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The Power API provides a method of describing a given system through a collection of objects and 
an imposed hierarchy. The hierarchy of objects illustrates the basic required objects in a system. 
Other objects, such as memory or NICs or accelerators can be added to the object hierarchy either 
as distinct levels or attached to an existing object. For example, a NIC could be attached to a node 
object, being accessible to all other objects beneath the node in the hierarchy.

Each object in the Power API hierarchy has a set of associated attributes, e.g. PWR_ATTR_Energy
and PWR_ATTR_MaxPower, which allow for measurement and control of power related capabilities 
of individual components or groups of components throughout the system. When measuring, the 
applicable attributes are read when controlling they are written to.

In order to provide a comprehensive measurement ability, statistics gathering is integrated into the 
Power API. Statistics may be gathered on any object or attribute providing measurements. Statistics 
can also be gathered over groups of objects, for example one could gather the average power of a 
group of nodes over a given time. Statistics have two interfaces, one for real-time measurement 
and another for gathering historical data from a data store.

In order to be able to utilize the measurement and statistics from the Power API a metadata 
interface is provided that allows for more detailed information on objects. Such information may 
contain how frequently internal sampling is performed for each measurement or how accurate the 
measurements taken are expected to be. This enables easy comprehensive use of the Power API for 
measurement and control purposes

Extreme scale computing requires that power and energy budgets be carefully managed. While much of the work of achieving 
the power targets for Exascale computing will have to be addressed through hardware improvements, the job of utilizing the 
tools made available through hardware will ultimately fall on system software and even applications.

Power caps are likely to be a reality on future top supercomputers. Practical power delivery concerns will impose some limits
while operational costs and power utility generation capabilities will further influence caps that could be dependent on time of
day use. Providing power capping capabilities on a system wide basis is not trivial and individual device power caps must be kept 
consistent with the overall power allocations. 

With power becoming a first-class resource in future systems, applications will have to adapt to this new constraint and balance it 
with performance. Whenever possible power efficient algorithms can be adopted to increase performance for expected power 
budgets. The first step to understanding the power/performance tradeoffs for different algorithms is the observation and study 
of their current characteristics. The Power API enables both the measurement and control of power at both basic and advanced 
levels throughout an entire system, depending on the level of support available in hardware. As power constraints begin to 
impact components other than CPUs, such flexibility will be a key factor in providing a large-scale whole system solution to power 
management.

The intersection of power consumption and system reliability is an area of great interest for future extreme scale systems. The 
power consumption of reliability mechanisms is an important factor in considering overall system efficiency. Traditional 
checkpointing with local SSD checkpoints that are written out to a persistent store is a method that has been proposed for 
extreme scale systems. 

Reliability can impact the gains made through runtime energy savings methods as well. Due to failure and recovery, the increased
runtime that energy saving methods typically incur can result in resilience events like a failure occurring during the application 
runtime that without the lengthen runtime would not have been seen. Alternatively, extended runtime may result in more 
checkpoints being taken, also impacting the total energy usage of the application [2]. 

The Power API enables research in the intersecting areas of power, reliability and performance tradeoffs by providing a 
comprehensive method of gathering power related data as well as providing control capabilities to investigate possible methods 
of solving this difficult problem. The estimated increase in energy due to reliability of several runtime energy savings methods [2] 
based on their published performance and energy consumption results is illustrated below. Finally, we show real power 
measurements through the Power API compatible PowerInsight devices showing the related power measurements during a 
checkpoint in a 4-node system during a store to topologically close network mounted SSDs with differing CPU frequencies [1].

The performance of high-speed networks on power capped systems, and those with large numbers of smaller slower compute 
cores is a topic of interest. Exploring alternative networking approaches, like onloaded networks versus offloaded networks in the 
context of light-weight cores can be of use in deciding which approaches are suitable for next generation systems. The difference 
in network bandwidth provided by two different InfiniBand network approaches has been examined using an onloading approach 
and an offloading approach with different CPU frequencies on an Intel Xeon Ivy Bridge processor server.

Power management of networks may become a reality in future systems, which will require advanced techniques to ensure that 
latency and bandwidth requirements are met for applications while attempting to reduce network power consumption in 
underutilized network links.

The Power API enables network power research by allowing for easy access to per-component measurement and control on 
systems with appropriate hardware sampling support. Through the use of the Power API not only can methods be easily 
researched, but they can be easily deployed as the research development environment and production environment are similar.

The following code example presents several fundamental concepts of the API: context, user role, object hierarchy, hierarchy 
traversal, groups of objects, time stamps, object attributes, measurement and control. This code traverses the object hierarchy to 
cabinet 0 board 4, reads the current power cap for the board and sets the power cap to 500 watts if the current cap is greater 
than 500 watts. Note that the implementation must determine how to split the 500 watt budget among the objects in the 
hierarchy under the board. One could envision similar code in a utility program used by a system administrator.

PWR_Cntxt cntxt = PWR_CntxtInit( PWR_CNTXT_DEFAULT, PWR_ROLE_ADMIN, “Admin CTX” );
PWR_Obj platform_obj = PWR_GetSelf( cntxt );
PWR_Grp cabinet_grp = PWR_ObjectGetChildren( platromObj );
PWR_Obj cabinet0_obj = PWR_GrpGetObjByIndex( 0 );
PWR_Grp cab0_board_grp = PWR_ObjectGetChildren( cabinet0_obj );
PWR_Obj cab0_board4 = PWR_ObjectGetObjByIndex( 4 );
double value;
PWR_Time time;
PWR_ObjAttrGetValue( cab0_brd4, PWR_MAX_PCAP, &value, &time );
If ( value > 500.0 ) {

PWR_ObjAttrSetValue( cab0_brd4, PWR_MAX_PCAP, 500.0 );
}

Interface code example illustrating the use of the PowerAPI for a simple grouped power capping
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Power API Object Hierarchy

Dynamic run time adaptation is one anticipated system software approach to power 
management. In this study, we consider the use of the Qthreads lightweight threading 
library as a power-aware OpenMP run time.  Qthreads transforms work (e.g., loop 
iterations) into tasks and distributes those tasks among long-running pthreads (one 
per core) for execution. Cores residing on the same chip contend for resources, e.g., 
cache and memory bandwidth. Memory bandwidth may become saturated.  In that 
case, throttling some cores into a low power regime may save power, and sometimes 
even improve performance by easing memory contention.

The goal of the Maestro project is to enable Qthreads to make throttling decisions 
online using power and performance counter data.  A daemon, RCRTool, gathers data 
from the hardware counters and posts it to a blackboard. Qthreads checks the data at 
intervals. If it detects that memory is saturated and power usage is high, it applies 
clock modulation to one or more cores on each chip. Power usage of those cores is 
reduced, and the run time scheduler stops assigning them work. At a later time, the 
RCRTool data may show a drop in the memory and power usage. In that case, the 
cores may be returned to full speed and assigned work once again.

An evaluation of the Lulesh hydrodynamics mini-application running hybrid MPI with 
the Maestro OpenMP on each node showed both power/energy savings and improved 
performance. Projected execution times factoring in reliability are even lower since 
fewer failures are predicted when programs finish quicker. Maestro required 
privileged access to machine-specific registers for counter data and clock modulation. 
The Power API presents such measurement and control mechanisms in a vendor-
neutral interface, and the implementation would manage access to them.
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Partner organizations reviewed the API document in July 2014 and subsequently the following September. Prototyping on test-
bed platforms is an on-going effort. Implementation of the API will be included in the deployment of the $174 million dollar 
ASC/NNSA Trinity platform. Moreover, we anticipate and encourage continuing community feedback to drive refinement of the 
API. It serves as a first step toward a vendor-neutral standardization of power measurement and control, which is sorely 
needed as the community grapples with the power and energy challenges of extreme scale HPC.

A key goal of the Power API is to support all layers of the HPC 
software stack. To identify key requirements, an intensive use 
case study considered the interactions between the system 
layers and between users and system layers, as shown in the 
diagram on the right. The use case document was reviewed by 
many community partners (as was the subsequent API).

Informed by the use case study, the Power API defines a set of 
interfaces.  Each interface expresses interactions between two 
system layers (e.g., operating system / monitor & control) or 
between a system layer and a person or entity (e.g., resource 
manager / user). The capabilities and level of abstraction vary 
by interface. While both the hardware / operating system 
interface and the operating system / application interface 
expose power and energy readings, voltage and current is not 
exposed at the operating system / application interface.

The structure of each interface is the same, comprising the 
supported attributes and functions for that interface.  This 
uniformity of design allows shared specification of shared core 
functionality, in addition to the individual specifications of 
functionality particular to each interface.  It also enables the 
vendors working at multiple layers to maintain consistency in 
their implementations of the API.
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Emulation and testing of energy features of hardware is important for 
understanding the viability and usability of attributes exposed through the 
Power API. An early mechanism to exercise these features is through the 
Power API prototype.

Each node of a 102-node cluster has been instrumented with PowerInsight
allowing researchers to collect component level power and energy 
measurements.  Additionally, collections are offloaded to the embedded 
ARM microprocessor allowing for out-of-band analysis and data reduction 
without impacting the node(s) under test.

An in-house software stack (PIAPI) allows us to control and communicate 
the collection rate and direct or intercept sample reports. The PIAPI also 
provides an internal framework for emulating future hardware power 
features on the embedded device and accommodates either push or pull 
modes of operation; subscribe to a collection request or poll instantaneous 
or hardware emulated counter data.

The PIAPI stack is presented through the plugin interface of the Power API 
prototype, allowing access through attributes. An experiment where we 
compare the energy efficiency of memory operations using small vs. large 
pages is shown below.
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When the Red Storm platform was deployed Sandia in 2005, it ranked 
number 6 in the Top 500 list, and few if any other machines offered even the 
most foundational of power measurement and control capabilities.  Starting 
with a RAS-level interface that Cray had exposed, Sandia developed energy-
saving methods for large-scale executions of production codes. These efforts 
were recognized with the NNSA Environmental Stewardship Award and 
influenced Cray toward subsequent power/energy interfaces in future 
systems.  However, these interfaces have been to-date vendor proprietary.

Sandia operates a commodity test-bed cluster which each node is equipped 
by Penguin Computing with out-of-band measurement hardware called 
PowerInsight, described later in more detail. This cluster allows us to do 
research, to prototype power-aware code, and to emulate capabilities only 
now emerging in large-scale systems such as the future ACES Trinity 
platform. Based on our experiences with large systems, relationships with 
vendors, and NNSA/ASC support, we propose the Power API as a starting 
point for common, vendor-neutral power measurement and control in HPC.

SAGE on 4096 cores: P-states 0,2 and 3

Example application on Red Storm: SAGE. Running at P-state 2 using 
4096 cores decreased energy usage by almost 50% while increasing 
execution time by less than 8% compared to the default (P-state 0). 
Similar results observed on xNobel and AMG2006 using 6144 cores.   
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