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Applications

• Explosives safety

• DDT in Pulse Detonator Engines

• Shock impingement heating of re-entry vehicles 
and meteriods

• Afterburning in exhaust gases of jet engines, 
rockets, guided missiles
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Process of Detonation on a P-v diagram

• Shock to 
detonation 
transition at 
early times

• Secondary 
combustion 
at late times
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Unique methodology needed to transition from a 
detonation to a blast wave to a fireball

Detonation 
wave structure 
according to 
ZND theory



CTH: A Shock Physics Analysis Package

• Eulerian shock wave physics computer code solving conservation equations of 
mass, momentum, & energy for multimaterials (up to 98) including gases, 
fluids, solids, & reactive mixtures; constitutive equations (material behavior in 
elastic, plastic, and shock regimes); and failure models

 Analytic & Tabular Equation-of-State representations 

 Advanced Strength & Fracture models

 Adaptive Mesh Refinement

 High Explosive models

 Parallel and Serial platforms

• Applications (CTH licensed to many organizations)

 large strain and/or high strain rate dynamics

 multiphase interactions

 examples include: high speed impact, blast-structural loads and 
deformations, armor/anti-armor, explosive detonation
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TIGER:  History of Development
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• Thermochemical equilibrium codes 
are commonly used to compute 
EOS of explosive products, liquids 
or gases

• Solves thermodynamic equations 
between product species to find 
chemical equilibrium for a given 
pressure and temperature

JCZS2i has 1757 
species: 490 
condensed & 1267 
gases with 189 
ions.



TIGER:  Validation Studies
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Predicted detonation 
velocities within 1.73% 
of data

Hobbs, Brundage, Yarrington, 
15th International Detonation 
Symposium, 2014

JCZS2i and NASA-CEA 
nearly identical for 
composition of rarefied 
air at 0.01 atm, 2,000-
16,000 K

Vincenti & Kruger (1967)



CTH-TIGER: Detonation to Deflagration Coupling
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Blast Chamber Experiments and Results
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Explosive Components Facility 
Test Chamber 

511 g TNT 
charge, 1.60-
1.63 g/cc

CTH Calculations and Experimental Results

Good agreement 
between primary 
pressure pulse 
and gage data

PG1PG2



1D CTH-TIGER Predictions
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Air composition at 250,000 atm as 
calculated with the JCZS2i-EOS

Detonation wave, 
air shock, and 
species 
concentrations up 
to 100 s

Detonation Wave

Blast waves



Species Profiles within Shock (1D CTH-TIGER)
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Both dissociation 
and ionization 
predicted within 
thin air shock 
structures

Detonation Wave Blast wave

Blast wave Blast wave



3D CTH & CTH-TIGER Predictions
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Since CTH-TIGER 
does not model 
mixing within cells, 
appropriate time 
for handoff to be 
determined

Complex blast 
wave structure 
predicted by CTH

3D 
species 
profiles 
at 20 s



Conclusions

• CTH-TIGER developed to transition from a 
detonation wave to an air shock

• Unburned species concentrations within a cell 
predicted at high temperature and pressure 
states

• Distribution molecules, atoms, and electrons 
predicted within thin shocks at early times

• Provides initial conditions for secondary 
combustion
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TIGER: A Thermochemical Equilibrium Code
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