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‘ Motivation

Despite improved algorithms and powerful supercomputers, “high-fidelity”
models are often too expensive for use in a design or analysis setting.

Application areas in which this situation arises:

* Compressible captive-carry (center 1500): LES can
take weeks because very fine meshes and long
times are required.

* Ice sheet modeling (center 1400): Bayesian
inference of high-dimensional basal sliding field at
ice bedrock is too large to solve using conventional
methods (MCMC) without ROM (dimension
reduction).

Antarctica Ice Sheet Example

* Measured output: surface velocity
*  Unknown input: basal sliding
coefficient at bedrock
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Outline

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

* Part 0: Overview of POD/Galerkin Approach to Model Reduction.
e Part 1: Approaches for building a priori stable ROMs — Compressible Flow.

* Part 2: Approaches for stabilizing a posteriori unstable ROMs — Linear Time
Invariant (LTI) Systems.

This work was done as a part of |. Kalashnikova’s early career LDRD project entitled

“Reduced Order Modeling for Prediction and Control of Large Scale Systems” (FY12-FY14)

[follow-up work from FYO7-FYO9 LDRD project led by M. Barone entitled
“Reduced Order Modeling for Fluid/Structure Interaction”]

Key Research Team Members (left to right): |. Kalashnikova (1442), B. van Bloemen Waanders (1441),

S. Arunajatesan (1515), M. Barone (1515), J. Fike (1526) !‘I'l
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High-Fidelity
Simulations:

Snapshot 1

Step 1

Snapshot 2

Snapshot K

Modal
Decomposition
(POD): Slapie

——

x(t) =~ ®&arxar(t)

SVD: X = UXVT

Snapshot matrix: X = (x!, ..., xK) € RV*K
v, Py)=UCG,1: M)

Truncation: ®@,; = (¢,

Galerkin Projection
of LTI FOM:

®7; [x(t) = Ax(t) + Bu(t)]

]

roper Orthogonal Decomposition (POD)/
Galerkin Method to Model Reduction

“Small” ROM
LTI System:

N = # of dofs in high-
fidelity simulation

K = # of snapshots

M = # of dofs in ROM
(M << N,M << K)

XA {i}
yar(t)

ST AP\ xp(t) + 1, Bul(t)
C®prxa(t)

m
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Continuous vs. Discrete Galerkin
Projection

Continuous Projection Discrete Projection

Governing PDEs Governing PDEs

q=~Lq If PDEs are 9=Laq
linear or have —
High-fidelity model polynomial High-fidelity model
qy = Axqy non-linearities, qy = Ayqy

projection can
be calculated in
offline stage of

Continuous modal Discrete modal

basis* ¢;(x) MOR. basis @
Projection of governing PDEs Projection of HF model
(numerical integration) <€— Part 1 of talk. (matrix operation)
ROM €— Part 2 of talk. | ROM
c ; — T
a; = (¢, Lop)a, a, = ¢ AyPa,

Senidia

Il
* Continuous functions space is defined using finite elements. ﬁfﬁg%nes




i Stability Issues of POD/Galerkin ROMs

Full Order Model (FOM)
q(t) = Lq(t) + N (q(t))

Reduced Order Model (ROM)
qu(t) = Ayqy(t) + Ny (qy,(0))

Problem: FOM stable & ROM stable!

* There is no a priori stability guarantee for POD/Galerkin ROM:s.
» Stability of a ROM is commonly evaluated a posteriori — RISKY!

* Instability of POD/Galerkin ROMs is a real problem in some

applications...

...e.g., compressible flows, high-Reynolds number

flows.

Top right: FOM
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Literature Review

Approaches for building stability-preserving POD/Galerkin
ROMs found in the literature fall into two categories:

Stability Preserving ROM Approaches:

Part 1 1. ROMs which derive a priori a stability-preserving model reduction
of talk. framework (usually specific to an equation set).

Can have an
intrusive
implementation

—_

—

ROMs based on projection in special ‘energy-based’ (not L?)

inner products, e.g., Rowley et al. (2004), Barone & Kalashnikova
et al. (2009), Serre et al. (2012).

Part 2
of talk.

Can have
inconsistencies
between ROM

and FOM physics

—

2. ROMs which stabilize an unstable ROM through an a posteriori post-
processing stabilization step applied to the algebraic ROM system.

Approaches in which an optimization problem that stabilizes an
unstable ROM is formulated and solved, e.g., Amsallem et al.
(2012), Bond et al. (2008), Kalashnikova et al. (2014).

ROMs with increased numerical stability due to inclusion of

‘stabilizing’ terms in the ROM equations, e.g., Wang et al.
(2012).
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9
- ‘ Energy-Stability

* Practical Definition: Numerical solution does not “blow up” in finite time.

* More Precise Definition: Numerical discretization does not introduce any spurious
instabilities inconsistent with natural instability modes supported by the governing
continuous PDEs.

Numerical solutions must maintain proper energy balance.

» Stability of ROM is intimately tied to choice of inner product for the Galerkin
projection.

Stability-preserving inner product derived using the energy method:

* Bounds numerical solution energy in a physical way.
* Borrowed from spectral methods community.
* Analysis is straightforward for ROMs constructed via continuous projection.

Practical implication of energy-stability analysis:
energy inner product ensures that any “bad” modes will not introduce spurious

non-physical numerical instabilities into the Galerkin approximation.
rl'| National
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Linearized Compressible Flow
Equations

Energy-Stability for Linearized PDEs:
FOM linearly stable = ROM built in energy inner product linearly stable (Re(1) < 0)
(Barone et al. 2009, Kalashnikova et al. 2012)

Linearized compressible Euler/Navier-Stokes equations are appropriate
when a compressible fluid system can be described by small-amplitude
perturbations about a steady-state mean flow.

* Linearization of full compressible Euler/Navier-Stokes equations obtained as follows:

1. Decompose fluid field as steady mean plus unsteady fluctuation

q(x,t) =q(x) + q'(x,t)

2. Linearize full nonlinear compressible Navier-Stokes equations around steady
mean to yield linear hyperbolic/incompletely parabolic system

- _.0q" 0 __aq’
q +4@Q il Oxj [Kij(q) oxi| 0
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Energy-Stable ROMs for Linearized
Compressible Flow

Linearized compressible Euler/Navier-Stokes equations are symmetrizable
(Barone & Kalashnikova, 2009; Kalashnikova & Arunajatesan, 2012).

* There exists a symmetric positive definite matrix H = H(q) (system “symmetrizer”) s.t.:

e The convective flux matrices HA; are symmetric
e The following augmented viscosity matrix is symmetric positive semi-definite
HK,, HK,, HK ,
Ks =

HK,, HK,, HK,,
HK,, HK;, HK,

Symmetry Inner Product (weighted L? inner product):

(‘hrCIz)H:f q.Hq,d()
Q

e If ROMis built in symmetry inner product, Galerkin approximation will satisfy the
same energy expression as continuous PDEs:

1q' (x, Ol < ePtllq’,,(x, 0]y (= 2y < 0 for uniform base flow)
M H M H It
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Symmetrizers for Several Hyperbolic/
Incompletely Parabolic Systems

Wave equation: ii = 2L or q=A —where q= (u’a_u) = H = (1 O)

ox 2 0x 0 az
. , ¢ 0 0
Linearized shallow water equations: q' + A,(q) azl = H=| $ 0
0 0 1
p 0 0

Linearized compressible Euler: q¢' + A.(§) GZ: =0 =o>H=[(0 a*p*p pa?
0 0 (1+a?)

147
aql
Linearized compressible Navier-Stokes: q' + A,(q ) Py L+ o%] [K (@) = P
p 0 0
PR e Barone & Kalashnikova, JCP, 2009.
>H=|0 m 0 » Kalashnikova & Arunajatesan, WCCM X, 2012.
Y _ * Kalashnikova et al., SAND report, 2014.
0 0 -
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Continuous Projection
Implementation: “Spirit” Code

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems
— stand-alone code that can be synchronized with any high-fidelity code!

 POD modes defined using piecewise smooth finite elements.

* Gauss quadrature rules of sufficient accuracy are used to compute exactly
inner products with the help of the 1ibmesh library.

* Physics in Spirit: First, testing
. : : 5 : of ROMs for
* Linearized compressible Euler (L-, energy inner product). these
* Linearized compressible Navier-Stokes (L?, energy inner product). ohysics

* Nonlinear isentropic compressible Navier-Stokes (L%, stagnation
energy, stagnation enthalpy inner product).

* Nonlinear compressible Navier-Stokes (L?, energy inner product).

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from
LESLIE3D (Genin & Menon, 2010), an LES flow solver originally developed in the Computational

Combustion Laboratory at Georgia Tech. _
() i
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Numerical Experiment: 2D Inviscid
Pressure Pulse

* Inviscid pulse in a uniform base flow (linear dynamics).
e High-fidelity simulation run on mesh with 3362 nodes, up totime t = 0.01 seconds.

¢ 200 snapshots of solution used to construct M = 20 mode ROM in L? and symmetry
inner products.

Xm,i(t) vs.(q crp, @) fori = 1,2

L?> ROM Symmetry ROM
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Numerical Experiment: 2D Inviscid
Pressure Pulse (cont’d)

* Inviscid pulse in a uniform base flow (linear dynamics).
e High-fidelity simulation run on mesh with 3362 nodes, up totime t = 0.01 seconds.

¢ 200 snapshots of solution used to construct M = 20 mode ROM in L? and symmetry
inner products.

p’: High-fidelity p’: Symmetry ROM p’: L> ROM

Pressore p Solution - 20 Mode L2 ROM

High Fidelity p Solution - Snapshot #160
- T

L 120 1.2 .

> 0
r 110

0.2 2
0.4 4
0.6 .8
0.8 .8
1

- - -1 -
1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 04 -02 0 02 04 06 08 1 1 -08 06 -04 -02 0 02 04 06 08 1
X X X

time of snapshot 160
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Nonlinear Compressible Flow Equations

Energy-Stability for Nonlinear PDEs:
ROM built in energy inner product will preserve stability of an equilibrium point at O for
the governing nonlinear system of PDEs (Rowley, 2004; Kalashnikova et al., 2014).

 Compressible isentropic Navier-Stokes equations (cold flows, moderate Mach #):

Dh _
gt ) u = velocity vector
—u+l7h——Au —0 p = density
Dt Re T = temperature
T = viscous stress tensor

* Full compressible Navier-Stokes equations:

Du+ 1 v(oT) 117 P
Poc Tym2 P TRe T -
Dp+ v =0
pr TPV ( - B
DT y y(y —1)M

P + (y — 1)pTV - u_PR V-(&VT) — ( = Vu-t=0
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Energy-Stable ROMs for Nonlinear
Compressible Flow (Isentropic NS)

In (Rowley, 2004), Rowley et al. showed that energy inner product for the
compressible isentropic Navier-Stokes equations can be defined following a
transformation of these equations.

Transformed compressible isentropic
Navier-Stokes equations:

¢ = speed of sound

Dc y-1 (¢ = (y — Dh)
V- =0 u = velocit

Dt+ > cl/u Y

Du+ 2 v 1A — 0

Dt y—1C ¢ Re =

If Galerkin projection step of

Family of inner products: model reduction is performed in a

20 inner product, then the Galerkin
(91,92, = f u -u, + —)/ 1“1t ds} projection will preserve the
¢ stability of an equilibrium point at
{1 = ||ql|, = stagnation enthalpy the origin (Rowley, 2004).
> a=<1
— = ||ql|, = stagnation energy Santia
y ) taoat




Energy-Stable ROMs for Nonlinear
Compressible Flow (Full NS)

Our recent work extends ideas in (Rowley, 2004) to full compressible N-S equations.
Requirement: transformation/inner product yields PDEs with only polynomial non-linearities.

* First, full compressible Navier-Stokes equations If Galerkin projection step of
are transformed into the following variables: model reduction is performed in
: total energy inner product, then
a= 5, b=ou d=ae € ::\r;egr;al the Galerkin proje.c.tion will
preserve the stability of an
. _ . equilibrium point at the origin
* Next, the following “total energy” inner product is (Kalashnikova et al., 2014)

defined:

© Transformed equations have only
(‘hr qZ)TE — f (bl b, + a,d, + azd1)dQ polynomial non-linearities (projection of
Q which can be computed in offline stage of
MOR and stored).
— Norm induced by total energy inner product is the

total energy of the fluid system: ® Transformation introduces higher order

polynomial non-linearities for viscous case.

1 © Efficiency of online stage of MOR
||q||TE = pe + Epulul daql can be recovered using interpolation
L (e.g., DEIM, gappy POD). m Sandia
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Continuous Projection
Implementation: “Spirit” Code

“Spirit” ROM Code = 3D parallel C++ POD/Galerkin test-bed ROM code that uses data-structures
and eigensolvers from Trilinos to build energy-stable ROMs for compressible flow problems
— stand-alone code that can be synchronized with any high-fidelity code!

 POD modes defined using piecewise smooth finite elements.

* Gauss quadrature rules of sufficient accuracy are used to compute exactly
inner products with the help of the libmesh library.

* Physics in spirit:
* Linearized compressible Euler (L%, energy inner product).
* Linearized compressible Navier-Stokes (L?, energy inner product).

. . . ] ] _ Now, testing
* Nonlinear isentropic compressible Navier-Stokes (L%, stagnation of ROM:s for

energy, stagnation enthalpy inner product). these

* Nonlinear compressible Navier-Stokes (L?, energy inner product). € physics

“SIGMA CFD” High-Fidelity Code = Sandia in-house finite volume flow solver derived from
LESLIE3D (Genin & Menon, 2010), a LES flow solver originally developed in the Computational

Combustion Laboratory at Georgia Tech. _
() i
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Cavity

Viscous cavity problemat M = 0.6,
Re = 1500 (laminar regime).

High-fidelity simulation: DNS based on
full nonlinear compressible Navier-
Stokes equations with 99,408 nodes
(right).

500 snapshots collected, every

Atg,,, = 1Xx107* seconds.
Snapshots used to construct M = 15
mode ROM for nonlinear compressible
Navier-Stokes equations in L? and total
energy inner products.

M = 15 mode POD bases capture
~ 99% of snapshot energy.

Numerical Experiment: Viscous Laminar

Figure above: viscous laminar
cavity problem domain/mesh.

30
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Numerical Experiment: Viscous Laminar

X
}' ~ Cavity (cont’d)

5 High-Fidelity

* Ongoing work:
understanding
effects of boundary
conditions on ROM
stability/accuracy.

ROM (M = 15 modes) Error (L% norm)

'
no

05 0 0.5 | 15
. Nonlinear L2 ROM NaN

: 15 mode total energy ROM

Total Energy ROM 5.52 X 1072

* Future work:
improving efficiency of
total energy ROMs
through incorporation
of interpolation (e.g.,
DEIM, gappy POD).

— o |
e,
3
<
-
_

-0.5 0 0.5 1 1.5

n

2.5

Figure above: u-component of
velocity as a function of time ¢ fh ool
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Outline
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23' Stable ROMs for Linear Time
Invariant Systems

Attention restricted to Linear Time Invariant (LTI) systems

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
as a first step towards the more general nonlinear case.

LTI Full Order Model (FOM) LTI Reduced Order Model (ROM)
x(t) = Ax(t) + Bu(t) Xy (t) = Ayxy (t) + Byu(t)
y(t) = Cx(t) Yu(t) = Cpx,y(t)

Problem: A stable # A, stable!

Solution: Black box
Unstable ROM Stablllz.at|on Stable and Accurate ROM
—>  Algorithm T

(A,, unstable) (A, stable)

(Ay < ZM)
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New Approach™*: ROM Stabilization via
Optimization-Based Eigenvalue Reassignment

* The ROM LTI system is given by:
Y SIVER Y A, = ®,TAD,,
iy () = Ayxy (8) + Byu(t) B,=®,'B
Yu(t) = Cyxy(t) Cy=CPy

. Goal: modify ROM system s.t.
Remark: an exact solution to the ROM LTI system can : 4 N
A, is stable and discrepancy

be derived using the matrix exponential. b/w ROM output y,,(t) and
FOM output y(t) is minimal.
* The solution to the ROM LTI system is:

t

x,(t) = exp(td,) x,,(0) + f exp{(t — 1) A, B, u(r)dz
0

= yu(t) = Cy [exp(tAM) x,,(0) + ftexp{(t — 1) A, }Bu(t)dr
0

*1. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-

Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270. ﬂ-‘ sanda
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ROM Stabilization via Optimization-
Based Eigenvalue Reassignment

ROM Stabilization Optimization Problem
(Constrained Nonlinear Least Squares):

Replace unstable
A,, with stable 4,,.

"”"Zny -yl ()
s.t. Re(/lu)<0

* AM=unstable eigenvalues of original ROM matrix 4.
« yk = y(t,) = snapshot output at ¢,

 y,/f=Cy [exp(tkAM) x,,(0) + fot" exp{(t, — 1) AM}BMu(T)dT] = ROM output at t,.
* ROM stabilization optimization problem is small: < O (M).

 ROM stabilization optimization problem can be solved by standard optimization algorithms,
e.g., interior point method.
* We use fmincon function in MATLAB’s optimization toolbox.
* We implement ROM stabilization optimization problem in characteristic variables
z,(t) =8, x,(t) where A, = §,,D,,S,, . = -
National
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Algorithm

* Diagonalize the ROM matrix A,;: A, = S,,D ;8,7
* Initialize a diagonal M X M matrix D,,. Setj = 1.
e fori=1toM
« if Re(DM(i,i) < 0), set D,,(i,i) = DM(i, i).
« else, set D, (i,i) = A
* Incrementj « j + 1.
* Solve the optimization problem (1) for the eigenvalues {Aju} using an
optimization algorithm (e.g., interior point method).
e Evaluate ﬁM at the solution of the optimization problem (1).
* Return the stabilized ROM system, given by 4,, « A,, = S,,D,,S;, .

* Solution to optimization problem (1) may not be unique.

e Can solve (1) for real or complex-conjugate pair eigenvalues:
* A" € Rs.t. constraint 4* < 0.
. Aj“= Aj“’” + -i Aj“‘—', Aj s M= Aj“’” — Ajuc € C where Aju’”, Ajuc ER
s.t. constraint 4" < 0.

ROM Stabilization via Optimization-
Based Eigenvalue Reassignment (cont’d)
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Numerical Results #1: International
Space Station (ISS) Benchmark

ISS Configuration

SPDM Dexire Mobde Base Sysiem
European Robosc Arm |

Component 1r ‘
|Canad.ann2J S0Tuss Pl Truss Segment
{0 S1Tss I| ; II Isegmm

\ JEM RMS & Exposed Facity

JEMELM-PS
USLab

EAP 1
E .lopean Lab pm 2 EMPM

- Elements Currently on Orbit
- Elements Pending Russian Proton Lauonch ~~ Staboad S

FOM: structural model of component 1r of the International Space Station (ISS).

A, C matrices defining FOM downloaded from NICONET ROM benchmark repository*.
* No inputs (unforced), 1 output; FOM is stable.

National

*NICONET ROM benchmark repository: www.icm.tu-bs.de/NICONET/benchmodred.html. m Sandia
Lahoratories
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umerical Results #1 : ISS Benchmark
(cont’d)

« M = 20 POD/Galerkin ROM constructed from K = 2000 snapshots up to time t = 0.1.
« M = 20 POD/Galerkin ROM has 4 unstable eigenvalues: 2 real, 2 complex

* Two options for ROM stabilization optimization problem:
Option 1: Solve for A, 4,, 15,4, € R s.t. the constraint 1, 4,, 15,4, < 0.
Option 2: Solve for A, + A,i, A, — A,i € C, A5, 4, € R s.t. the constraint 1, 45,4, < 0.

* Initial guess for fmincon interior point method: 1, = 4, = 4; = 1, = —1.
0.12
0.1 F .
noef y \/Zk:1||yk — il
0.06 - 7
ROM (E
IS
- 002t/ Unstabilized POD 1737.8
7
0p/ Optimization Stabilized 0.0259
ozt . POD (Real Poles)
FOM
-0.04 - M=20 POD ROM {unstabilized) - Optimization Stabilized 0.0252
006 - ———M=20 POD ROM (stahil?zed, real poles) . } POD (CompIeX-Conjugate
W=20 POD ROM (stabilized, complex conjugate poles)
08 5 Poles)

1 National

1 1 1 1 1 1 1 1 1
0 001 002 003 004 005 005 OO7 008 009 07 Sandia
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Numerical Results #2: Electrostatically
Actuated Beam Benchmark

FOM = 1D model of electrostatically actuated beam.

Application of model: microelectromechanical
systems (MEMS) devices such as electromechanical
radio frequency (RF) filters.

1 input corresponding to periodic on/off switching, 1

output, initial condition x(0) = 0,.

Second order linear semi-discrete system of the
form:

Mx(t) + Ex(t) + Kx(t) = Bu(t)
y(t) = Cx(t)
Matrices M, E, K, B, C specifying the problem

downloaded from the Oberwolfach ROM
repository*.

2" order linear system re-written as 15t order LTI
system for purpose of analysis/model reduction.

FOM is stable.

* Oberwolfach ROM benchmark repository: http://simulation.uni-freiburg.de/downloads/benchmark.
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Numerical Results #2: Electrostatically
Actuated Beam Benchmark (cont’d)

e M = 17 POD/Galerkin ROM constructed from K = 1000 snapshots up to time t = 0.05.

« M = 17 POD/Galerkin ROM has 4 unstable eigenvalues (all real).
* Two options for ROM stabilization optimization problem:
Option 1: Solve for A, 4,, A5, 4, € R s.t. the constraint 1, 4,, 15,4, < 0.
Option 2: Solve for A, + A,i, A, — A1, A3 + A0, 43 —A,0 € C s.t. the constraint

A, A5 < 0.
* Initial guess for fmincon interior point method: 1, =1, =1; =1, = —1.
25 i
!
| (E I =
2
!
: ROM \/le‘f:l“)’k”zz
!
15}
| Unstabilized POD NaN
- !
| Optimization Stabilized 0.0194
T | POD (Real Poles)
| ..
| —:ﬂo:n? 0D ROM (inetabiized Optimization Stabilized 0.0205
L —— M= unstahilize | .
ne : ———M=17 POD ROM (stabilized, real poles) POD (Complex-ConJugate
| =17 POD ROM (stabilized, complex poles) Poles)
! — —— =17 BT ROM :
U0 D005 001 005 002 00X 003 00% 004 0045 005 Balanced Truncation 1.370e — 6 ﬂq_ ; ?igﬁm
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Summary & Future Work

Part 1: Approaches for building a priori stable ROMs (for Compressible Flow)

* |tis shown that the choice of inner product for the Galerkin projection step is crucial
to stability of the ROM.

* For linearized compressible flow, Galerkin projection in the “symmetry” inner
product leads to a ROM that is energy-stable for any choice of basis.

* For nonlinear compressible flow, an inner product that induces the total energy
of the fluid system is developed. A ROM constructed in this inner product will
preserve the stability of an equilibrium point at O for the system.

* Ongoing/future work: improving efficiency of total energy ROMs through
interpolation (e.g., DEIM, gappy POD); incorporating BCs into Spirit code.

Part 2: Approaches for stabilizing a posteriori unstable ROMs (for Linear Time Invariant, or
LTI, Systems).

A new ROM stabilization approach that modifies a posteriori an unstable ROM LTI system
by changing the system’s unstable eigenvalues is proposed.

* |Inthe proposed stabilization algorithm, a constrained nonlinear least squares optimization
problem for the ROM eigenvalues is formulated to minimize error in ROM output.

National

* Future work: extension to nonlinear problems and predictive applications. mh Sandia
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Counterpart of Symmetry Inner Product)

Symmetry inner product has a discrete project counterpart!

Consider a linear semi-discrete (i.e., discretized in space) stable FOM:
x(t) = Ax(t)

pendix: Lyapunov Inner Product (Discrete

The Lyapunov function for the above system is V(x) = x"Px where P is the solution of

the following Ricatti equation:
AP + PA = —-Q

* SPD solution to this Ricatti equation exists if A is stable and Q is SPD.

* The solution to this Ricatti equation can be obtained using the MATLAB control
toolbox:
P=lyap(A’, Q, [], speye(n,n));

Discrete analog of symmetry inner product: Lyapunov inner product

(x1,x,)p = x,"Px;,

Can show that if the ROM is constructed in the Lyapunov inner product, then:
dE,, 1d

o =gl =0

dt  2dt h
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| 37'Appendix: ISS Benchmark (fmincon

performance)

Real Poles | Complex-Conjugate Poles
# upper bound 4 3
constraints
# iterations 29 27
# function evaluations 30 30
|VL| at convergence 4.00e-7 5.51e-7
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38' Appendix: ISS Benchmark
(CPU Times)

Model Operations CPU time (sec)
FOM Time-Integration 1.71e2
ROM - offline stage Snapshot collection (FOM time- 1.71e2
integration)
Loading of matrices/snapshots 6.99e-2
POD 6.20
Projection 8.18e-3
Optimization 2.28el
ROM - online stage Time-integration 3.77

* To offset total pre-process time of ROM (time required to run FOM to collect
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the
optimization problem (1)), the ROM would need to be run 53 times.

* Solution of optimization problem is very fast: takes < 1 minute to complete.
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39%pendix: Electrostatically Actuated Beam
Benchmark (fmincon performance)

f Current Function Value \
Real Poles | Complex-Conjugate Poles bl ‘ ' ' ' '
1600 B
# upper bound 4 2 1}
constraints 1200}
# iterations 60 31 = 1o00r
S ool e
# function evaluations 64 32 " el
1.23598
400 F B
|VL| at convergence 2.27e-7 8.43e-7
15t order optimalit = \/ 1
( i ) 0 ‘“*"*&&eeeeeeeeeeeeeeeeeee
\]/ u] 5 10 15 20 25 30
lteration
/ Current Function Value First-Order Optimality First-Order Optimality
1800 : . . . : 7 : — : : U ' ' ‘ ‘
+ +
16001 6 6
o 1400t . ¢
= 5t
€ 1200} z° =)
5 £ E
5 1000( g4 g4
o 800/ 24 ;;3_
% 600} g E .
O 400l 113229 | 7 2.26927e-07 | 2 8.43228e-07
+
0' +
L J ir 1 §
200 ", \l ’ \1 \L
20 30 40 50 60 Qg o e M MY :

Interation Interation

K
o
§
[=]
4
2
Re
—_
o
n
o
3
3
-
S
=)

\amed Laboratories



Appendix: Electrostatically Actuated
Beam Benchmark (CPU Times)

Model Operations CPU time (sec)
FOM Time-Integration 7.10e4
ROM - offline stage Snapshot collection (FOM time- 7.10e4
integration)
Loading of matrices/snapshots 5.17
POD 1.09e1l
Projection 2.55el
Optimization 8.79¢l
ROM - online stage Time-integration 6.78

* To offset total pre-process time of ROM (time required to run FOM to collect
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the
optimization problem (1)), the ROM would need to be run 1e4 times (due to large CPU
time of FOM).

* Solution of optimization problem is very fast: takes ~1.5 minute to complete.
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41'A‘ppendix: Electrostatically Actuated
Beam Benchmark (Eigenvalues)

| 10
GRS
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