
Nanolasers and thresholdless lasing 

 

Criterial for lasing 

 

 << 1 versus  = 1 

Searching for lasing threshold in a thresholdless laser 

Weng Chow, Sandia National Laboratories 

Christopher Gies and Frank Jahnke, Bremen University 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the 

United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Thanks to: 

Sandia’s Laboratory Directed Research & Development (LDRD) Program 

SAND2014-16570PE



Motivation: Emission entirely into single mode 

Most lasers     << 1 
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Hamiltonian 

Nanolaser model 

Emphasis now is on correlations 

involving light-matter interaction 

instead of Coulomb interaction 
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Criterial for lasing: Input/Output 
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Criterial for lasing: g(2)(0) 
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Higher single-photon production rate with few-QD active region 
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Figure 6. Combining semiconductors and metals 

enables nanolasers having a footprint roughly a 

factor 100 smaller than that of a classical 

VCSEL. Adapted from a figure originally created 

by C. Y. Lu et al., UIUC. 

Taken from D. Bimberg, IEEE Photonics Society 
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