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= MonteBurns

= Secondary DD Reactions

= Tertiary DT Reactions

= Neutron Scattering in MagLif Liner




What is MonteBurns? ) i,

= Monte Carlo MATLAB script

= Written by Patrick Knapp in 2012 to study the effects of varying ion
distributions on fusion neutron spectra

= Expanded in 2013 to include transport capabilities

" Tracks source particles through fusion plasmas to
calculate product spectra and determine what
fraction of source particles would have reacted

" Primarily used to determine diagnostically
interesting neutron spectra dependencies




What Makes MonteBurns Unique? .

= Mediums are defined by arbitrary particle
distributions (two particles are sampled for each
interaction)

" Tracks particles of arbitrary mass and charge

" |ncludes methodology to “force” product particles to
travel in direction of interest

= Simulate anisotropic spectra a real detector might see
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Added Functionality )

Before Now
= Hard-coded parameterized = Cross sections are parsed
cross section from ENDF
representations
u Supports 4 hard coded ] Supports any nuclear
nuclear reactions reaction defined in “valid”
ENDF formats
= Returns energy spectra of = Returns energy spectra of
hard-coded product of both products
interest
= Direction of the products = Direction of the products
must be specified can be specified



Added Functionality (cont...) ) .

Before Now
= Tracks particles through = Tracks particles through an
plasma of deuterium arbitrary number of user

defined materials

= Designed to be ran once = Supports “chaining” calls
(Used to model nth

generation reactions)

= Restructured to be more
Object Oriented
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Secondary DD Reactions ) .

Neutrons from secondary DD reactions act as a useful
diagnostic of plasma conditions
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Secondary DD Neutron Spectrum Contour: lon Temperature = 5 keV

w
L

Neutron Energy (MeV)




Spectra From Different Views B
(Cylindrical Geometry)

Secondary DD Neutron Spectrum: lon Temperature = 5 keV
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Secondary Neutrons as a Diagnostic @
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Tertiary DT Neutron Reactions ) .

Upscattered Deuterium Energy Spectrum

Energy (MeV)




Full DT Neutron Spectra ) .

, Total DT Neutron Spectrum: lon Temperature = 5 keV
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=Plasma <pR>=2 mg;l'cm2

= Plasma <pR> =20 mgﬁ’cm2
= Plasma <pR> = 200 mgf’cm2
= Plasma <pR>= 2000 mg:’cm2
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Tertiary Neutrons as a Diagnostic @&

Tertiary DT Neutrons / Primary DT Neutrons
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Neutron Scattering in MagLif Liner @E&:.

= A majority of neutrons escaping from
the plasma will have to travel through a
dense lining material

= Neutrons that scatter here can
potentially overwhelm plasma scattered
neutrons

= Additionally might offer important
diagnostic information regarding liner
conditions
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Neutron Scattering in MagLif Liner @E&:.

Tgtal Neutron Spectrum: Plasma rhoR = 20 mglcmz, lon Temperature =5 keV
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| = Liner <pR>=3 mg‘f’cm2

| =Liner <pR> = 30 mg/cm?
T Liner <pR> = 300 mgfcmz
= Liner <pR> = 3000 mgfcmz S
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Scattered Neutrons as a Diagnostic @&

Fraction of Neutrons Detected Below 2 MeV from DD Plasma
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# of Neutrons > 4 MeV / DD Neutron Yield

Scattered Neutrons as a Diagnostic @&

Fraction of Neutrons Detected Above 4 MeV from DD Plasma
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QUESTIONS?
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