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The Magnetized Liner Inertial Fusion ) s,
concept has been successfully demonstrated

= Thermonuclear neutron generation BN lon Temp [N DD yield
Electron Temp [ DT yield
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Magnetized Liner Inertial Fusion is a
Magneto-Inertial Fusion concept that
we are evaluating on Z
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Maénetization Laser heating Compression
Magnetization and laser heating relax the implosion
velocity, areal density, and convergence requirements

of inertial confinement fusion




Stage 1: Magnetization ) .

= Be liner containing fusion fuel
= D2 gas ~ mg/cc(n./n; <0.1)
= Axial magnetic field is applied

to target
= 10-30T
= ~msrisetime
= Z current starts creating an
azimuthal drive field

Magnetization
5




Stage 2: Laser Heating ) .

Laser heating

Liner begins to compress

= OD is moving but ID is stationary

Laser heats the fuel
= T.~ 100s of eV

Liner ID begins to implode
Simulations indicate that fuel

conditions isotropize over the
10s of ns of the implosion




Stage 3: Compression ) .

= Axial magnetic field insulates
fuel from liner throughout
implosion

= Field increases substantially through
magnetic flux compression

" Fuel is heated though PdV
work to keV temperatures

= Near adiabatic compression

= Liner stagnates
Compression = Plasma pressure exceeds drive pressure
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Putting it all together... )
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Density Temperature

.

A. B. Sefkow, et al., Phys. Plasmas, 21 072711 (2014).
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Prior to the integrated experiments, a series of
focused experiments were conducted to test all
of the critical components of MagLIF

= Laser preheat

= >20 laser-only
experiments
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= Applied magnetic field
= >10 experiments

= Liner Stability
= >30 experiments

= Modified power flow

= Geometry scanto
minimize losses

= >20 experiments

= Fully integrated shots
= 52Z+ZBLshots

~T N\




The target design for these initial experiments
incorporates the knowledge gained from focused
experiments and extensive simulations

Sandia
|I1 National

Laboratories

= Beryllium liner with aspect ratio 6
= Thick liner is more robust to instabilities 0.45 mm 2.5-3.5 um

= Still allows diagnostic access > 5 keV —

= Top and bottom implosion cushions

= Mitigates wall instability

= Standoff between LEH and
imploding region

= Avoid window material mixing with fuel

= Exit hole at bottom of target

= Avoid interaction with bottom of target




Experiments were conducted at ) i,
B=10T,1=19 MA, and Laser = 2.5 kJ

Time of
experiment
12 |
= 10 ‘1' 20
c 8 13 Laser energy is split
g 6 s Ie into 2 pulses:
8 ; gs 1%t pulse intended to
— S
0 < 12 £5 destroy LEH
77 e e B 15?5 2nd pulse intended to
S 5 8 heat fuel
L L 11 =7
Magnetic field risetime s} 5 2
is approximately 2 ms 105 S . 2 kd
2
L s | 0.5kJ
: 0 PYeves 0 2
B is constant over the 290 000 ey 3100 g
timescale of the : 205
experiment Peak current is 19 MA 3

Magnetic fieldis 10 T

0
3038 3040 3042 3044 3046

Total laser energy is 2.5 kJ Time [ns]




Experiments utilize D2 gas fill at ) i,
approximately 0.7 mg/cc (60 PSI)

= Primary reactions

= Secondary reactions

0O+¢0 —> -I-EQ 14.1 MeV |

= Triton may still retain fraction of birth energy when reacting
13
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Thermonuclear DD yields in excess of
1012 were observed in experiments with
laser and B-field

1E+13 -
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= High yields were only observed

e | on experiments incorporating
. both applied magnetic field and
2 o laser heating

= A series of experiments without
laser and/or B-field produced
yields at the background level of
the measurement

T T T T T T T T T Result of 22583 is not well

Null B-field B-field understood at this time
and Laser

1E+10 +

1EH)9 A
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Neutron Time of Flight spectra indicate g
ion temperatures greater than 2 keV at
stagnation

Experimental Data

Gaussian Fit = DD neutron peak
observed in experiments
with significant yield
(>1e10)

= @Gaussian profile fit to high
energy side of peak to
determine ion temp

dN/dE [A.U]

= Jon temperatures were
between 2 and 2.5 keV for

. | , , | high yield experiments
2.2 2.3 2.4 2.5 2.6 2.7

Energy [MeV]
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High energy x-ray spectra indicate )
electron temperatures = 2.5-3.1 keV in

experiments with laser and B-field

107 . = Electron temperatures
— B-field only | inferred from
B-field and Laser||  ¢ontinuum emission

P> 2 keV observed on
shots with yield

T=10keV N . Approximately 1 keV
! observed on shots

without yield

X-ray Yield [J/eV/mm]

107 L—— . . . . = Lower bound on

8 10 12 14 16 HH
measurement capability
Photon Energy [keV .
9y [keV] is around 1 keV
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Neutron yield, ion temperature, and @&z
electron temperature all trend as expected

= Experiments with

B DD yicld Tejectron = 1 keV have
I DT yield negligible DD yield
3r| I lon Temp
Electron Temp " ForT,=T,>2keV,

significant yield is
observed

Temp [keV]
N

= Measurable DT yield
is observed on
experiments with
high DD yield
(more on this later)

o -
72465 |

22467-4 :

z2481 B *-f

72629 B i
z2583 BL—'-| :
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High energy x-ray emission timing is

consistent with neutron bang time
Filtered Si Diodes

>3 keV 1-3 keV _3 3 _3
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High energy emission from fuel is only observed in experiments with laser and B-field

Emission from exterior of liner is observed with and without laser and B-field




High resolution images of the x-ray emission
from the hottest part of the fuel show a
relatively stable stagnation columon

= Lineouts of stagnation column vary
from 60 to 120 pm FWHM (resolution 1
is about 60 microns)

= Emission is observed from about 6 mm 0.11

of the 7.5 mm axial extent

w

= Emission region does not define the
fuel-liner boundary, but defines the
hottest region of the fuel

Axial Position [mm]
o I

0]

= Stagnation column is weakly helical

with 1.3 mm wavelengthand 0.05mm e | =

offset 05005 -02 0 0.2
Transverse Position [mm]
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Measured and inferred stagnation
parameters are consistent with the

measured DD vyield
= Hot fuel: r =40-50 um, h =4-6 mm
= V=2-5x10°cm3
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= t=1-2ns
= Stagnation density = 0.2-0.6 g/cm3
" n=0.66-2.0 x 1023/cm?3

= Stagnation temperature = 2-3.1 keV
= <ov>=0.5-2.8 x 1020

= f=0.5n%<ov> = 1.1-56 x 102°/cm3s
= (Calculated Yield = tVf = 2e11-6e13 DD neutrons
" Measured yield = 5e11-2e12 DD neutrons 51




Yield,./Yield,, can be used to infer ) e,
magnetization at stagnation

Low B High B
A
o~ 0.4 g/cm?3
High aspect
ratio cylinder
g R ~ 0.005 cm
Most tritons 0.1mm o Z~0.6cm
born with
trajectory that 5
exits the fuel PR ~0.002 g/cm
radially pZ ~ 0.2 g/cm?
v
Tritons sample small pr High B-field traps tritons
when B-field is low so increasing the effective pr
DT/DD is low so DT/DD increases

22
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DT NTOF spectrum can also be used to  i==.
infer magnetization at stagnation
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Yield,;/Yield,, and NTOF spectra )
indicate significant magnetic flux
compression in MagLIF experiments

10
Measured £
E Yor/Ypp = 1.3-4.3 x 102
é is consistent with
Calculated © B*r > 40 T-cm
10-4 " 1 I2
10 10
B*r [T-cm]

For ideal flux compression and 0.1 mm diameter at stagnation B*r,,,, = 108 T-cm

‘ Experiment Simulation | ‘ Experiment Simulation |
1} | 1} :

0.8} 0.8} { NTOF spectra are
S 06 | 2 o6l | consistent with
© © * ~ -

0.4} 0.4} B*r=45 T-cm

0.2 0.2

0 ' ' - ' 0 ' ' -
10 12 14 16 18 10 12 14 16 18
Neutron Energy [MeV] Neutron Energy [MeV] 24




Outline ) &

= Summary of experimental results
= Define Magnetized Liner Inertial Fusion (MagLIF)
= Experimental setup

= Details of integrated MagLIF experimental results
= Fusion yields and temperatures

= Stagnation measurements
= Bangtime (x-ray and neutron)
= X-ray imaging
= Evidence of magnetic flux compression
= DT/DD vyield ratio
= NTOF spectra

= The future

25



Experimental observables are well &3

matched by 2D simulations
Parameter | Experimental _____|Simulation'

Current 19+ 1.5 MA 19 MA

Implosion time 90+ 1 ns 90 ns

Energy absorbed in gas Unknown, < 600 J 150+ 50 J

Rgtag hOt plasma 44 £ 13 ym 40 uym

Tions Telec 2.0-2.5keV, 2.5-3.1keV 3.0£0.5keV, 2.7 £ 0.5 keV
Density,, 0.4+0.2 g/cm3 0.4+0.2 g/cm3

ORiner 0.9 £ 0.3 g/cm? 0.9 g/cm?

B*rstag 40-110 T-cm 48 T-cm

DD yield 2.0+ 0.4 x 1012 4.4 £ 0.9 x 10"2 (no Nernst term)
DD/DT yield ratio 40 + 20 41-57

DD, DT spectra |sotropic, asymmetric |sotropic, asymmetric

Burn duration 1.5-2.3 ns (x-rays) 1.6 £ 0.2 ns (neutrons)

26
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A. B. Sefkow, et al., Phys. Plasmas, 21 072711 (2014).



Laser heating was not optimized for g
these experiments

= Offline laser transmission
measurements indicate that
the majority of the laser
energy does not make it
through the foil

Simulation

DD Yield
)

= Simulations show the
efficiency of laser-energy
coupling in these targets is a
critical factor )

10 —_

10° 10°

= Recent laser transmission Laser Energy [J]

experiments with smoothed Experiments will be conducted in
beam show significantly near future to test improvements in

. . . . laser coupling with smoothed beams
improved foil transmission 27




Significant upgrades to key components of
MagLIF are planned for the near future

= Laser energy upgrade in progress
= 4 kJ now available
= 6+ kJ is expected in early 2015

= Laser beam smoothing is under investigation

= Magnetic field upgrade available
= 15T now available
= Upto 25 Tis expected in early 2015
= 30+ T is possible by the end of 2015

> 20 MA drive current expected by early 2015
= Up to 25 MA may be possible on Z
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The Magnetized Liner Inertial Fusion ) s,
concept has been successfully demonstrated
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