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Objective 

 Reframe the subjective fuel rod structural integrity time-at-
temperature (TatT) curve to: 
 Incorporate high burn up collapse estimates from the VERCORS 

experiments. 
 Maintain engineering judgment in the shape of the time-at-

temperature function. 
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Data – High Burnup VERCORS Tests 
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Test 
Collapse 

Temperature 
(K) 

Driving Phenomena 

(R?)T1 2525 
H2O oxidizing 
atmosphere  

HT1 2550 H2 reducing atmosphere 

HT2 2400 
H2O oxidizing 
atmosphere 

U–Zr–O–FP interaction  

HT3 2525 H2 reducing atmosphere 

V_6 (RT4?) 2525 
ZrO2-“fuel”-FP 

Interaction 

RT6 2350 
H2O oxidizing 
atmosphere 

Mean 2479   

Standard 
Deviation 

83   



Time/Temperature Profile for  
VERCORS Experiments 
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Prior Attempt to Incorporate VERCORS Data 
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Can we use a Bayesian Regression 
approach to do better? 
 Assume simple damage model – Arrhenius  


1

𝑡𝑡 𝑇𝑇
= 𝐴𝐴 ∗ exp (𝐵𝐵𝐵𝐵) ,D(t) = ∑ 1

𝑡𝑡 𝑇𝑇
∗ ∆𝑡𝑡  

 Use prior uncertainty estimates to fit A/B values to create a 
prior understanding of probability of A and B  

 Assume that failure of the fuel is lognormally distributed 
around a Damage =1.0 

 Apply Bayes Theorem to create a better understanding of the 
relationship between A and B 

 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝐸𝐸,𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝑀𝑀 ∗𝜋𝜋 𝐴𝐴,𝐵𝐵|𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∫ 𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝑀𝑀 ∗𝜋𝜋 𝐴𝐴,𝐵𝐵|𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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The Three Steps to Bayesian Updating 

Define the 
Prior 

• Are there previous analyses that can be leveraged? 
• Experimental Data? 
• Expert Judgment? 

• Are the parameters related? 

Define the 
Likelihood 

• Does the model support the data? 
• What type of variance from ideal is acceptable? 

Compute 
Posterior 

• Multiply the likelihood by the prior to develop your new understanding of 
the system 
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DEFINE THE PRIOR 

1. What is our current model? 
2. What parameters (a, b, σ) are uncertain? 
3. Are there relationships between the parameters? 
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What is our current model? 

 Assume simple damage model – Arrhenius  


1

𝑡𝑡 𝑇𝑇
= 𝐴𝐴 ∗ exp (𝐵𝐵𝐵𝐵) ,D(t) = ∑ 1

𝑡𝑡 𝑇𝑇
∗ ∆𝑡𝑡  

 How well does it describe the data? 
 Low damage corresponding to  

failure 
 Does not appear lognormal 

 Small data-set? 
 Lognormal fit 

 μ 
– MLE = -1.42 
– 95%CI = [-2.04, -0.80] 

 σ 
– MLE = 0.59 
– 95%CI = [0.37, 1.45] 

SAND2014-XXXXC 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

C
ou

nt

Damage Corresponding to Failure



Defining prior understanding of A and B 
Previous Uncertainty Characterization  

 Two uncertainty treatments were 
leveraged: 
 Peach Bottom UA (Top Right) 
 Surry UA (Bottom Right) 

 Since removed as a UA parameter 

 Proposed Surry Treatment 
 Lower temperature data point was 

assumed at 2200K 
 Beginning of the VERCORS temp. ramp 

 The median lifetime at 2200K was 
assumed to be 2 hours, with an error 
factor (𝜆𝜆95

𝜆𝜆05
) of 10. 

 SOARCA curve predicts 5 hours at 2200K 
 The ratio of early failure to late failure 

lifetimes is 13. 
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Peach Bottom UA 

Initial Proposed VERCORS Integration 



Defining prior understanding of A and B 
Previous Uncertainty Characterization  

 Proposed Surry Treatment 
 Used to allow for high temperature / low 

lifetime variability 
 Small remaining lifetime (assumed to be 

one minute) should occur at: 
 The sampled effective fuel slumping 

temperature  from the high burn VERCOR 
Tests 

 𝑁𝑁(𝜇𝜇 = 2479𝐾𝐾,𝜎𝜎 = 89𝐾𝐾) 
 Combine high lifetime and low lifetime 

samples to determine range of 
Arrhenius functions. 


1

𝑡𝑡 𝑇𝑇
= 𝐴𝐴 ∗ exp 𝐵𝐵𝐵𝐵  

 𝐵𝐵 = ln 𝑡𝑡 𝑇𝑇2
𝑡𝑡 𝑇𝑇1

∗ 1
𝑇𝑇1−𝑇𝑇2

 , 𝐴𝐴 = 1
𝑡𝑡 𝑇𝑇1 ∗exp 𝐵𝐵∗𝑇𝑇1

 
 This structure is abbreviated as the failure 

model M 
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Initial Proposed VERCORS Integration 



Can the uncertainty in A and B be treated 
as independent? No! 
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How can this scatter be used to make 
a prior distribution? 

1. Create a marginal distribution for the 
independent variable (B-Lognormal) 

2. Define the relationship between A and B. 
 The ln(A) and B are linear 
  𝜇𝜇ln 𝐴𝐴 (𝐵𝐵) = −3 ∗ 𝐵𝐵 − 2295 + 𝜖𝜖 

  𝜋𝜋 ln (𝐴𝐴) = 𝑁𝑁 ln 𝐴𝐴 𝜇𝜇ln 𝐴𝐴 𝐵𝐵 , 𝜎𝜎 𝜖𝜖 ,𝑀𝑀  

3. Multiply the marginal distribution of B to 
the conditional distribution of A|B to 
create the joint distribution. 
 𝜋𝜋 𝐴𝐴,𝐵𝐵|𝑀𝑀 = 𝜋𝜋 𝐴𝐴 𝐵𝐵,𝑀𝑀 ∗ 𝜋𝜋(𝐵𝐵|𝑀𝑀) 
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Create a joint prior 
𝜋𝜋 𝐴𝐴,𝐵𝐵|𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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𝜋𝜋 𝜎𝜎 𝐸𝐸,𝑀𝑀∗ d𝜎𝜎 - Prior Distribution for Uncertainty in 
Damage Estimates Corresponding to Failure 

 Failure is characterized as Arrhenius: D=1.0 is 
idealized failure 


1
𝑡𝑡 𝑇𝑇

= 𝐴𝐴 ∗ exp (𝐵𝐵𝐵𝐵) ,D(t) = ∑ 1
𝑡𝑡 𝑇𝑇

∗ ∆𝑡𝑡  

 Failure can occur when D≠1.0 due to: 
 Inherent variability 
 Model inaccuracy  

 It is assumed that: 
 Experimental variability from D=1.0 is log 

normally distributed 
 Expected variability in final model should be 

similar (≈) to that of the current failure model 
 The likelihood of the variability in the historical 

TatT model (𝑀𝑀∗) is: 

 𝜋𝜋 𝜎𝜎 𝐸𝐸,𝑀𝑀∗ d𝜎𝜎 = ln 𝜎𝜎 𝐸𝐸,𝜇𝜇=0,𝑀𝑀∗

∫ ln 𝜎𝜎 𝐸𝐸,𝜇𝜇=0,𝑀𝑀∗ 𝑑𝑑𝑑𝑑
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The full joint prior distribution 
𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 Now that all of the basic uncertainty relationships are 
characterized, they can be multiplied together to create a 
joint prior. 
 

 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋 𝜎𝜎 𝑀𝑀∗,𝐸𝐸 𝑑𝑑𝑑𝑑 =
                                 𝜋𝜋 𝐴𝐴 𝐵𝐵,𝑀𝑀 𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋 𝐵𝐵|𝑀𝑀 𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋 𝜎𝜎|𝑀𝑀∗,𝐸𝐸 𝑑𝑑𝑑𝑑 
 

 In this analysis, 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is calculated 
numerically by discretizing A, B, and σ over likely values and 
then calculating the likelihood for each point in the set of A, 
B, and σ 
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Note on the Treatment of σ 

 What is useful to a MELCOR analysis  
 Useable information -  Epistemic uncertainty of the shape parameters 

 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀 𝑑𝑑AdB 
 Unusable information – Aleatory variability 

  𝜋𝜋 𝐷𝐷∗ 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀 𝑑𝑑𝑑𝑑 = ln 𝐷𝐷∗ 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀 = ln 𝐷𝐷∗ 𝜎𝜎,𝑀𝑀  

 Because the choice of 𝜎𝜎 effects the model fitting, its effects 
are averaged out by integrating 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 over σ, 
producing 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫ 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
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DEFINE THE LIKELIHOOD 
How do we judge the proposed model parameters given the data? 
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Evaluating the Damage Model  
given the Failure Data 

 Every set of (A,B) will 
produce a different 
damage estimate.  
 
 

 No combination of A,B 
will produce a model 
estimated D=1.0 at all 
experimental failure 
temperatures -> 
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1
𝑡𝑡 𝑇𝑇

= 𝐴𝐴 ∗ exp (𝐵𝐵𝐵𝐵) ,D(t) = ∑ 1
𝑡𝑡 𝑇𝑇

∗ ∆𝑡𝑡  

Test 
Collapse 

Temperature 
(K) 

Driving Phenomena 

(R?)T1 2525 
H2O oxidizing 
atmosphere  

HT1 2550 H2 reducing atmosphere 

HT2 2400 
H2O oxidizing 
atmosphere 

U–Zr–O–FP interaction  

HT3 2525 H2 reducing atmosphere 

V_6 (RT4?) 2525 
ZrO2-“fuel”-FP 

Interaction 

RT6 2350 
H2O oxidizing 
atmosphere 

Mean 2479   

Standard 
Deviation 

83   

 



Evaluating the Damage Model  
given the Failure Data 

 The likelihood of a given set of (A,B)’s damage estimate is 
assumed to be lognormal because of its range [0,∞) and small 
number of shape parameters (μ,σ). 
 Failures should be distributed around D=1.0, thus μ=ln(1.0)=0.0 was fixed 

in the analysis.  
 𝜋𝜋 𝜎𝜎|𝐸𝐸,𝑀𝑀 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑏𝑏𝑏𝑏 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝐸𝐸,𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫ 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝐸𝐸,𝑀𝑀𝜎𝜎_𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎_𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 Choice of likelihood function can be explored as a sensitivity study 

 𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝐸𝐸,𝑀𝑀 = ∏ 1
𝐷𝐷𝑖𝑖∗𝜎𝜎∗ 2𝜋𝜋

∗ exp − ln 𝐷𝐷𝑖𝑖 −𝜇𝜇
2𝜎𝜎2

𝑁𝑁
𝑖𝑖=1  

 Where Di is the ith damage calculated from A, B, the E is the set evidence 
(VERCORS failure temperatures), and M (the Arrhenius damage accrual 
model) 
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Calculation of the Likelihood  
Integrating (Averaging) over σ 
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CREATE THE POSTERIOR 

𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀,𝐸𝐸

=
𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀 ∗ 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋 𝜎𝜎 𝐸𝐸,𝑀𝑀∗ 𝑑𝑑𝑑𝑑

{∫ ∫ ∫ 𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀 ∗ 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋 𝜎𝜎 𝐸𝐸,𝑀𝑀∗ 𝑑𝑑𝑑𝑑}
 

Once the posterior is known, it can be sampled to create a distribution of 
TatT curves.  
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Note on the Treatment of σ 
Same as before, only with the evidence variable E 

 What is useful to a MELCOR analysis  
 Usable information -  Epistemic uncertainty of the shape parameters 

 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀,𝐸𝐸 𝑑𝑑AdB 
 Unusable information – Aleatory variability 

  𝜋𝜋 𝐷𝐷∗ 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀,𝐸𝐸 𝑑𝑑𝑑𝑑 = ln 𝐷𝐷∗ 𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀,𝐸𝐸 = ln 𝐷𝐷∗ 𝜎𝜎,𝑀𝑀,𝐸𝐸  

 Because the choice of 𝜎𝜎 affects the model fitting, its effects 
are averaged out by integrating 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀,𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 over 
σ, producing 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀,𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
 𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑀𝑀,𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫ 𝜋𝜋 𝐴𝐴,𝐵𝐵,𝜎𝜎 𝑀𝑀,𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
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The Updating Process 
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𝜋𝜋 𝐴𝐴,𝐵𝐵 𝐸𝐸,𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝑀𝑀 ∗ 𝜋𝜋 𝐴𝐴,𝐵𝐵|𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∫ 𝐿𝐿 𝐸𝐸 𝐴𝐴,𝐵𝐵,𝑀𝑀 ∗ 𝜋𝜋 𝐴𝐴,𝐵𝐵|𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 

loge(A) (1/min)

lo
g e(B

) (
1/

K
)

Prior in ln, π(A,B|M)dAdB

-45 -40 -35 -30 -25 -20 -15 -10 -5
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

loge(A) (1/min)

lo
g e(B

) (
1/

K
)

Likelihood Estimate in loge, L(E|A,B,M)

-45 -40 -35 -30 -25 -20 -15 -10 -5
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

loge(A) (1/min)

lo
g e(B

) (
1/

K
)

Joint Posterior in loge, π(A,B|E,M)dAdB

-45 -40 -35 -30 -25 -20 -15 -10 -5
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5



Combine the Prior and the Likelihood 

 This joint posterior 
distribution can be 
sampled to produce 
(A,B) pairs which are 
informed by: 
 Prior analysis 
 VERCORS test data 
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Surface Plots of Posterior Distribution 
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Shark-Fin Movie  
The Effect of Integration Over Sigma 
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Effect on TatT curves 
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1
𝑡𝑡50𝑡𝑡𝑡 𝑇𝑇 {𝑠𝑠𝑠𝑠𝑠𝑠} = 2.16𝑥𝑥10−11 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(7𝑥𝑥10−3 ∗ 𝑇𝑇) 



Conclusions 

 The Time at Temperature relationship has been transformed 
from an expert judgment relationship to a data informed 
relationship through Bayesian Regression analysis 
 A new point estimate curve has been developed to replace the old 

SOARCA TatT curve 
 A numerical uncertainty distribution of A and B {𝜋𝜋 𝐴𝐴,𝐵𝐵 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} has 

been created which can be sampled from to support subsequent 
uncertainty analysis  

 Not only is the new TatT curve more rigorous and defensible 
than the old curve, the expected uncertainty in the output is 
built into the model.  
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