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Overview
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The properties of shape memory alloys (SMA), such as binary Ni-Ti or ternary

|
Ni-Ti-X alloys, are sensitive to composition
= Temperatures of phase transformation from martensite to austenite or vice-
versa can be greatly affected by composition changes of tenths of wt.%
= Examples Ni-Ti, Ni-Ti-Pd (Pd substituting for Ni), Ni-Ti-Hf (Hf substituting for Ti) shown below
= This presentation: Ni-Ti-Pt (Pt substituting for Ni) alloys, in which we would expect similar
effects
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SMA Behavior Related to Phase Diagram,

Ni-Rich vs. Ti-Rich Stoichiometry
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Fig. 2. Phase diagram of a Ti-Ni alloy by Massalski §55], to which the phase equilibrium between the B2
and TisNis phases are added [56] (reproduced with tfhe permission of ASM International and Materials

Research Society).
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Role of Stoichiometry in Controlling

Behavior of SMAs (not just Transf. Tes.)
e Ti-rich or Ti(Hf)-rich alloys

— Higher transformation temperatures
* Reason for primary emphasis on ternary systems
— No control over microstructure (contain Ti,Ni (Ti,Ni,O,) particles from
melting)
— Actuator properties (load-biased thermal cycling response):
* Often greater transformation (recoverable) strain
* Always Poor dimensional stability
 TWSME

* Ni-rich or Ni(Pt,Pd)-rich alloys
— Lower transformation temperatures (but they can be recovered by aging)

— Microstructural control — many options —Ni,Ti;, P-phase, Orthorhombic,
& other phases
— Actuator properties
* Smaller transformation strain
* Outstanding dimensional stability

— Good superelastic properties
I EEEEEEEE—————————
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Ternary Ni-Ti-Pt AIons
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Phase Transformation Temperatures Determined
by Differential Scanning Calorimetry (DSC)
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« Austenite start and finish on heating, Martensite start and finish on cooling

« Ramp rate 10°C/min, DSC traces stabilize in 2-3 thermal cycles

« DSC results give an indirect indication of chemistry of a given ingot,
microstructural characterization is needed to confirm. (Bulk chemical analysis
methods: too much uncertainty to determine the very small differences in
composition we are trying to measure.)
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Scanning Electron Microscopy and Energy @&
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Dispersive Spectroscopy (EDS) Elemental Maps

= Unexpected differences in the types of =
precipitates observed — another indication of
possible Ni-rich composition.

= Very slight changes in chemistry can occur due
to: Ti oxidation, inhomogeneity during melt
processing, etc.
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SEM/EDS on Micron-Sized Precipitates

* Ni-Ti-16.5 at.% Pt target composition
« Homogenized 60 hrs., 1050 deg C
« Two types of micron-sized precipitates

Semi-Quant EDS analysis in at. %

Ni Ti Pt
Particle 1 4 64 32, likely Tiy(Pt,Ni)/Ti,(Pt,Ni),O,
(oxide stabilized phase, forms during melt processing)

Particle 2 14 48 38, possibly Pt-rich (Pt,Ni)Ti
Matrix 31 47 22, (Ni,PtTi

N|T|Ptetch 12. Omm x2 OOk SE(L) 0. N|T|Ptetch 12.0mm x2.00k GWBSE

@

Sandia
National
Laboratories




TEM: Precipitation of nm-size Second Phase
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General microstructure showing martensite laths
and very fine ppt. phase at room temperature




TEM of Fine Precip @ @
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Dark-Field TEM image Corresponding Bright-Field TEM
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Diffraction Analysis O M.

ZA: <111>B2

Dark-Field TEM. -

ZA: <100>B2

Diffraction patterns showing | .
characteristic “P-phase® ppt. Presence of fine ppts. suggests

spots (circled in red) that the alloy is Ni-Rich.
P-phase is monoclinic Ni9Pt4Ti11 * Acta Materialia (58) 2010, 4660-4673.
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Summary

= The properties of binary NiTi and ternary Ni-Ti-X shape memory
alloys are sensitive to composition, especially on the Ni-rich
side of stoichiometry.

= A range of NiTiPt alloys were produced with 13-18 at.% Pt, with
target composition slightly Ti-rich (50.5 at.% Ti).

= DSC results indicate generally good agreement with expected
trend of transformation temp. vs. Pt content. However, a few
ingots showed low transf. temps. relative to the trend line.

= SEM and TEM characterization are required to determine
whether fine-scale precipitates exist. The presence of fine-scale
precipitates, such as P-phase, confirms that the alloy
composition is Ni-rich. The microstructural characterization
corroborates well with (indirect) DSC data.




