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Motivation

• Many physically relevant problems

Fluids, Drift-diffusion, Species transport

• Stability of solution is challenging 

• Galerkin does poorly for shocks and steep gradients
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1D Transient Problem:
• smooth regions
• shock-like gradients
• sharp peak
• periodic solution

Galerkin solution (1 period):
• Crank-Nicolson 
• clearly unstable
• square wave error disrupts 

hump
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Shu-Osher Problem



A High-Order and Low-Order Discretization

Define a “low-order” diffusive problem algebraically:

Diffusion operator ‘D’ defined algebraically:

and

where

Galerkin semi-discretized problem:



Anti-Diffusive Flux

High-order problem is sum of the low-order and 
“anti-diffusive flux”

Can rewrite as a sum of numerical fluxes 



Flux Limiting

The flux limited residual is 

where



Flux Limiting

The limiters satisfy

and are chosen so the LED criteria is met

where Ni is the set of nodes neighboring i



Flux Limiting: Algorithm

Flux limiting algorithm assures that LED bounds are met:



Linearity Preserving Flux Limiting

The bounds in the LED criteria are designed so that 
linear functions are not limited (thus the high-order 
method is used)



Results for a Scalar PDE

L1 Err. = 0.4h0.76

L1 Err. = 5h0.94
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Order of Accuracy: LPFL Scalar Transport
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• Two different problems

1. Isolated Contact

2. Multiple Profiles

• Spatial convergence rate: 0.76



Coupled Linear PDEs

Use scalar dissipation to construct ‘D’
1. Compute maximum e.v. of Kij (power method)
2. Construct diffusive operator by

1. Limiters applied to each coupled entry

2. Use synchronized LPFL (D and M-ML are diagonal)



A Convected Wave

In primitive variables (two coupled PDEs):

In characteristic variables (two decoupled PDEs):

where



A Convected Wave

Two speeds seen in plot of ‘u’:

1. a+c (moving to the right)      2. a-c (moving to the left)



A Convected Wave: Primitive Variables

Limiting primitive variables 
with coupled limiting and 
scalar dissipation:

Limiting characteristic 
variables with algebraic 
linearity preserving FCT:

h=1/500

h=1/500



A Convected Wave: Characteristic Variables

Limiting primitive variables 
with coupled limiting and 
scalar dissipation:

Limiting characteristic 
variables with algebraic 
linearity preserving FCT:

h=1/500

h=1/500

h=1/200



A Convected Wave: Convergence

Convergence rate of 0.9
• Limiting characteristics 

slightly more accurate
• Over/undershoots 

characteristics with 
coupled limiting

• Caveat: Only a linear 
problem



Summary

• Presented an algebraic framework for flux 

corrected transport

• Discussed a linearity preserving limiter

• Showed results for a Shu-Osher problem

• Talked about a coupled wave problem:

• Presented an algebraic diffusion operator based 

on scalar dissipation

• Results comparing limiting of characteristic 

equations and coupled equations


