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Abstract. The purpose of this paper is to consider the exit-time prob-
lem for a finite-range Markov jump process, i.e, the distance the particle
can jump is bounded independent of its location. Such jump diffusions
are expedient when the process sample-path is discontinuous because
nearly instantaneous price volatility, species migration or heat conduc-
tion is suggested by the length and time scales over which the data is
collected. We refer to the associated deterministic equation as a volume-
constrained nonlocal diffusion equation. The volume constraint is the
nonlocal analogue of a boundary condition necessary to demonstrate
that the nonlocal diffusion equation is well-posed and is consistent with
the jump process. A critical aspect of the analysis is a variational for-
mulation and a recently developed nonlocal vector calculus.
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1 Introduction

The classical Brownian motion model for diffusion is not well-suited for applications
with discontinuous sample paths. For instance, the mean square displacement of a
diffusing particle associated with a jump process often grows faster than that for
the case of Brownian motion, or grows at the same rate but is of finite variation or
activity (terms that we will define in §4). Such jump diffusions are expedient models
for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion.
Examples include nearly transport in heterogenous media [22], species migration or
heterogenous heat conduction as suggested by the length and time scales over which
the data is collected. See the collection of papers [1171] for further information and an
abundance of references.

The purpose of this manuscript is to discuss the exit-time problem for finite-range
Markov jump processes. A finite-range process restricts the jump-rate to be zero
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outside of a bounded neighborhood about the location of the particle. Because the
process may jump outside of the domain, the associated deterministic equation, in
contrast to the classical Fokker-Planck, must be augmented with a volume-constraint
instead of a boundary condition. The volume-constraint is the nonlocal analogue of a
boundary condition necessary to demonstrate that the equation is well-posed and be
consistent with the jump process. In particular, realizing a Monte-carlo simulation to
compute various exit-time statistics mandates absorbing the particle upon departure
out of the domain that rarely, if ever, occurs at the boundary. Hence enforcing a
volume-constraint for the deterministic equation is symbiotic with Monte-carlo sim-
ulations.

A distinguishing aspect of our treatment for the exit-time problem is that the
deterministic equation is given by a master equation. This allows us to analyze spa-
tially inhomogeneous problems where the jump-rate depends upon location and may
be asymmetric, i.e., the rate to and from a point may be distinct. A critical aspect
is a recently developed nonlocal vector calculus that enables striking analogies to be
drawn with the classical vector calculus including Fick's laws and the backward, for-
ward Kolmogorov equations requiring the notion of an adjoint operator. The flexibil-
ity afforded by the nonlocal vector calculus enables us to consider exit-time problems
over nontrivial domains in IV and builds upon work accomplished via the use of frac-
tional derivative based approaches; see, e.g., [71,5,6,111Z] and the references provided.
Although we have assumed that the jump-rate is that associated with a finite-range
jump process, the representation of the master equation in terms of the calculus is
valid for a multitude of classes of jump-rates, including those of infinite range such as
Levy measures or their tempered, truncated variants; see [®AT] including the recent
review [231. Said another way, the nonlocal vector calculus is jump-rate agnostic and
oblivious to a finite domain.

The nonlocal vector calculus also lays the foundation for a variational formulation
of the deterministic exit-time problem. We can then establish that a broad range
of volume-constrained problems are well-posed. This lays the foundation for stable
numerical methods of the volume-constrained problem.

2 Markov jump process

The master equation

ut (x, t) = f (u(y, t)-y(y, x) — u(x,t)-y(x, y)) dy x E Rn , (1)
illn

is useful for describing a spatial inhomogenous Markov process; see, e.g., [1}3] for a
discussion. The two-point function -y :1Rn x Illn and u : Illn —Y r are is the jump-
rate and the density of particles, respectively. The associated Markov jump process
can be simulated by Monte-Carlo realizations of a continuous-time Markov chain over
a continuum state-space, or equivalently, as realizations of an off-lattice continuous-
time random walk (CTRW) with an exponential jump-rate. The realizations are con-
structed by understanding the master equation (1). The equation explains that the
temporal rate of change of probability u(x, t) dx of locating a particle at x about the
volume dx at time t is given by the difference in probability gain and loss at the point
x. The probability gain is given by the jump-rate -y(y, x) dx into dx from y given
the probability u(y, t) dy and in analogous fashion, the probability loss is given by
the jump-rate •-y(x, y) dy into dy from x given the probability u(x, t) dx. As we will
demonstrate in §0, the master equation embodies a nonlocal Fick's first and second
law of diffusion.

r
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We also further suppose that the jump-rate 7(x, y) is zero outside a ball of radius
A, i.e.,

7(x, y) = 0 , for lx — yl > A > 0 . (2)

In words, the particle can jump to y from x when the distance between x and y is no
larger than A. We say that "nonlocal convection" occurs when -y(x, y) -y(y, x). The
fluctuations of the particle path can take a myriad of forms; see §4 for a discussion. The
scaling of the mean square displacement for the jump diffusion ultimately depends
upon the analytic properties of the jump-rate. The scaling is either linear or larger so
that the diffusion is either normal or superdiffusive. Truncating a radial Lévy measure
removes the "heavy taile rendering a normal jump diffusion that is not a Brownian
motion.

The master equation (1) is an instance of the more general diffusion equation

ut (x, t) = i (h(y, x,t) — h(x,y,t)) dy ,
R.

via the relationship h(x , y , t) = u(x,t)-y(x, y). Such an equation is a nonlocal analogue
of ut = —V' • q. The nonlocal diffusion arises because points y x determine the
rate of diffusion at x. An expression for h (or q) can be derived as an ensemble
average in phase space; see the paper rig. The conclusion is that there is a basis
for nonlocal diffusion in nonequilibrium statistical mechanics; the classical diffusion
arises by postulating Fick's first law, or assuming that the particle sample path is
continuous. In particular, §Q postulates a nonlocal analogue of Fick's first law using
the nonlocal vector calculus reviewed in §5.

3 Finite domain

Suppose we have a finite domain Q of interest. By assumption (2), the jump-rate 7 is
restricted so that the particle can jump at most a finite distance A from x. We define
the interaction domain f21 to be the region to which the particle may jump to when
originating in Q. Hence, by our assumption (2) on the jump-rate, the interaction
domain is also finite. Figure I displays an example of the interaction domain

Qi = U BA (x) \ Q ,
xer2

where BA (x) denotes the ball about x of radius A. Such an interaction domain pro-
vides a collar for the domain Q. Figure g provides a more elaborate example of a
disconnected domain and its interaction domain.

The master equation (I) describes a spatially inhomogeneous system undergoing
a possibly asymmetric jump-rate (or nonlocal convection) over all of R. An example
of such a system is given by the jump-rate kernel

1Quoi(x) lipuf2,(y)v(x — Y)

where v is a Lévy measure and 11.Quo, is the indicator function given by

1 xEUQ1,

1QuQi(x) := 

{Q

0 x Q U QI .

(3)
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Fig. 1. Finite domain 9 and interaction domain fix given a finite-range process; the particle
can jump within the ball about the point located at center.

Fig. 2. A more elaborate example of a domain Q and its interaction domain (21 given a
finite-range process; the particle can jump within the ball about the point located at center.

Inserting the jump-rate kernel (
equation

3) into the free-space master equation (

ut(x,t) = f (u(y, t)v(y) — u(x,t)v(x)) dy
Qu OE

We remark that the assumption (2) on the jump-rate kernel satisfies

1) leads to the

y(x , y) = 0 for x E f2 and y E Rn (f2 U ,i2/) , (4a)

and leads to the confined nonlocal diffusion equation

ut(x, t) = f (u(y 011(y x) — u(x, t)y(x, y)) dy xEQU Q. (4b)
Qu QE

Realizations of the Markov jump process corresponding to the confined master equa-
tion (4b) are constructed as described in the discussion following (1).

4 Fluctuations

We explained in §g that the fluctuations of a jump diffusion where the jump-rate
satisfies (2) can take on a myriad of forms. Since the activity and variation of the
sample path can be finite and infinite, four categories of particle fluctuations emerge.
The activity refers to the number of jumps, or points of discontinuity, on a finite
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Fig. 3. Realizations of a compound Poisson process, a finite-activity, finite variation process;
wait-times are exponentially distributed with parameter set to 0.2. The jumps are uniformly
distributed in the interval (-1, 1) so that the process is of finite range.

time interval. An infinite activity process contains a countable number jumps and is
associated with a jump-rate that is not integrable, i.e.,

TA

J— 'y(x, y) dy = oo for all A > 0 .À (5)

The variation of an one-dimensional function is the vertical distance traversed along
the graph. The definition is somewhat more technical when the function is n > 1
dimensional but embodies the same concept.

Figures 3-0 display the four categories of particle fluctuations and provide a use-
ful visual. Figures 1 displays a finite activity, finite variation process induced by a
compound Poisson process; the resemblance to a continuous-time Markov chain is ap-
parent. Figure 6 displays Brownian motion, a "zero activity" process (since there are
a finite number—zero—of jumps) of infinite variation. The infinite activity processes
displayed Figures 4, 5 warrant further discussion since a countable number of jumps
over a finite time interval cannot be computed but can be approximated. Define the
radial jump-rate kernel

1  1 
v(Y) := 

m lYi1±a
l(o
'
A)(1Y1), 0 < a < 2 , (6a)

and note that this kernel satisfies the condition (5) and represents a truncated a-
stable Lévy process where the parameter rn, controls the speed of diffusion and is used
primarily so that the axes of Figures 1-5 are aligned. In particular, when 0 < a < 1,
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Fig. 4. Realizations of a infinite activity, finite variation process with jump-rate kernel (N)
approximated by (60) with a = 1/2, A = 1, m = 1, e= 0.001.

then a finite variation process occurs because

iylv(y) dy < 00 (6b)

whereas when 1 < a < 2, an infinite variation process occurs because lylv(y) is not
integrable but

f y2v(y) dy < 00 • (6c)

In order to simulate such a process, we approximate v with the integrable jump-
rate

{ 
1  1 

vm = T Imil+'
M E1+a

E < <

< E

(6d)

with small E . Such an approximation enables us to realize a compound Poisson process
that serves to approximate the infinite activity process.

5 Nonlocal vector calculus

We briefly review the nonlocal vector calculus introduced in M and extensively
developed in It . The calculus will enable us to express the nonlocal diffusion equation
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Fig. 5. Realizations of a infinite activity, infinite variation process with jump-rate kernel
(64) approximated by (60) with a = 3/2, A = 1, m = 1000, and e = 0.001.

in conservative form and demonstrate that the variational form of the equation is well-
posed. This calculus also enables us to pose the nonlocal analogues of the forward
and backward Kolmogorov equations.

Let a, f : 1[8n x n 11:n where a is antisymmetric in x and y, i.e., a(x , y) =
—a(y, x). Define the nonlocal divergence

N

D(f)(x) := fli,, (f(x, y) + f (y, x)) • a(x , y) dy. . (7)

The nonlocal divergence of a vector is a scalar and the definition implies that the
antisymmetric part of f, i.e., 1/2(f (x, y) — f (y , x)) is annihilated. If we suppose that
f is differentiable, then the choice

a(x , y) = —V y (5(y — x)

and an integration by parts implies that

D(f)(x) V • f (x, x) .

The antisymmetry of the integrand of (

f.

(8a)

(8b)

7) grants the nonlocal divergence theorem

D(f) dx = — f D(f) dx . (9a)
1[0\Q
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Fig. 6. Realizations of a Brownian motion with a diffusion coefficient of one half so that
mean square displacement is equal to t.

If we restrict a so that a(x, y) = 0 for x E f2 and y E Rn \ (Q U Q1) where the
interaction domain 01 was defined in §1, then

L\r2 D(f) dx = D(f) dx .
r2i

(9b)

Both integrals represent the flux of the vector field into the region external to Q.
The nonlocal divergence theorem is the nonlocal analogue of the classical divergence
theorem

IQ V • f dx = f • ne-lx,
ao

where we abuse notation to suppose that f is a vector field of only one variable.
The relationship is clear when the relations (8) are invoked. The analogy between
divergence theorems suggests that the orientation given by the unit normal n, or the
sense of direction, is embodied by the antisymmetry of the kernel a.

We now define the operator

D* (u)(x , y) := —(u(y) — u(x)) a(x, y)

so that given the density u, the function D* u is a vector field of the points x and y .
In a similar fashion to ( ), the choice (8a) for the kernel a implies8b

L.D* u dy = —Vu ,
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so that we may conclude that the operator D* can be seen as a nonlocal gradient. Be-
cause D* u is an example of a vector field f, its nonlocal divergence can be determined.
The identity

vDfdx= D* v • f dy dx , (10)
f2us-i1 friuriEff2u0E

is established by direct substitution and invoking the antisymmetry of a. In words, the
identity states that D* is the adjoint operator for D . This is analogous to the classical
identity that the divergence V• is the negative adjoint operator for the gradient V.
Inserting f = D* u into the previous identity and using linearity of the integral on the
left-hand side grants a nonlocal Green's identity

vDD* u dx = D* v • D* u dy dx f DD* u dx , (11)
fauaz ff2U121 .12E

which is seen to be the nonlocal analogue of the conventional Green's identity

f.viudx = f yv • Vu dx f v(Vu • n)cr—lx. (12)
as2

Let v be a smooth, compactly supported function. Then, we can show that

ff2 DD* u dx = v (D* u • n)cri—lx;
I ar2

see [l 11, §5.1] for details. This demonstrates in what sense the nonlocal identity is a
generalization of the conventional identity by avoiding spatial derivatives and replac-
ing surfaces by volumes for boundary and volume data, respectively.

6 Nonlocal convection-diffusion equation

We define the nonlocal convection-diffusion equation

(ut =Df

1 f = µ,u—ev*u,
where µ : x —> and e : x Rn x . The first and second lines
represent a nonlocal Fick's first and second law of diffusion and are the analogues of
the classical laws

f ut = —V • q

1 q=bu+AVu.

Combining Fick's first and second laws leads to the nonlocal convection-diffusion
equation

ut = D(µ u e D*u) on Q U f21 . (13a)

This equation is simply a rewrite of the confined master equation (
identification

4b) with the

-y = a • ea - p • a. (13b)
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An immediate consequence for the equation (13

d
udx— f D (Au— eD*u)dx

dt f oupT OU121

) is

=— f D(pu—eD*u)dx+ f D(pu—eD*u)dx
(2/ 12/

= 0 ,

where we invoked (9) for the second equality. In words, the probability flux out of
Q into 01 is equal and opposite to the probability flux out of 01 into Q. This is
an instance of the more general principle of action-reaction, where f2/ and Q can
be replaced by regions that have no overlap and are separated by a finite distance.
Hence the interaction is not restricted to regions that are in direct contact so leading
to nonlocal diffusion.

The paper [111, Theorem 2.1,§7] demonstrates that a well-formulated nonlocal
balance law is given by the following four equivalent conditions:

1. antisymmetry of //(x, y) := u(y, 01/(y, x) —u(x, t)y(x, y), the integrand of D (pu—
eD*u);

2. no self interaction, i.e., f D(µ,u—eD*u)dx= 0, for all Q;
Q

3. action-reaction, i.e., f f 0(x,y)dydx+ f f 11)(x,y)dydx= 0 for all 12, Q'
.12 .12' 12' Q

that have no overlap;

4. additivity, i.e., f D (pu—eD*u)dx = f D (pu—eD*u)dx+ f D (pu—
s2us-2, Q Q'

e D*u) dx for all Q, 12' that have no overlap.

7 Backward and forward Kolmogorov equations

The consequence derived immediately following the convection-diffusion equation (
suggests that this equation is also understood as a forward Kolmogorov, or Fokker-
Planck, equation because the equation evolves the probability density function for
the jump diffusion. In order to consider the exit-time problem, the nonlocal backward
Kolmogorov equation is useful. Denoting the operator

A:=D(pu)—DeD*u=D(pu—eD*u),

the backward Kolmogorov equation is given by

ut = A*u on Q U OE ,

13)

(14a)

(14b)

whereas the forward equation is given by (13). An elegant, explicit expression for
A* is possible given the nonlocal vector calculus. To simplify matters, we assume,
without loss of generality that e(x, y) = eT(x,y)= e(y,x), so that by the adjoint
identity (10) with f (x, y) = µ(x, y) u(x), the requisite adjoint operator is

A* := µD*u—DeD*u= (p—De)D*u. (14c)
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8 Exit-time problem

11

Let Xt be a finite-range Markov jump process for the confined master equation (4b)
conditioned on Xo = x E Q and let a generalized exit-time random variable be given
by

Tx := inf{t : Xt e Qd C Q11 , (15)

where 0 C Qd C 01. We denote the exit-time generalized since the particle cannot
exit to the region of 121 not in Qd (except when Qd 121).

In contrast to the classical exit-time problem for Brownian motion, we cannot
expect the finite-range jump process Xt to hit the boundary a,fl upon departing Q.
Instead, Xt departs to a location in the interaction domain f21. The density of par-
ticles that have not yet exited Q to Qd evolves according to the nonlocal convection-
diffusion, or Fokker-Planck, equation:

{tit (x , t) = f (u(y,t)-y(y, x) — u(x,t)-y(x, y)) dy, x E f2
s-2uod

u(x,t) = 0, x E ild

u(x, 0) = u0(x), x e [2,

where without loss of generality we suppose that u0 is a probability density over Q.
We define the constraint on the density over Qd to be a volume-constraint, the gener-
alization of a boundary condition, or committing a semantic abuse of terminology, a
nonlocal boundary condition. The volume constraint is necessary because the particle
may jump out of Q into 01. As we will review in §9, the volume constraint is crucial
in showing that the nonlocal convection-diffusion equations is well-posed. Moreover,
the volume-constraint enables us to link the finite-range jump process with a deter-
ministic equation and corresponds to how Monte-Carlo realizations are implemented.

(16)

Fig. 7. Absorbed/censored jump process depicted by the possible steps taken by the random
walker stickman.

Two cases are of special interest.

Qd 0: The system (16) is then a nonlocal analogue of the classical Fokker-Planck
with a homogenous Neumann boundary condition. The corresponding jump pro-
cess models a particle confined to the region Q and is an instance of a censored
process; see the paper  [2] for a mathematical discussion.

Qd QE: The system (16) is then a nonlocal analogue of the classical Fokker-Planck
with a homogenous Dirichlet boundary condition. The corresponding jump process
models the exit-time of a particle conditioned on X0 E Q.

The general case corresponds to a system for a mixed absorbed/censored process
and is the analogue of the classical Fokker-Planck with a mixed Dirichlet/Neumann
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boundary condition. Figure 7 depicts this general case and this section provides the
infrastructure needed to extend the analyses of the narrow escape problem [T-51] beyond
classical diffusion to Markov jump processes.

The homogenous Dirichlet volume-constraint is explicit in the system (16); where
is the homogenous Neumann volume-constraint? Suppose that instead of a homoge-
nous condition, we consider a given source density g. Then we may augment (16) with
the condition

fr2ivad (u(y, t)-y(y, x) — u(x,t)-y(x, y)) dy = g(x) x e 12,

to obtain a modified system. If we specify g 0 over Q then we see that the ho-
mogenous Neumann volume-constraint is also explicitly given by the formulation of
the system (16).

How does the deterministic system (16) conserve the probability of the location of
the particle? The derivation provides the insight needed to properly understand the
distinction between the nonlocal and classical systems evolving the density. Integrat-
ing (16) over Q U Qd grants

d f
u(x,t) dx = (u(y,t)-y(y, x) — u(x,t)-y(x,y)) dy dx = 0 ,

dt j Quad fouQd Lus2a

so that

Iiiji,a u dx = .12Liod uo dx = 1 .

Therefore the probability is conserveof over Q U Qd, i.e., the particle is located either
in Q or has exited to Qd. However, by invoking the volume-constraint,

1 fou(x,t) dx = f f (u(y,t)-y(y,x) — u(x,t)'-y(x, y)) dy dx
S2 QUQd

= ff (u(y, t)7(y,x) — u(x,t)7(x,y)) dy dxr2 Qd

u(x,t)7(x,y) dy dx < 0 ,

where the second and third equalities follow from the antisymmetry of the integrand
and applying the volume constraint a second time, respectively. Note that by the
nonlocal divergence theorem, we may also conclude that the last iterated integral is
the nonlocal flux of probability out of Q into Qd.

We now provide a probabilistic interpretation. Because the probability that the
particle remains in Q is given by

Prob(Tx > t) = ff2 u(Y, 04 ,

1 The attentive reader will notice that this result was derived in the discussion following
(13) by invoking action-reaction whereas antisymmetry of the integrand was used here.
However, both of these are equivalent conditions given the enumerated list in §6.
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then the exit-time distribution is given by

Prob(Tx < t) = 1 — f u(y,t) dy
r2

= f
t
f f u(y, s)-y(y, z) dy dz ds ,

o 12 S2d

where the last equality is the time integrated probability flux. In words, the rate of
change of the probability of the particle exiting to Qd increases to one so that as
time increases the density of particles located in Q decreases to zero. We also see the
effect of decreasing the size of Qd is to delay the time required for the probability of a
particle to exit to Qd. And when Qd 0, then the probability of a particle to exiting
Q is zero for all time.

The mean exit-time

(Tx) := f fou(x,t) dx dt ,

then, in direct analogy with the classical exit time problem, see, e.g., the paper [H],
is given by the solution of the steady-state volume-constrained problem

1 A* (Tx) = —1 x E Q

1 (Tx) = 0, x E Qd 0) 1
(17)

where A* is given by (14c). An equation for the remaining moments of the exit-time
random variable Tx may also be determined via repeated integration, in an analogous
fashion to the classical case; see, e.g., rl 31.

An important question is whether the exit-time distribution and moments are
finite. Given sufficient conditions on the kernel -y, the distribution and moments are
indeed finite; see D for a discussion.

The above analysis allows to consider far more interesting problems than that
depicted by Figure 7; for instance, consider the Figure g. Such an exit-time analysis
is simply not possible with Brownian motion since Q is the union of a disconnected
set of regions—a particle undergoing Brownian motion cannot jump outside of Q.
The report [[4] provides an example of such an analysis.

9 Analysis and approximation of nonlocal diffusion equation

The goal of this section is to briefly review analyses demonstrating that the volume-
constrained nonlocal diffusion equation is well-posed. For simplicity, we suppose that
the interaction domain Q1 = Qd. A crucial aspect of the analysis is that a nonlocal
variational formulation based upon the nonlocal vector calculus introduced in §5 is
exploited.

The analysis proceeds by first demonstrating that the steady-state problem

r Au = b

1 u= 0

on Q

on Q1 ,
(18)

where A was defined in (14a), is well-posed. Then, standard results are invoked to
demonstrate that the time dependent nonlocal diffusion equation is well-posed. This
sets the stage for the development of stable numerical methods for the discretization
of (16) that offer an alternative to averaging the results of realizations of the jump
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process; see [3,4] for numerical results demonstrating the consistency of the numerical
solutions of the volume constrained diffusion equation and Monte-Carlo simulations.

We now review the analysis of the steady-state problem. Given a Hilbert space V
with the inner product between elements u, v

(u, v)v := (u v + D* u • D* v) dy dx ,f.1f..,
the variational problem is: Find u E V such that

a(u, v) = f u bdx Vv E V
n

where the bilinear form a(•, .) is given by

a(u, v) = D* u • (JD* v dy dx — f D (mu) v dxf..,12UilE 0

= I .1.Q., ,r7u.„2,
fil fflUQE

(u(y) — u(x)) (v(y) — v(x)) 7(x, y) dy dx

(µ(x, y)u(x) + µ(y, x)u(y)) v(x) dy dx ,

(19)

and an expression for 7 in terms of a, e, p, was given in (13). The Lax-Milgram
theorem then provides sufficient conditions that when satisfied, demonstrate that (19)
has a unique density u, i.e., the system (18) has a weak solution. The Hilbert space
V is identified with a volume-constrained subspace of square integrable functions or
a fractional Sobolev space given conditions on the integrability of the jump-rate 7 .
The latter space contains the densities corresponding to infinite activity processes.
Continuous dependence upon the data implies the energy is bounded by the data,
i.e.,

(u,u)v < C f b2 dx ;
Q

see [12,8] for details and further discussion. If 7(x, y) = 7(y, x) then the bilinear form
a(., •) is symmetric and the variational problem (19) is the Euler-Lagrange equation
for the minimization problem

min 1- a(u, v) — f ubdx ,
2 n

this is the case considered in [E93]. To the best of our knowledge, this latter paper
was the first to demonstrate that the deterministic exit-time problem for an infinite
activity and finite variation jump diffusion is well-posed. The paper [9] exploits the
analysis in [DI] to demonstrate how the truncated fractional Laplacian converges to
the fractional Laplacian as the length A of the finite-range increases.

One of the hypothesis associated with the Lax-Milgram theorem is to show that
the bilinear form a(•, .) is coercive. Equivalently,

a = inf 
a(v, v)

vEV (Z, V)V

is a positive number. Coercivity can then be used to demonstrate that the moments
of the exit-time are finite; see [4,8] for a demonstration.
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