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- Explosives safety
» DDT in Pulse Detonator Engines

- Shock impingement heating of re-entry vehicles
and meteriods

- Afterburning in exhaust gases of jet engines,
rockets, guided missiles
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» Shock to
detonation
transition at
early times

- Secondary
combustion
at late times

Pressure

(A) Initial Point

von Neumann Spike Point
© Chapman-Jouguet Point
® Onset of Combustion in Air
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Volume

VN Spike

Detonation
wave structure
according to
ZND theory

Unigue methodology needed to transition from a
detonation to a blast wave to a fireball
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- Eulerian shock wave physics computer code solving conservation equations of
mass, momentum, & energy for multimaterials (up to 98) including gases,
fluids, solids, & reactive mixtures; constitutive equations (material behavior in
elastic, plastic, and shock regimes); and failure models

= Analytic & Tabular Equation-of-State representations
= Advanced Strength & Fracture models
= Adaptive Mesh Refinement
= High Explosive models __
= Parallel and Serial platforms e oy
- Applications (CTH licensed to many organizations) ':"M" 13 e
= |arge strain and/or high strain rate dynamics
= multiphase interactions

= examples include: high speed impact, blast-structural loads and
deformations, armor/anti-armor, explosive detonation
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Thermochemical equilibrium codes
are commonly used to compute
EOS of explosive products, liquids
or gases

Solves thermodynamic equations
between product species to find
chemical equilibrium for a given
pressure and temperature

Graphical interface

BKWS - covolume based EOS
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JCZS - intermolecular
potential based EOS
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Tecplot 360
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Define EOS surface
using SESAME format

Solve for flow field
from detonation
calculation

Export field data at the
center of each
computational cell

Compute equilibrium
species concentration for
each cell

Append species field
data to previous
Tecplot file
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Initialize combustion fluid dynamics (CFD)
code with species distribution at given

thermodynamic state for each cell volume
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Explosive Components Facility CTH Calculations and Experimental Results
Test Chamber
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Detonation Wave Blast wave
a) Edge of shock at 7 ps b) Edge of shock at 8 pus

W g

10
10%

101 ‘
102 Ly L

L L P L1 L1
46 47 48 49 50 51 5.2
Distance, cm

Concentration, Mole %
Concentration, Mole %

Blast wave Blast wave
d) Edge of shock at 50 ps e) Edge of shock at 100 us
10T I — I P e e e b o L L e =
F T T T Nz E g Cl(c) T T T T T NE
X R
0210' 0, | © 10
[«] [e]
= =
c c
L 1 Lewl S 100
g g
€ c
8 8
5 10t 4 S0
o co.i ©O
qgele 1 1 PRI T SR IR qozb b 1B Wl b
25 26 27 28 29 30 42 43 44 45 46 47 48 49 50
Distance, cm Distance, cm

10



GJAIAA. @ Nt

The World's Forum for Aerospace Leadership

Laboratories

a)t=20pus b) t =50 pus ) t=100ps

Mole %
43

Mole %
0.02

0.002

3D

species
profiles
at 20 ps

11




Sandia
d&!aé%% @ National

T M o oy il Laboratories

» CTH-TIGER developed to transition from a
detonation wave to an air shock

» Unburned species concentrations within a cell
predicted at high temperature and pressure
states

« Distribution molecules, atoms, and electrons
predicted within thin shocks at early times

- Provides initial conditions for secondary
combustion
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Exotic reactants

.

Nonideal thermoequilibrium

Composite explosives
Pyrotechnics
Balloechnics

Point/Grid/Isoline
Explosion/C-J/Hugoniot
Thermal-elastic EOS
Semi-empirical BKWS

Intermolecular potential
JCZ-3
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52 gas species
18 condensed species

Importance

« Many high energy reactants are
composed of diverse compositions

* Predicting high and low pressure
states requires a large number of
species with an intermolecular
potential based EOS models

State-of-the-art predictions
+ Pure liquid shock Hugoniot

* Det. velocities for gas mixtures at
high initial pressures (low to
intermediate pressure regime)

+ Det. velocities and pressures for
condensed-phase explosives within
2% and 8% of measured values,
respectively (high pressure regime)

Publications

* Eleventh (International) Detonation Symp.
* Propellants, Explosives, and Pyrotechnics
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