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p Motivation
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* Many physically relevant problems

-V - F(u) =0

»Fluids, Drift-diffusion, Species transport
* Stability of solution 1s challenging

* Galerkin does poorly for shocks and steep gradients
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} Shu-Osher Problem

1D Transient Problem:
* smooth regions

* shock-like gradients
* sharp peak

* periodic solution

Galerkin solution (1 period):
* Crank-Nicolson
* clearly unstable
* square wave error disrupts
hump

Periodic Boundary

Periodic Boundary

Periodic Boundary
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Periodic Boundary
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%—Iigh-Order and Low-Order Discretization

Galerkin semi-discretized problem:

du
M—+Ku=20
dt
Define a “low-order” diffusive problem algebraically:
du - ~
MLEJrKu:O where K=K-D

Diffusion operator ‘D’ defined algebraically:

dij = max(kij, 0, kﬂ) and d;; = — Z dij
JF#1
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}" Anti-Diffusive Flux

High-order problem 1s sum of the low-order and
“anti-diftfusive flux”

Mu+ Ku =
Mpi+ Ku+ (M — Mp)ia+ (K — K)u

Can rewrite as a sum of numerical fluxes

= gy — i) = > dij(u; — uy)

J71 J70
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p Flux Limiting

The flux limited residual is

R(U) = Mru+ Ku—f

where

fi=—) atmy(i;—1;) = > opdi(u; —u;)

J 71 J 71



} Flux Limiting

The limiters satisfy

Ogozf-\f,oz,ggl

and are chosen so the LED criteria 1s met

@ (™ —wg) <o ma (s — i) < g ()

ji
qf (w"™ —u;) <> afdi(us —ug) < g (u"
J71
where N. 1s the set of nodes neighboring 1

min
1

max

U (

= min(u;), wu

Imin = max(u;)

JEN;
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Flux Limiting: Algorithm

Flux limiting algorithm assures that LED bounds are met:

1. Seperate positive and negative anti-diffusive fluxes:

P~ = Zmin(o, fw) and Pi+ = ZmaX(O, fw)
jFi JF#T

2. Build bounding quantities:

Q; = (™" —w;) and Qf = q;(u" —u;)

3. Build limiting ratios (with symmetry):

R, = min(1, gz_) and R;r = min(1,

1

4. Construct limiters:
HOT min(R5LRY) fiy 20
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} Linearity Preserving Flux Limiting

The bounds 1n the LED criteria are designed so that
linear functions are not limited (thus the high-order
method 1s used)

U, —U,j :Vuz (.Cl??;—ai'j)

1
= — ¢zv¢k(uk — Uz) (5’3@ — 373)
1
< | — (xi — ;) | &:iVo (u;" " — uy)




* Two different problems
1. Isolated Contact
2. Multiple Profiles

p Results for a Scalar PDE

Order of Accuracy: LPFL Scalar Transport
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} Coupled Linear PDEs

Use scalar dissipation to construct ‘D’
1. Compute maximum e.v. of K;; (power method)
2. Construct diffusive operator by

Dz’j — )\ma,a:(Kij)I and Dzz — — ZDZQ
J70

1. Limters applied to each coupled entry

Y D (U; — Uj)
JFi
2. Use synchronized LPFL (D and M-M;, are diagonal)

ul u2 )

o = min(ag;, g, ..
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} A Convected Wave

In primitive variables (two coupled PDEs):
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In characteristic variables (two decoupled PDEs):
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VA
p | A Convected Wave

Two speeds seen 1n plot of ‘u’:
1. atc (moving to the right) 2. a-c (moving to the left)
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Limiting primitive variables
with coupled limiting and
scalar dissipation:

Limiting characteristic
variables with algebraic
linearity preserving FCT:

A
% Convected Wave: Primitive Variables

05

£ =
==
= £
o o

= =

h=1/500

05 F

0

pury
T

05

-05

1 L L L L L L I L
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

—u (true)

h=1/500 —

1 1 1 1 1 1 1 1 1 ]
0 0.1 0.z 0.3 0.4 05 0.6 0.7 0.8 0.9 1



VA
konvected Wave: Characteristic Variables
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A Convected Wave: Convergence

Convergence rate of 0.9

Limiting characteristics
slightly more accurate
Over/undershoots
characteristics with
coupled limiting
Caveat: Only a linear
problem

L1 Emor

107}

107}

L1 Error

— 082
= Limniting Primitive Yars
—#—Limiting Characteristic Yars

TR |
10

hMesh Size




- '
}‘ Summary

* Presented an algebraic framework for flux
corrected transport
* Discussed a linearity preserving limiter
e Showed results for a Shu-Osher problem
* Talked about a coupled wave problem:
* Presented an algebraic diffusion operator based
on scalar dissipation
* Results comparing limiting of characteristic

equations and coupled equations



