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What Are FRP Composites? () e

= Composite material: “Composite materials are materials made from two or
more constituent materials with significantly different physical or chemical
properties, that when combined, produce a material with characteristics
different from the individual components.” (Wikipedia)

= Matrix Material = Reinforcement Styles
» Thermoplastics = Continuous Fiber
= Epoxies = Woven Fibers
= Vinylesters = Chopped Fibers
= Carbon = Particulates
= Metals Continuous Fibers Discontinuous Fibers, Whiskers

= Concrete

= Reinforcement Material
= Carbon
= Glass
= Aramids (Kevlar)
= Polyethylene

= Cellulose

=  Aluminum

= Boron
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General Composite Properties () e

= Highly conformable during manufacturing process
= Composite materials do not yield
= Very fatigue resistant

= Age based one humidity conditions
= Can absorb up to 2 wt% water

= Corrosion resistant, except for carbon and
aluminum via galvanic corrosion

= Not sensitive to most standard chemicals
= Solvents, oils, hydraulic fluids, grease

= Have low to medium impact resistance

= Better fire resistance than light alloys

CFRP panel after 20 Joule
impact
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Material Performance Comparison () s

Laboratories

Material Steels Al12024 | Ti6Al4V | Carbon/ Glass/ Kevlar/ Boron/
Epoxy! Epoxy! Epoxy Epoxy?

Density 7800 2800 4400 1530 2080 1350 1950
[kg/m?]

Spec. Elastic

Modulus 26.3 26.8 23.9 87.6 21.6 63.0 107.7
[MPa]/p

Poisson
Ratio

0.3 0.4 0.3 0.25 0.3 0.34

Spec. Tensile
Strength 205 161 273 830 601 1044 718
[kPa] /p

Spec. Comp.
Strength 397 220 739 289 207 1333
[kPa] /p

CTE.
[ppm°C]

Temﬁ,&‘m“ 800 350 700 90 90 90 90

13 22 8 -1.2 7 -4 5

1Fiber Volume Fraction = 0.6
2Fiber Volume Fraction = 0.5



Carbon Fiber Composite Properties () i

= Positives
= High fatigue resistance

= High heat and electrical
conductivity

= Very high specific elastic modulus
= High rupture resistance
= High operating temperatures
(limited by epoxy)
= Negatives
= Delicate fabrication requirements

= Impact resistance 2-3 times lower
than GFRPs

= Susceptible to lightning strike
= Uses

= Aircraft main structural support
= Boeing 787 and Airbus A350 XWB

= Predominant structural/body
material of BMW i3

Laboratories

Boeing 787 Fuselage Nose Section
(httpy//www.nytimes.com)

2=

BMW i3 CFRP Frame
(httpy//www.telegraph.co.uk)
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Glass Fiber Composite Properties () i

= Positives
= Very good impact resistance
= Low cost
= High rupture resistance
= Very good fatigue resistance

= Medium maximum operating ;
R * o = 4
temperature (846 °C) WS T e 7
Siemens B75 Glass Fiber Turbine Blade

" Limited by resin (http://chenected.aiche.org)
= Negatives
= High elastic elongation

= [ ow thermal and electrical

conductivity
= Uses
u PreSSUI'e tankS [l Carbon laminate

[l Carbon sandwich

= Aircraft wing reinforcement = m e

B Aluminum

- Wind turbine blades [[] Aluminum/steel/titanium pylons

GFRP Usage in Boeing 787 (Green)

X CNG Pressure Tank
(Boeing)

(www.azom.com)
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Kevlar/ Aramid Fiber Composite Props. ()

Laboratories

= Positives
= Very high specific tensile strength
= Very high impact resistance
= High rupture resistance
= Very good fatigue resistance

= Negatives

. . . Kevlar Constructed Canoe
= High elastic elongation

(Wenonah Canoes)
= Need to match appropriately with

matrix

= Low maximum operating

temperature
= [ ow thermal and electrical
conduction
= Uses

= Pressure tanks (overwrap)

= Canoes/Kayaks

Kevlar Motorcycle helmet

= Large yacht, patrol boats, and
power boat hulls
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Boron Fiber Composite Properties () i

= Positives
= Very high compressive strength
= Very high tensile stiffness
= High tensile strength
= Readily incorporated into
metal-matrices (Aluminum)
= Negatives
= Cost

= Almost as dense as E-glass Boron fibers with tungsten cores
www.metallographic.com

= Mid-range temperature limit as fiber
= Higher CTE than carbon
= Uses
= Ribbed aircraft engine thrust reversers
= Telescope mirrors
= Driveshafts for ground transportation
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Usage of Fiber-Reinforced Composites  (dh) &

Laboratories

= Over the past 50 years, increased usage of composite materials

M"ﬁw .:.chg.

gt r R"n"‘;

L"I' L ne il d.'s.*i W.’-" o

Military aircraft

Naval structures Wind turbine blades CFRP cable stay bridge




Aircraft Structures (h) e,

Benefits
= Weight-reduction

= Fuel savings
= No corrosion

= Tailorable mechanical properties
= High hoop strength for fuselage

Material CTOL ] STOVL Ccv

- . . . 1 ithi | ¥
High fatigue resistance E— ol e2e 4%k 3w
I | G raphite/Epoxy 322% 32.1% 32.8%
Graphite/BM| 2.4% 2.6% 2.4%
= Reduce part count I | Titanium 17 0% 18.7% 17.5%
I | Steel 11.6% 11.3% 16.9%
[ |Other 13.6% 14.0% 12.7%

= Adhesively bonded joints |E———
Lockheed Martin F-35 JSF material composition

» Reduced rivet count (Boeing)
= Typical composite materials i B
= Carbon fiber/epoxy 45 cuon mmm\ai hearer mat
= Glass fiber/epoxy ) #\E S EaiE
= Boron fiber/epoxy = "__,w#— =T
= Kevlar fiber/epoxy T Va 7 ~ s
S ooy wiepoxy conofpar Unidiectiona
honeycomb E ;;sﬂcar on/epoxy

Fig. 12.4 Schematic section through a typical composite construction for a heli-
copter rotor blade. (Courtesy of Westland Helicopters.)
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Boeing 787

Sandia
National
Laboratories

=  Composites
= Predominantly CFRP

= Fuselage
= Wings

= GFRP for certain lower-load
bearing and impact resistant
applications
= Benefits
= Weight savings

= Fuel savings

= Higher fuselage hoop strength
= Higher cabin pressure in-flight

= Higher humidity

= No corrosion, except Al to CFRP

= Larger windows

Other

B Carbon laminate i Steel 50,

[ carbon sandwich 10%

M Fiberglass Titanium

B Aluminum 15% Composites

50%
] Aluminum/steel/titanium pylons Aluminum
20%

Boeing 787 material composition
(Boeing)
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Boeing 787 Wing Flex () i

Laboratories

Ultimate-Load ~26ft

1G Flight ~12ft

Cn-Ground 0 ft

COPYRIGHT © 2010 THE BOEING COMPANY Smith, T-April-2011, ESASI-Lisbon | 7
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Boeing 787 Wing Flex () i

Laboratories

Boeing 787 wing on the ground Boeing 787 wing at cruising altitude (~34,000 ft)
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Boeing 737 Wing Flex () i

po—
- ,,!,,-..-V,,.-..nf"reqes nl

Boeing 737 wing on the ground Boeing 737 wing on the ground
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Space Structures () i

Laboratories

= Benefits
= Low CTE
= High temperature gradients in
space

= Weight reduction

= Increased cargo capacity

= Tailorable mechanical properties

Spaceship Two mounted on White Knight Two

= Tailorable thermal properties (Scaled Composites)

= Conduct heat from hot to cold side
of spacecraft

= Typical composite materials
= Carbon fiber/epoxy
= Carbon fiber/phenolic
= Kevlar fiber/epoxy

James Webb Space Telescope carbon fiber
backplane (Hexcel)

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 15 of 78




Automotive Structures () i

Laboratories

* Benefits
= Weight reduction
= Fuel savings
= Reduced part count
= Mostly adhesively bonded joints
= High fatigue resistance

= “Cool”-factor S
. . . Carbon fiber honeycomb on the BWM i3
= Typical composite materials (Wikipedia)

= Carbon fiber/epoxy
= Glass fiber/epoxy

High-performance car carbon fiber body
olf Composites
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o e Sandia
Civil Structures (M) i

= Benefits = Typical composite materials
= Corrosion resistance = Glass fiber/epoxy
= Fatigue resistance = Carbon fiber/epoxy

= Conformable fabrication

Totally Tubular
A technology that uses fiber-reinforced COMPOSITE GRAVEL
plastic arches filled with concrete may be DECKING FILL
a solution for replacing some of the |

nation's deteriorating bridges.

ENDS Ot =—

TUBES ARE
ENCASED IN
CONGRETE

Advanced Structurdl Technologies

Workers applying GFRP warp to concrete column
(Department of Transportation)

e
=

Carbon fiber/glass fiber bridge construction in Pittsfield,
Maine (NY Times
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Wind Turbines () i

. Structural Carbon
]
Benefits UD Laminate
= Tailorable laminate properties Sandwich-Foam Adhesive Getgot
PVC Glass TX
= Cheaper (E-glass) LE Band l
= No corrosion l

= Low maintenance

Adhesive Sandwich-Foam

PMI Glass BX Adhesive
\SEE 2 = 7 Sandwich-Foam Structural Carbon
Y PVC Glass TX UD Laminate
Adhesive Source: Gamesa Technology Corp. & Sandia National Laboratories

Cross-section of a Gamesa G87/G90 wind turbine blade
(Gamesa / Sandia National Laboratories)

= Typical composite materials
= Glass fiber/epoxy (current)

= Carbon fiber/epoxy
= Reinforcement for GFRP

= Entire construction

Vestas turbine blade mold
MIT Tech Review
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Pressure Vessels () i

Laboratories

= Benefits
= High hoop strength
= Weight savings

overwrap

= Typical composite materials (composite)

= Glass fiber
= Kevlar fiber

= Low-weight/space applications
= Carbon fiber

liner (metal) adhesive

Schematic of a fiber-wound pressure vessel

Kevlar fiber-wound pressure vessel
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Composite Manufacturing () i

Laboratories

= Fabrication

= Mold-based

» Fluid diffusion/transfer

= Mitigation of voids in matrix
= Approaches

= Autoclave Molding

= Resin Transfer Molding

= Vacuum-Assisted Resin Transfer Molding
= Fiber Winding
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Fiber Architectures () it

= Chopped
= Loose fibers for toughening
polymers
= Tows
= Bundles of fibers that are
continuous
= Tapes

= Groups of tows configured in tapes
for fiber placement

=  Mats

T

= Typically unidirectional fiber D i Y S
li lacki PNINEN NSNS
alignment, lacking transverse BAAAAA
> PNUTSUINGN
strength KKKKKKKKEK
<(// LA AR
= Weaves B s IS
NN \\‘\\\
AN P
= 3D Weaves >>\<' KKK
P
Boeing 787 material composition >> S g < < > <
(Boeing) RIKKKKKKK K
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Fiber Weaves () i

Laboratories

» Plain weave —

= Equal reinforcement (FILLING)

= High crimp
=  Satin weave

= Much lower crimp

= Thickness separation of reinforcement "

- TWlH weave Kevlar/carbon fiber Plain weave
] ngh drape plain weave hybrid (Yates Design)

= Medium crimp

WARP
WEFT WEFT
« Par
| || L 1 1]
| ] ]| III (1 11 L]
[ ]| | ] | ] [ | 1] u L]
III 1] ] III | |
| | I L 1 ]|
Carbon fiber twill Twill weave Carbon fiber 5-H 5-harness satin weave
weave (Yates Design) satin weave (Yates Design)
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Autoclave Molding (h) e

= Approach
= Pre-preged materials or hand-wet
= High temperature
= Vacuum

= Remove air from liquid resin

= Pressure
= Drive remaining bubbles smaller

= Benefits

K. Auto Couple

= Low void content
=  Well understood

= Negatives s
= Autoclaves ~100s thousands N < i ~ | |
= High pressure hazardous ®» U

= Comments sy
= Most used approach

§ Fi
* See Toolmaster® Section CTFE Connection Fitling

Autoclave molding process (Airtech)
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Resin Transfer Molding () i

Laboratories

= Approach = Negatives

= Stack fabric in mold = High mold cost

= Mix/degas resin = Development time

= Flow resin through fabric = Comments

= Cure under pressure = Typically used for well dialed in
=  Positives manufacturing

= Higher toleranced parts

Went

Resin injection
J part Fernale mald

port

Reinforcement

s AL
 kunststotftechrik gmbh I »

Mold for RTM processing RTM process schematic
http://www.keim-fasertechnik.de
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Sandia

Laboratories

Vacuum-Assisted Resin Transfer Molding@ Natora

= Process

= Stack fabric

= Mix/degas resin
= Positives

= [ ow cost fabrication
= Equipment
= Materials

» Qut-of-autoclave resins R PP
VARTM process to form the hull of a boat
= Negatives
= Higher void content

= If vacuum bag fails, whole
part wasted

= Comments

Distribution Media s Membrane/Argal venl e  Sealing e = Great for R&D activities

Peelp Breather cloth i Injection line . G £ 1

Fabric lay-up Bagging film Wenl reat for very large parts
VARTM part/mold cross-section schematic = Wind turbine blades
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Fiber Winding )

=  Process

= Fiber tow pulled through resin bath
= Possibly pre-pregged tape

= Tow positioned across cylindrical part as
mandrel rotated

= Vacuum-bagged, cured in autoclave or
under vacuum

= Positives
= Rapid manufacturing
= High hoop strength parts
= Negatives
= High development time (design)
= Part cylindrical radius limited (fiber can slip)

Semifinished
component

= Comments

= Extensively used for pressure vessels or
cylindrical parts AN I

Fiber winding process

7th Asia Pacific Summer School on Smart Structures Technology | July 5%, 2014 26 of 78




Composite Mechanical Performance ()

Laboratories

= Bottom-up architecture
Mechanical Performance

= Mechanical performance high
tailorable
=  Factors
= Material constituent properties
=  Volume fraction of constituents ) )
Laminate Properties
= Weave
= Qrientation of fabrics

= Location of ply orientation in
thickness of laminate

Lamina Properties

Vil perormance
———
S
e

Fiber/Matrix Properties
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Fiber /Matrix Properties (B e,

Elastic
Modulus 74.0 230 130 400 4.5 3.0 4
[GPa]

Shear
Modulus 30.0 50 12 177 1.0 1.1 1.4

[GPa]

Perigser 0.25 0.3 0.4 0.13 0.4 0.4 0.4
Ratio

Tensile
Strength 2500 3200 2900 3400 130 70 80

[MPa]

Ultimate
Elongation 3.5 1.3 2.3 0.8 2 @ 100°C 2.5 2.5
[%]
C.T.E.
[ppm°C]
Temp. Limit
[°C]

5.0 0.2 -2.0 4.0 110 10 80

700 >1500 149 500 90-200 120-200 60-200



Lamina Material Properties () i

Laboratories

= Need to take constituent properties Unidirectional :
. . . 1Ders i

and make into lamina properties \ /
= Determine properties for /2

longitudinal and transverse

.n'
directions

1
/
= o T T |
I T i
e TR L e

= 1,2,3 notation also used

Iy 1
» Rule of mixture
= Fiber uniformly distributed Specific volume representation of a FRP lamina
= Perfect fiber/matrix bonding
= Matrix is void free I 2
= Lamina has no residual stress
. . . . - - ——
= Fiber and matrix are linearly elastic =~ < Matrix —> Oy
< —»
<« Fiber —r @ — 1
<+ —>
01« Matrix —
«— T L __L »
|

Representative volume of a FRP lamina
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Lamina Material Properties (B e,

= Longitudinal Tensile Modulus I ,
E=VE +VE - — L
. ! =7 m-m : Matrix :: (o7
< —»
. 7 Fiber > — 1
= Transverse Tensile Modulus o & . —
B i ) Mamx Ly
i e—— L — el
A
m Et = Em L
E Specific volume representation of a FRP lamina
(1 -V, )+ -V,
E 2
_ / _
= Poisson Ratio I ttrt j‘__I j__I I
0 | |
I }
| |
= v, =V, +V,v, ! M |
W ! Fiber \IL — 1
| I
: Matrix I
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Lamina Material Properties () i

Laboratories

=  Shear Modulus

- G, =G, 1 G w \ F::;&i \ 1 ffébﬂmm\@
(-7, )+ my, _ T M S
I y ] ; Matrix "&_":"Cﬁ‘r Ag

= Longitudinal Coefficient of
Thermal Expansion

aktV,+a,EV,
EV,+EJV,

O, =

)

= Transverse Coefficient of Thermal
Expansion

v,E, -v, E,

m_|_E'f

Vf |4

= a=a,l, +al, + o(af—am)

m
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Laminate Stack Sequences (h) e

= Nomenclature
= [0/+45/90/-45]xs
= / -separates each ply

= Subscript the number of that ply
orientation in a row

= Subscript N indicates how many . | _
times this layup sequence is Unidirectional Cross-plied
. {luil.‘il-l?i’['lll'(lpll’.‘
repeated in the stackup

= S means symmetric about the
neutral axis
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Lamina Mechanical Properties () i

( h [ — p— — A O —
O, £, E, Ej||¢€, ak,
To) [ Ly L£yn LBy (V] oLy

E, =E cos’0+E, sin*0+2cos’Osin’ Q(VﬂE +2Glt)

E,, =E,;sin*0+E, cos'0+2cos’ Osin’ Q(VﬂEZ + 2Glt)

E, =cos’0sin’0(E, + E, —2v,E, )+ (0032 0 —sin’0)G,
E,, =cos’0sin’0(E, + E, — 4G, )+ (0032 0 +sin’ 9)‘5117?1
E,, =—cos@sin Q[E cos’ 0 —E, sin® 0 — (0032 0 —sin’ Qth,E +2G, )]
E,, =—cosfsin Q[E sin® @ — E, cos” 0 + (0032 0 —sin’ Qth,E +2G, )]
- E . _ F

: l-v,yv, " 1-vyv,

aE, = E cos’ 0(a, +v,a, )+ E, sin’ 0(c, +v,a,)
ok, = E,;sin” 8(a, +v o, )+ E, cos’ O(c, +v,t,)

OTE = cos 0 sin Q[E(at +vltal)+17?t(a, +Vﬂat)]
-
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Laminate Mechanical Properties () i

Laboratories

= Symmetric laminates
= Pure in-plane contributions to in-plane strain

(Nx\ _An A, A13_ fgox \ (<O‘Eh>x \
N, =4y Ay Ay &, —ATS <aEh>y >
kay) Ay Ay Ay wuey k<aEh>xy)
%ﬁ«
N plies L N N plies N plies
(@Eh) = ) GE't, (0Eh) = ) &E,t,(0Eh) = ) GEt,
k= lﬁly k= lﬁly k= I;fly
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Laminate Mechanical Properties () i

Laboratories

= Bending
= Stiffness comes from outer plies, predominantly r 5 )
= Pure bending contributions to flexure O W
r N — — 2
Ox
M y C11 C12 C13 PYI
i 2 |-Mm,| |Cc, C, C Y
21 zﬁﬁ = '?"‘f‘i. L Xy | 31 32 33 | a WO
: | -2
N, —/ e x
\__/ #rc bending {VO ~ y 7
N plies ( Z3 Z3 )
_ ol k k-1) _
k=15,
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Non-Symmetric Laminates ()

= What happens if the laminate is not symmetric?
= In-plane/bending coupling is no longer zero
= Bending CTE is no longer zero

plzes

— | z; =z}
Z E k k-1
ply
N plies Z Z
<aEh > Z YO - ; ¢
= 1 2 L TN i -
ply { 21 % 2 Flexed
| Mid-plane == configuration
plzes \ / w,
z? Z ? v M ’
aEh’) GEF| 2" 2| X e
e {
2 \_/ Before bending "o
ply
N plies

<aEh2> > QEy 2 = Zi

2
k=12,
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Non-Symmetric Laminates ()

Laboratories

= In-plane/bending contributions are now non-zero
= Full matrix would be even larger when taking into account z axis as well

= Non-symmetric laminates tend to have warpage after cure due to residual stress
from epoxy lock-in during current

( gox N
( ' ] [ (aEh) |
Nx A11 A12 A13 B11 B12 B13 gOy g Eh;x
aq
N y Azl Azz Azs le Bzz Bz3 yzoxy - y
aq
< Txy | _ Ay Ay, Ay By By, By < a@ M;O | _ AT < 2>xy >
My Bll B12 B13 C11 C12 C13 a)gwo <O£Eh2 >x
-M X B21 Bzz st C21 sz Czs B ay2 <aEh > y
L M, ] By By By G Gy Gy O’ w <O£Eh2 >
— 2 0 L XY )
Ox0y |
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Composite Damage Modes () i

Laboratories

= Susceptible to damage due to:

= Strain, impact, chemical
penetrants, multi-axial fatigue

};@Jé“&@
= Damage modes: f&*‘:h*j;": ";;-"»
= Matrix cracking s | AR
" Fibel‘-bl‘eakage Visual inspection ' C-SCAN ultrasound 1mage
= Delamination CFRP panel after 20 Joule impact

= Transverse cracking

= Fiber-matrix debonding
= Matrix degradation

= Blistering

=  Difficult to detect
= Internal to laminate structure
= Nearly invisible to naked eye

= Current methods are laborious
Aircraft ultrasonic inspection (Composites World)
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Current NDE Methods () i

Laboratories

Radiographic Evaluation Acoustic Evaluation
X-Ray Computed Tomography Acoustic Emission

o Dttt

Evaluation

Thermographic Evaluation
Passive Thermography

Electro-Magnetic Evaluation
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Scope of This Work () i

Laboratories

= Low velocity impact

= CFRP panel
" [0/90]
* 100 mm X150 mm

= Drop-weight impact events
= Subjected to 10, 20, 40, 60, and 80 ]
= 1.5” diameter hemispherical tup
= Fixed impactor weight

= NDE methods
= X-Ray computed tomography
= Active thermography (Flash)

= Vibro-thermography

=  Ultrasonic C-scan <€ >

= Electrical impedance tomography 100 mm
(EIT)
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X-Ray Computed Tomography ()

Laboratories

= Hard tomographic method

= Straight imaging path X-ray —
Obposi Source
" pposing X-ray source and
= High resolution
T

=  Micron resolution
o X-Ray Detector

detector =

= ~37 min acquisition time -

= High price v
= ~$100,000+

= Computationally intensive
reconstruction

= Experimental Setup
= 130 kVp x-ray source (Phillips)
= ~13 pm focal point

= Varian 2520V amorphous Si
detectors
= Csl scintillator
= 127 pm pitch
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X-Ray CT Results () i

Laboratories

= Carbon fibers easily visible
= X-Ray adsorption of carbon
= Fiber bundles discernible
= Fiber breakage

= Bundles, not single fibers

= Delamination See other power point for video

= Fiber displacement

= Epoxy not visible

= Extent of matrix damage
= Pros:

= High-resolution imaging

= Full reconstruction of part
= Cons:

= Not sensitive to interfaces

= Expensive .
80 J Impact Specimen

10 J Impact Specimen
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Flash Thermography () s

Laboratories

= Transient thermal imaging = FLASH Thermal Wave System
= Subsurface defects detected = Flash lamps
= Thermal diffusivity mismatch =  Galileo IR camera
= Epoxy/Air interface easily visible = 60 frames/s
= Delamination = 256 x 256 pixels

= Measurement time: <1 min

Heat

ﬂ L A
M Tsu.rf

> —»
IR camera [, / defect
_'
F +
nd

> — 2
ﬂ I — U defect << U natrix
Heat conduction Surfac‘:e t?mp.erature
distribution
Excite Surface Probe Internal Measure )
Structure Surface AT Frocess (Thermal Wave Imaging)
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Flash Thermography Results () i

Laboratories

= Discontinuities visible
= Delaminations
= Composite cracking
= Subsurface discontinuities

= Deeper discontinuities appear later

= Pros See other power point for video

= Discontinuities are prominent
= Damage indicated
= Perfect for delamination
= Cons
= Lower resolution

= Lower sensitivity
= Cracks parallel to pulse

= Damage can mask underlying .
damage 80 J Impact Specimen

10 J Impact Specimen
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Laboratories

Vibro-Thermography () i

= Imaging technique
= Ultrasonic actuation
= Thermal imaging
= Waves generate heat at interfaces
(damage) within specimens
= Experimental Setup

= 1 kW, 20 kHz ultrasonic source
= (0.2 sburst

High speed thermal imager

Images taken:
= Start ultrasonic actuation
= End ultrasonic actuation
= After ultrasonic actuation

= Measurement time: <1 min

Only 10 J specimens imaged
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Vibro-Thermography Results

Sandia
National
Laboratories

= Discontinuities radiant heat
= Matrix cracking
= Fiber breakage
= Beginning of excitation
= Surface waves heating surface
damage

= After excitation
= Heat generation is at a maximum

= Indicative of deeper located
damage radiating outward
= Typical of composites

= Pros:
= Discontinuities visible
= Cons:
= Lower resolution
= Not as sensitive to delamination
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Laboratories

Ultrasonic C-Scan () i

= Pulse-echo imaging
A-scan
- Reflected energy in time

B-scan
- Through thickness scan

C-scan

- Rastered, lines of pixels
= Effective at imaging interfaces
Dissimilar acoustic impedances

Attenuation limits depth of scan

= Experimental Setup

Focused imaging schematic

» Focused Transducer
5 MHz
1.5” focal length

= Scanning Time: ~5-60 min
Resolution dependent

Example A-scan




Ultrasonic C-Scan Results () i

Laboratories

= Sensitive to interfaces
= Changes in acoustic impedance

= Delaminations
= Fiber bundle-matrix interface

= Some cracks transverse to waves
= Pros:
= Sensitivities:
= Delamination

= Geometry changes
= Hand-held compatible
= Cons:

= Insensitive to fiber breakage
= Uniaxial tensile tests

= Lower sensitivity to over-lapping
damage

4 >1\ X=1.038 Y¥=0.8381 AMP{%): 77.870 (3 _AMP | G2 | CH1 I 4|

C-Scan of 80 J impact specimen
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. . . Sandia
SHM Design Considerations [ .

Current NDE limitations:
= Labor intensive
= Expensive equipment
= Structures must come out of service

= Experience technician required to
interpret results

o :-?1: !-'I-'- “ -
SRS E s

.~

-

Boeing 787 (Boeing)

Successful SHM systems:

1.

O 2N

Directly detect and measure damage
Determine the damage location
Ascertain the size of the damage
Quantify the severity of the damage

Achieve multi-modal sensing
capabilities (i.e., delamination, cracking,
and chemical penetration)

Golden Gate Bridge (Wikipedia)
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Laboratories

Fiber Optic Sensors () s

Optical Fiber _,|A|<_ n,

= Light-based method

= Reflection/refraction of light used
for sensing

() ]:IZZZZZZZZ :; 1
Fiber Core o,

Core Refractive Index

=  Sensors : s
= Fiber bragg gratings '
= Strain/temperature Spectral Response 2,
. P P P
= Brouillon sensors m If_\/\ ‘ /\
* Strain/ temperature Input 4 Transmitted 4+ Reflected 4
* Plain Explanation of a fiber bragg grating sensor
= Crack detection (Wikipedia)
Benefits .‘.'.gg:..ooooo.
= Embeddable ..0:::’.::::::.
T . el p @@ @9
= Radiation insensitive o0 0009/ ..:'o.::
i i TX XD 000!
g ?I};gh density of sensors along one 1390 o0 0o : Seel
1ber ° °
000388000000

Density/refractive index changes that cause

Brillouin scattering (Wikipedia)
- __ ____
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Laboratories

Embedded Fiber Optics () i

Layup composite with embedded
optical fibers

=  Positives

= Sense damage/strain internal to
composite
= Resin cure monitoring
= Temperature distribution
= Residual stress field from cure .
= Ne gatives SEM image of embedded optical fiber in GFRP composite
» Fiber diameter <100 microns leads (Epsilon Optics)
to decrease in fatigue performance
= High stress concentration where
fiber enters composite

= Leads to easily fiber fracture

FBG sensors network
FBG optical fibers embedded in rocket motor GFRP
structure (2008 X. Chang et al.)
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Acoustic Emission

Sandia
National
Laboratories

= Approach

= Piezoelectric sensor
applied/embedded to composite

=  Monitor for emission of sound
from damage event

=  Characteristic of emission used to
determine damage type

=  Positives

= C(Canlocalize and characterize
damage event
= Negatives
= Constant monitoring at high data
rate to detect damage events

= Equipment can be bulky and
expensive

= Getting a lot better

2. AMPLIFICATION R

Preamplifiers Acquisition system

3. AQUISITION
AND STORAGE

+-

4. DISPLAY |}

1. DETECTION

e

< [

o
[B==" A}

m—

SEM image of embedded optical fiber in GFRP composite
(Mistras Group)

Rise

Volts Time

\’/ Energy

Amplitude

L _ L LN L _ Threshold

\.U”UU T

UWUUHUUWUU““ Time
Threshold

i

Duration

SEM image of embedded optical fiber in GFRP composite
(TMS)

Counts

Time
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Ultrasonic-based sensing () i

Laboratories

= Approach

= Propagate a stress wave across the
structure using piezoelectric

= Wait for response at same or other
sensor

= Analyze for spatial and damage

< e Acellent’s Smart Layer ultrasonic sensors
characteristics

(Acellent Technologies)
= Positives

= Rapidly maturing field
= Sensitive to many damage modes
= (Canlocalize damage
= Negatives
= Data acquisition and amplifiers can

be bulky

= Recent efforts have reduced
hardware significantly

Metis Disk ultrasonic-based sensors
(Metis Design)
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Embedded Sensing via CNT Thin Films (@)%

Laboratories

PART I PART II PART III
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using sensing skins
modal sensing polymer composites

10

20

15
7' [kQ]

1. Harness unique material

‘ 3. Deposited thin films on FRP for 5. Electrical impedance tomography for
properties of carbon nanotubes strain sensing spatial conductivity mapping
2. Layer-by-layer “bottom-up” 4. MWNT-latex multi-modal 6. Distributed spatial damage sensing
thin film multi-modal sensor sensor via spray deposition based on sensing skins

design
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Carbon Nanotubes (M) o

=  Multi-walled carbon nanotubes (MWNT):

= Rolled concentric cylindrical structures constructed of graphene sheets
= Diameter: 6 ~ 100 nm

= High-aspect ratios: ~10°to 107

= Metallic conductivity

= Five times stiffer and ten times stronger than steel

Aligned carbon nanotube forest TEM imagery of an end cap of a MWNT
Thostenson, et al. (2001) Harris (2004)
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Layer-by-Layer (LbL) Method ()

Laboratories

= Sequential assembly of oppositely-charged nanomaterials onto a charged
substrate
= Bottom-up fabrication methodology
= Incorporation of a wide variety of nanomaterials
= 2.5-dimensional nano-structuring to design multifunctional composites
= Excellent physical, mechanical, and electrical properties:
= Physical: homogeneous percolated nano-scale morphology
= Mechanical: high strength, stiffness, and ductility

2. Negatively-charged
monolayer
MWNT-PSS

1. Positively-c
monolayer
PVA, PANI,

DI Water

0. Negatively-chafged
substrate
GFRP composile
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Laboratories

Nanocomposite Morphology () i

= Mechanical strength and electrical conductivity/sensing derived from percolated
thin film morphology

= Homogeneous composite with similar properties across entire film
= Scanning electron microscopy (SEM) imagery to evaluate percolation and uniformity

Scanning electron microscopic (SEM) cross-section view Surface SEM image of a [MWNT-PSS/PVA],, thin film
of a [MWNT-PSS/PVA];5, thin film on GFRP
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0 c Sandia
Presentation Outline () i

Laboratories

PART I PART II PART III
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using sensing skins
modal sensing polymer composites

10 20

15
Z'[kQ]

1. Harness unique material 3. Deposited thin films on FRP for 5. Electrical impedance tomography for
properties of carbon nanotubes strain sensing spatial conductivity mapping

2. Layer-by-layer “bottom-up” 4. MWNT-latex multi-modal 6. Distributed spatial damage sensing
thin film multi-modal sensor sensor via spray deposition based on sensing skins

design
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Laboratories

Strain Sensitivity Validation () i

Objective:
= Validate thin film electromechanical performance deposited on GFRP
= Specimen preparation:
= Attach two conductive electrodes and composite tabs
= Nanocomposite electromechanical performance characterization:
= Apply monotonic and dynamic uni-axial tensile loading to specimens

OO ooOO
[even]en]an]an )

Agilent 34401A
6.5 Digit Multimeter

Thin film on
glass fabric

[ [ T | | o [ |
eo0e [ s s [

Q
E Agilent 4294A
¢ Precision Impedance Analyzer

Fiber-coated specimen Thin film mounted in load frame Time- and frequency-domain strain sensing
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Sandia

Laboratories

Electrical Impedance Spectroscopy (EIS) ()=

= Electrical impedance spectroscopy: 3.000
= Provides greater insight as compared
e 2,500/
to bulk resistivity measurements
= Measurement of complex electrical 2,000
impedance across spectrum of S 4 500!
frequencies (40 Hz - 110 MHz) N
1,000 |
V .a') ! 7l
2@)=" Y |z L9 = 7@+ ') w0 " easurd
[(jow) Fit
7000 8500 10,000 11,500 13,000
= Physically-based equivalent circuits Z1a]
are used to fit to the impedance data C,
. 1

NN\ — - o

Proposed equivalent circuit model for LbL thin films
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Monotonic Sensor Characterization () i

Laboratories

. : C
= Load frame applies stepped-tensile |
displacement profile: = ‘
= Monotonic increasing strain to failure NVN— °
= Capture full sensors response 60,000 - VoY
P
;

= Equivalent circuit model-updating:
= Fitting with nonlinear least squares

= Extract fitted circuit parameters as a
function of applied strain

Strain [ue]

= Bi-functional strain sensitivity:
= Low strain region:

= Linear response (elastic)

= High strain region:

Normalized Component Change

* Quadratic Response
= Damage to GFRP/thin film

§ >1 /2112011 | Lens | ode | W
5:44:29 PM | Immei sion | 5.2 m

Damage forma'e e
. fepeee - . 30,000
Strain [ug]
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Dynamic Sensor Characterization () i

Laboratories

Low Dynamic Strain Profile High Dynamic Strain Profile
8,000 7 25,000F - - ‘—‘ s T
L = ke iR Y. 1
T 6,000} ﬁ 17 18,750 | " ‘ﬁ | | |
£ 4,000f {1 £ 12500 -—‘ - - I' | =
U) 21000 - CD 6‘250_ I_|| :[—I |'—I /—‘ !_ -3
0 | - 0 bl 1 | ‘ 1
0 1000 1500 0 500 1000 1500
Time [s] Time [s]
140 \ \ ; : 1
—— 25 Bilayers / \
120F| —*— 75 Bilayers “‘ \\ E 0.81
! | 3 | | :
LOVX strain (gldgtic): \ | \ 08 :
= “SMWNT stretchmg énd separauqn 0.4
@ 80+

0.2¢

= EN e?a’ave time trend\ s‘/ \

|

-0.27

Normalized R~ Change [%]

ion
0.4} 1

2 . Ve o\ :/' -

0v4“'\'1f!’—.'*/*'vﬂ 1 . 061

——
oo O " "o o o

L L L _0-8 I L _0-8V
0 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 0

2,000 4,000 6,000
Time [s]

Time [s] Strain [pe]
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Preliminary Results () ..

= Application of a strain sensitive carbon nanotube thin film:
= Layer-by-layer deposition process
= Direct deposition on GFRP
= Demonstrated piezoresistivity

= Bi-function strain sensitivity:
= Time and frequency-domain characterization
= Demonstrated in monotonic and dynamic loading
= Low strain region:

* Linear strain sensitivity
= High strain region:

* Quadratic sensitivity

= Damage accumulation

= Deposition limitations:
= Substrates required to be less than a few square inches in size
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Sprayable MWNT-Latex Thin Film Q=R

= Rapid large-scale deposition
= Required for mass deployment of methodology

= MWNT-PSS/Latex paint formulation
= Collaborated to improve initial Sandia formulation

= Sub-micron PVDF creates mold for MWNT
organization

=  Off-the-shelf deposition method

wre,
J nanotube ink

i (PSS wrapped MWCNT)

L WNSTI7 ﬂ J
‘\\0\“\ 3 Uig-p

& i Kynar Aquatec™ latex solution Forms segregated
(avg. particle size 150nm) MWCNT network
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MWNT-Latex Morphology () deir

Laboratories

= Creation of MWNT networks:
= Electrical percolation above 1 wt% MWNTs

= Fiber-reinforced polymer deployment:
= Surface applied to post-cured composites
= Applied to fiber weaves for embedded sensing

Cross-section and MWNT network SEM images of 3wt% MWNT-Latex film
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MWNT-Latex Characterization () i

= Electromechanical characteristics:
1.6

Applied 25 BiL PSS-MWNT/PVA TF
Applied 50 BiL PSS-MWNT/PVA TF
Applied 75 BiL PSS-MWNT/PVA TF

O/ _N\A/N

" Quasi-static testing
= Nearly same sensitivity as LbL

= Bi-functional strain response
= Linear
= Quadratic

- Cracking of film ¥
:
= Thermo-resistance coupling: %
= -50° Cto80° Cover?2hours 5
= 2 hour holds ZE
= Inversely linear relationship
= Non-linear response @ -30° C
-~ ~T,ofPVDF  Eleimasas LD s sl i
= Restructuring of MWNTs
Saal, 5,000 1,000 20,000 30,500 40,000

W

Strain [pe]

Pt

o =
L
B8/

7, & o
e < o A
0 engnes
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0 c Sandia
Presentation Outline () i

Laboratories

PART I PART II PART III
Development of carbon nanotube- Embedded nanocomposite strain From point-sensing to distributed
based nanocomposites for multi- sensors for glass fiber-reinforced sensing using sensing skins
modal sensing polymer composites

1. Harness unique material

‘ 3. Deposited thin films on FRP for 5. Electrical impedance tomography for
properties of carbon nanotubes strain sensing spatial conductivity mapping
2. Layer-by-layer “bottom-up” 4. MWNT-latex multi-modal 6. Distributed spatial damage sensing
thin film multi-modal sensor sensor via spray deposition based on sensing skins
design
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Laboratories

Spatially Distributed SHM Paradigm () &

= Current state-of-art in structural health monitoring:
* Passive SHM using acoustic emissions
= Active SHM using piezoelectric sensor/actuator pairs
= “Sensing skins” for spatial damage detection:
= Objective is to identify the location and severity of damage
= Monitor and detect damage over two- (or even three) dimensions
= Direct damage detection

(Boeing) (Boeing)
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Laboratories

Electrical Impedance Tomography () i

= Opverview of spatial conductivity mapping

= Since film impedance calibrated to strain, conductivity maps can correspond to 2-D
strain distribution maps

© O
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Typical EIT Reconstruction

Laplace’s equation:

= V. (G V¢) — (), where & can vary by orders of magnitude

= Governs potential and conductivity relationship

Forward problem: conductivity known, solve voltage

Inverse problem: voltage known, solve conductivity

AC

voltage
measurements

®,, = [v)..v,]

Sensing skin

|
I(w) Boun dﬁ

with inherent
a-distribution

Vio Vo Vg

Output

o-map

Yes

( Finite \
element
formulation

_J

Update

Ao No

PAUSE

Convergence?
error < 0.05%

(. N
Predicted
boundary
voltage
output
Py
\_ J
Iterate
Forward
Problem
(. )
Minimize cost
function
fo) =
Y || drerdo)-v |I°
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Linear EIT Reconstruction () i

Laboratories

= Reconstructs small 6 changes: AG ( ) ( )A V
= Typically difference imaging H WH + A‘R H 74
" 0,-0,<<0,
= Maximum a posteriori (MAP): Ao AV
= H: sensitivity matrix —=BA—
o,
H(Gbkgd )ij = ?ﬁ

= Regularization hyperparameter: A

= Noise figure
NF())= SR, <1
SNR

out

= Use representative ¢ distribution
=  W: Noise model
= R:Regularization matrix

Mormalized Conductivity Change

= Advantages:

= (Can pre-calculate H

= Many damage modes lead to small
changes in ¢
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Validation EIT () i

Laboratories

= Applied sensing measurements Current Injection Pattern
= MWNT-Latex deposited upon cured GFRP
composites 60

= 78 mm x 78 mm sensing region

40

= 8x8 electrodes scheme = 32 electrodes

= 3 mm electrodes 20

* 6 mm spacing

= Investigate stability and efficiency:
= Computational demand

= ~ 71 sreconstruction time

= Accuracy characterization:
= Conductivity:
= Point-to-point resistance map via 4-pt probe

= Spatial feature ID sensing resolution

Mormalized Conductivity Change

= ~ 6 mm cross at center with -50% Ao
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Spatial Strain Sensing () i

Laboratories

= 4-pt bending = Strain sensitivity
= ASTM D7264 = Nearly linear
= MWNT-Latex on GFRP
= Stepped displacement profile
= Tensile/compressive strain

0.8

04rm ~

Normalized Conductivity Change [%]

-0.41
re
0.8 :t::i

2 L 1 L L 1
-4,000 -2,000 0 2,000 4,000 6,000
Strain [pe]
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Embedded Spatial Sensing () s

Laboratories

. . Current Injection Pattern
= Embedded sensing architecture T

= MWNT-Latex on GF fiber weave 60
= Embedded within epoxy matrix

[\
[e)

= Specimens
= [0° /+45° /90° /-45" ], 00" 20 40 60 78
=  Unidirectional GF

= 150 mm x 100 mm
= ASTM D7146 Standard

= Anisotropic EIT
= Isotropic > Anisotropic
= Scalar » Matrix: o
" Oy >0 by~2:1

Mormalized Conductivity Error

" V-(6V$)=0
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Embedded Spatial Sensitivity ()

Laboratories

= Embedded sensing validation:
= Determine conductivity change

sensitivity
8 10
= Process:
-1
= Progressively larger drilled holes:
7 7 7 7 7 7 7 g2
ATV RV STV PR TN F R P ®
= Anisotropic EIT performed I° &
= Conductivity change from pristine t g
= k1
sample g -
6 &
e
7 <
20
-8
1 "
/16 9
0 -10
0 20 40 60 8
X [mm]
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Laboratories

Impact Damage Detection () i

= Drop-weight impact tests
= ASTM D7146
= 78 mm by 78 mm sensing region

= MWNT-latex on glass fiber weave
= Impact energy: 20, 60, 100, 140 ]
= Before/after EIT measurements

=  Verification:

e G0 e e I

= Thermography

= Matrix Cracking

= Delamination

= Photographic Imaging

Top Bottorm

= Surface damage

-0.5

—
—

i
Normalized Conductivity Change
pygini]|
iy
o }

—_
n

Normalized Conductivity Change

0 20 40 60 78 0 20 40 60 78
X [tm] X [trum]
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Sandia
Summ ary @ National

Laboratories

= Propose a next-generation SHM system
= Direct in situ damage detection
= Monitor location and severity of damage

= Embedding multi-modal sensing capabilities
= Development of MWNT-nanocomposites for SHM
= Characterized electromechanical response to monotonic and dynamic strain
= Response to temperature swings

= QOutline validation of EIT for damage detection
= Strain sensitivity
= Damage sensitivity
= Impact damage
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Thank You! () i

Laboratories

o Exceptional
Questions?
in the
national

interest
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