Searching for lasing threshold in a thresholdlesawzois; 1370

Weng Chow, Sandia National Laboratories
Christopher Gies and Frank Jahnke, Bremen University

Nanolasers and thresholdless lasing
Criterial for lasing

B<<lversusf=1

Thanks to:
Sandia’s Laboratory Directed Research & Development (LDRD) Program

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.



Motivation: Emission entirely into single mode
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Nanolaser model

Electronic structure
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Emphasis now is on correlations
involving light-matter interaction
instead of Coulomb interaction



Nanolaser model

Electronic structure
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2"d order photon correlation
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Criterial for lasing: Input/Output
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Criterial for lasing: g(0)

Yo (10 = 1

10

50

Current (A)

Yo (10%%s7%) =1

109 10 -7
Current (A)

Nop = 50, Ay, = 20meV

10°

2.0 Y. (101%s1)
50
16}
=5
> 10
12 b
1
0.8 ' '
107 105 102

Current (A)

Second-order photon correlation function

(I + 1)

g® (1)

(I(D)?

Hanbury-Brown-Twiss experiment

\_

D1

Stop‘

-0 Start

Counter/timer

g@(r)

2

,Thermal

\

Coherent

-1 0 1
/T,



Criterial for lasing: g(0)
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Y. X coherence time

Criterial for lasing: coherence time

(00]
T, = 2 f dt

— 00

104
ve (10%s%) = 1
| (D)
£
5 )
102 L 3
[
@
()]
- c
10 3
X
1r 50 >
107 105 103

Current (A)

Nop = 50, Ay, = 20meV

(aTa(T))SS

(aTa>ss

2

103

102 |

=
o
|

=
!

101

Ye (1099s) =1

10°

10”7
Current (A)

10°



Criterial for lasing: Population clamping and hole burning
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Criterial for lasing: Population clamping and hole burning
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Criterial for lasing: Population clamping and hole burning
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Criterial for lasing: Stimulated emission
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Why work on nanolasers?
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Higher single-photon production rate with few-QD active region
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Photon number

Single-quantum-dot active region
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Photon number

Few-quantum-dot active region

Question: Can we increase single-photon production rate?
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Increasing single-photon production rate
with few-emitter active region
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Concerns and next refinements

Present model
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Nano-emitter model
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Towards smaller and smaller lasers
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Figure 6. Combining semiconductors and metals
enables nanolasers having a footprint roughly a
factor 100 smaller than that of a classical
VCSEL. Adapted from a figure originally created
by C.Y. Lu et al., UIUC.
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