Modified 3D-helix-like instability structure
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"WIASLIF: Fuel pre-heat & magnetization allow relatively
slow implosions to achieve significant fusion yield
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An initial 30 T axial magnetic field is applied

— Compressed field inhibits thermal conduction
losses

— May help stabilize implosion at late times

During the ~100 ns implosion, the fuel is heated
using the Z-Beamlet laser (about 6 kJ in designs)

— Preheating to ~300 eV reduces the compression
needed to obtain fusion temperatures to 23 on Z

— Preheating reduces the implosion velocity needed
to ~100 km/s, allowing us to use thick liners that
are more robust against instabilities

~50-250 kJ energy in fuel; 0.2-1.4% of capacitor bank
Stagnation pressure required is ~5 Gbar

Gain = 1 may be possible on Z using DT
(fusion yield = energy into fusion fuel,
also called “scientific breakeven”)
Early experiments would use DD fuel

*S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010); Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)




resentation focuses on liner dynamics: primary diagnostic
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1s two-frame monochromatic (6151+0.5eV) radiography*
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* Spherically-bent quartz crystals (2243)
*15 micron resolution (edge-spread)
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* G. R. Bennett ef al, RSI (2008).



’?‘Bxperiments have focused on developing predictive
capability of instability growth of imploding liners
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" MagLIF Helmholtz-like coil pair first fielded on Z
imploding-liner experiments in February of 2013

Field strength requirements:
—10 T seed field with full
diagnostic access
=30 T coils will have limited
diagnostic access

Capacitor bank
2x4mF,V__=15kV
Use: 4 mF, 7kV, 8.6 kA, 10 T

Pulse length requirement:
—Coil: ~1 mH
— Must not crush or buckle target
or hardware
— Fully magnetize liner/fuel with
uniform field
— 3.5 ms risetime used

| : r’-‘ — 7 - . i




"Helix-like instabilities develop on premagnetized liners
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T.J. Awe et al., accepted for publication in Physical Review Letters



"Well-connected helical structures are easily traced
through multiple cycles
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"Well-connected helical structures are easily traced
through multiple cycles

72480, t1=3094.3ns
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Arsimple cylindrical helix model fits the data well
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" By+tB, magnetic field streamlines follow a helical

path along a cylindrical surface

p=2ma tan(p)

- -0r- ™~
41 P p=tan’!(p/2na)

2T1ta

ﬁ B, ‘ B,/Bg= tan(gp)

B -0r-
© pg=tan’'(B,/Bg)

~(pg=2ma(B/By)

» MRT theory shows that instabilities will have the highest
growth rate for keB=0

» If a helical magnetic field topology can be maintained,

helical instability structure is to be expected
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"The time-dependent pitch angle of the magnetic field
streamline on the liner surface can be estimated
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ﬂis calculated using the experiment current and

GORGON liner trajectory
< 20 4 10000
= L7 am
E B /f\ 1000 2
= O, outes—> O
5 10 o 100 &
~ 2
z 5 0 2
i. 0 —— i’ out| 1 §
§ 2925 2975 3025 3075
- Time [ns]



"B, . is calculated using B, ;=7 T, GORGON liner

Z, 1N

trajectory, and by assuming perfect flux conservation
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Mal perturbations presumably grow from the liner’s
surface, so the nearly constant B, , 1s most pertinent
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My, Bo~=B, early in the experiment, but presumably
Bo>>B, throughout the entire implosion
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""The pitch angle, ¢, can be obtained for all radiographs

350 135
1.6t
=14 _ B 31 2 130
%1.2—7 c\,\é 52.5 ; E
§ 1 5.8 8 1 S
2 E g 2 4 20 3
3087 08 a &
206 " T15) 15 §
04 2
] - 1 j 4
0.2 ‘
P B———— I 05{ "% 5
15 -1 0.5 0 0.5 1 15 L
Transverse Distance [mOm] 0. 4 b 0
¢avg_2 6 7)) avg=330
Radiograph 2480-t1 | 2480-t2 | 2481-t1 | 2481-t2 .
Buo [T] 7 10 (Paye 1NCTEASES
Radiograph time [ns] 3094.3 3100.3 3094.8 3100.8 .
Rinave(?) [ptm] 57025 | 365630 | 810030 | 335230 || With both B 2,0
C'R=Rin,0/ Rin(1) 2701 | 6405 | 2.920.1 | 6.9+0.6 .
# of lines fit 8 8 5 7 and liner
@avg [deg] 16.4 25.6 25.9 32.9
Std. Dev. [deg] 1.6 1.2 2.9 4.2 Convergence

Increasing goanZtan'l(p/Zna)%pitch changes slowly relative to

implosion; helices are entrained in liner wall




""?pr constant pitch, the pitch angle will grow large
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ID"MHD simulations show that an initial helical perturbation

Ll V.
will grow 1n amplitude and pitch angle as the liner converges
Seed perturbation Synthetic radiograph Density Slices through Mid-plane

5 degrees 3080ns 3098ns 3094ns 3098ns

***GORGON simulations by Chris Jennings * s




" _GORGON simulations initialized with a 7.2°

perturbation match the late-time instability structure

of the B, ;=7 T experiment
22480, t1=3094.3ns
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"Once set by initial conditions the perturbation does not
require further action of the applied B, to persist

No B, field 0=10T
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""G&{GON If the perturbation 1s set when By=B,, 1t will
persist and grow, even for Bg>>B, throughout the implosion
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"Data supports constant pitch (p) assumption: Relatively
small initial pitch angle (@) increases as the liner implodes
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k! geveral physical processes occur at Bo~50 T which
could allow a seed to be imprinted in the liner surface

> For B>23 T, the magnetic pressure Py=B,*/21, exceeds
the 207 MPa yield strength of the S-65 structural grade
Be used to fabricate the liners

» Be melts at ~1550 K
—> Temperature scaling with magnetic field for a thick

conductor is given by 7~B?/2c u,
- Using ¢,=3.55x10° J/K-m’, we find B_,~=118 T

» Electrothermal instabilities (ETI) can be seeded at
temperatures well below melt when non-uniform joule

heating leads to density perturbations

Sandia
ﬂ'l National
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Hypothesis: Premagnetization
provides higher fuel uniformity at
stagnation

(1) Feedthrough rate is slower for helical
instabilities (vs. “standard” azimuthally
correlated instabilities)

(2) Compressed axial field stabilizes m=0
instabilities near stagnation
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Reduced fime integrated self emission (TISE) supports
that the axial magnetic field enhances stability
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"Harder X-ray emissions are reduced when the
liner/fuel are pre-magnetized with an axial field

PCDs--Filtered w/ 30 mil Kapton (>5 keV)
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| Implosion remains highly uniform at CR=7

CR=R;, ¢/R;, (1)
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Summary & Conclusions

» Liner implosion & MRT studies using penetrating radiography
provide valuable data for benchmarking codes & characterizing
a MagLIF-relevant liner implosion through to stagnation

» In stark contrast to liners with no seed B, field, pre-magnetized
liners develop 3D helix-like surface instabilities

» If a small helical perturbation can be set when B5=B,,
simulations show it will persist and grow, even when Bg>>B,
during the entire implosion

» A radiograph of a liner at a convergence ratio of 7 shows that
the liner’s inner wall remains highly uniform

»> Evidence suggests that liner/fuel axial premagnetization
may have a stabilizing effect
» Reduced feedthrough rate of helical perturbation
» Compressed axial field stabilizes m=0 instabilities at stagnation




