fd = spawn_reduce( tm.team(N,M) , functor_d ); 

wait( tm ); // wait for all tasks to complete 

 Destruction of task manager object waits for concurrent tasks to complete 

 Task Managers 
 Define a scope for a collection of potentially concurrent tasks 

 Have configuration options for task management and scheduling 

 Manage resources for scheduling queue 

 

 

 

 

Kokkos/Qthread LDRD 
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Execution Policy for Task Parallelism 

 Tasks’ execution dependences 
 Start a task only after other specified tasks have completed 

Future<> array_of_dep[ M ] = { /* future for other specified tasks */ }; 

 Single threaded task: 

Future<> fx = spawn( tm.depend(M,array_of_dep) , task_functor_x  ); 

 Data parallel task: 

spawn_for( tm.depend(M,array_of_dep).range(0..N) , task_functor_y ); 

 Tasks and dependences define a directed acyclic graph (dag) 

 Challenge: A GPU task cannot ‘wait’ on dependences 
 An executing GPU task cannot be suspended – waiting blocks a processor 

 A parent task may spawn child tasks but cannot complete until child tasks 
have completed 

 Solution: ‘respawn’ parent task with new dependences 

respawn( tm.depend(M,array_of_child), parent ); 

return ; // immediately return to be run after children have completed 

 

Kokkos/Qthread LDRD 
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Multithreaded Graph Library (MTGL) / Kokkos 

 Discover gaps in Kokkos for supporting Graph Algorithms 
 Strategy: Prototype a port of MTGL onto Kokkos 

 Successful port of data structures and data parallel algorithms  
 Prototype MTGL/Kokkos is running on GPU, performance looks promising 

 Graph iteration algs on K40X 3-7x faster than 20threads on Ivybridge 

 Major gap: GPU memory too small 
 Sufficient space for graph vertex data 

 Insufficient space for graph edge data 

 Address GPU memory size gap 
 Option A: GPU directly access edge data via host-pinned memory 

– New Kokkos memory space, fits well with future NVLINK hardware 

– Motivated (in part) updating Kokkos abstractions  

 Option B: Stream edge data in/out of GPU buffers 

– Might perform better now, more complex, consumes GPU memory  

 

 
Kokkos/Qthread LDRD 



Embedded UQ on Manycore 

Stokhos/Kokkos LDRD 

Equinox ASCR project 

32 
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Premise: Embedding UQ Increases 
Computational Intensity 
 Computations’ “Scalar” type becomes a vector quantity 

 Coefficients of a polynomial chaos expansion (PCE) 

 Sampling ensemble 

 Scalar math operations replaced by vector or tensor operations 

 Data parallel vector and tensor operations performant on GPU 
 Vector units (i.e., GPU warps) 

 Indirection (e.g., sparse mat-vec) lookups yield vector instead of scalar 

 Communicate vectors instead of scalars 
 Larger messages for halo exchanges vs. more halo exchanges 

 Fewer messages, reduced latency cost 

 Challenge: Embedding UQ “scalar” type 
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Challenge: Embedding UQ “Scalar” Type 

 Allocating each individual “Scalar” type kills performance 
 Many small allocations & deallocations 

 Non-contiguous memory 

 Leverage Kokkos View mechanism 
 Change “View< double * >” to “View< UQScalar<double> * >” 

 UQScalar vector length is an additional dimension of the array 

 Array layout map keeps UQScalar’s values contiguous 

 Prototyped in FENL Mini-application 
 Trilinos/packages/trilinoscouplings/examples/fenl 

 Hybrid parallel : MPI + Kokkos 

 PDE Assembly to sparse linear system 

 Belos/MueLU/Tpetra to solve sparse linear system 
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UQ Ensemble Assembly Speedups 
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UQ Ensemble CG/MueLu Solver Speedups 
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Vision for Migrating to MPI+X future 
 Kokkos evolves from “pure research” to “production growth” 

 Recent usability review by “alpha” users for recommended improvements 

 Core abstractions and API stabilizes, as per today’s presentation 

 Tutorial Examples and Mini-Applications using Kokkos 
 How to use Kokkos via examples 

 How to design and implement thread-scalable algorithms via mini-apps 

 SON Website: software.sandia.gov/drupal/kokkos 

 Tpetra and LAMMPS are migrating 

 Long Term Strategy: C++17 or C++21 instead of Kokkos 
 ISO C++ Committee working to incorporate threaded parallelism in standard 

 I am a voting member on this committee (several week-long mtgs/year) 

 Steer Kokkos and influence C++ standard → convergence 

 

 



Recent Publication 
Kokkos: Enabling manycore performance portability through 
polymorphic memory access patterns, Journal of Parallel and 
Distributed Computing, July 2014 
http://dx.doi.org/10.1016/j.jpdc.2014.07.003 
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