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Why fund nanolaser development? 
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p-n junction 
 1mm 

Cleaved facet 

Combining semiconductors 

and metals enables 

nanolasers having a 

footprint roughly a factor 

100 smaller than that of a 

classical VCSEL. Adapted 

from a figure originally 

created by C. Y. Lu et al., 

UIUC. 
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Few-QD active region  

What are properties of 

emission from a few QDs? 

Why work on nanolasers? 
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Emphasis now is on correlations 

involving light-matter interaction 
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Example 

Normal ordered:  

Factorization: 

𝒄𝜶𝒄𝜷 − 𝒄𝜷𝒄𝜶 = 𝟎 

Similarities and difference with atomic, molecular, optical (AMO) approaches 

How to evaluate correlations 



Nano lasers 

 
n n - 1 

0 m = 0 

n + 1 

0 

All emission into single resonator mode 

Most lasers 

 
n n - 1 

0 
1 2 

3 

m = 0 1 2 
3 

n + 1 

0 
1 2 

3 

Spontaneous 

emission spectrum 

Why work on nanolasers? 

𝜷 =
𝜸𝒍

𝜸𝒔𝒑
 

Spontaneous 

emission factor 

≪ 𝟏 
= 𝟏 



 = 0.01 

NQD = 50, inh = 20meV, c = 1010, 5 x 1010, 1011, 5 x 1011s-1 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-3 10-5 10-7 
Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-5 10-7 10-9 

Current (A) 

 = 1 



 = 0.01 

NQD = 50, inh = 20meV, c = 1010, 5 x 1010, 1011, 5 x 1011s-1 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-3 10-5 10-7 
Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-5 10-7 10-9 

Current (A) 

 = 1 

Decreasing c 

Decreasing c 



 = 0.01 

NQD = 50, inh = 20meV, c = 1010, 5 x 1010, 1011, 5 x 1011s-1 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-3 10-5 10-7 
Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-5 10-7 10-9 

Current (A) 

 = 1 

Decreasing c 

Decreasing c 



 = 0.01 

NQD = 50, inh = 20meV, c = 1010, 5 x 1010, 1011, 5 x 1011s-1 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-3 10-5 10-7 
Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-5 10-7 10-9 

Current (A) 

 = 1 

Decreasing c 

Decreasing c 

D2 

D1 
Stop 

Start 

Counter/timer 

Hanbury-Brown-Twiss experiment 

𝒈(𝟐) 𝝉  =
𝑰 𝒕 𝑰 𝒕 + 𝝉

𝑰 𝒕 𝟐 
 

Second-order correlation function 

2 

1 

0 

g
(2

) (
)

 
Coherent 

Thermal 

-1 0 1 

/c 



 = 0.01 

NQD = 50, inh = 20meV, c = 1010, 5 x 1010, 1011, 5 x 1011s-1 

g
(2

) (
0

) 
  

2.0 

1.6 

1.2 

0.8 
10-3 10-5 10-7 

Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-3 10-5 10-7 
Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-5 10-7 10-9 

Current (A) 

 = 1 

Decreasing c 

Decreasing c 



 = 0.01 

NQD = 50, inh = 20meV, c = 1010, 5 x 1010, 1011, 5 x 1011s-1 

g
(2

) (
0

) 
  

2.0 

1.6 

1.2 

0.8 
10-3 10-5 10-7 

Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-3 10-5 10-7 
Current (A) 

2.0 

1.6 

1.2 

0.8 

g
(2

) (
0

) 
  

10-5 10-7 10-9 
Current (A) 

10-4 

104 

1 

P
h

o
to

n
 n

u
m

b
e

r 

10-5 10-7 10-9 

Current (A) 

 = 1 

Decreasing  c 

Decreasing  c 

No such thing as 

thresholdless lasing? 



Nanolasers 

 
n n - 1 

0 m = 0 

n + 1 

0 

All emission into single resonator mode 

Most lasers 

 
n n - 1 

0 
1 2 

3 

m = 0 1 2 
3 

n + 1 

0 
1 2 

3 

Spontaneous 

emission spectrum 

Typical QD-laser 

active region 
Single-photon 

source active region  

 

Few-QD active region  

What are properties of 

emission from a few QDs? 

Why work on nanolasers? 



10-1 10 103 105 
0 

0.5 

1.0 

1.5 

2.0 

g
(2

) (
0
) 

Pump rate/R 

10-1 10 103 105 

10-4 

10-2 

1 

102 

104 

106 

P
h

o
to

n
 n

u
m

b
e
r 

Pump rate/R 

C  

3.2 x 1010s-1  
1011s-1 

1.8 x 1011s-1 

Vacuum Rabi frequency: R  = 2.7 x 1011s-1 

Single-photon source      Nonclassical-light source      Laser 

Single-quantum-dot active region 



0 

0.5 

1.0 

1.5 

2.0 

g
(2

) (
0
) 

10-1 10 103 105 

Pump rate/R 

10-2 

1 

102 

104 
P

h
o

to
n

 n
u

m
b

e
r 

10-1 10 103 105 

Pump rate/R 

Few-quantum-dot active region 

2 QDs 

5 QDs 
10 QDs 

10 

5 

2 

C QD 

2 x 1011s-1 

1011s-1  

 6 x 1010s-1 

Light-carrier correlation 

Leading terms: 

𝜹 𝒄†𝒄𝒂†𝒂 , 𝜹 𝒃†𝒃𝒂†𝒂 , 

𝜹 𝒃†𝒄†𝒂†𝒂𝒂  

Question: Can we increase single-photon production rate? 



Single-photon source with few-emitter active region? 

10-1 10 103 105 

10-3 

10-1 

10 

10-3 

105 

P
h

o
to

n
 n

u
m

b
e
r 

Pump rate/R 

10-1 10 103 105 
0 

0.4 

0.8 

1.2 

1.6 

g
(2

) (
0
) 

Pump rate/R 

1-QD 

3-QD 

3-QD 

No cavity 

Too much 

cavity 

Just right 

1 QD 

C  

2 x 1011s-1  
6 x 1011s-1 

2 x 1012s-1 

9 x 1010s-1  

1011s-1 

3 QD 

3-QD 



10-2 10-1 1 10 

Output (1012 photons-s-1) 

0 

0.5 

1.0 

1.5 

g
(2

) (
0

) 

2.0 

2 QDs 

3 QDs 

1 QD 

5 QDs 

10 QDs 

10-2 10-1 1 10 

Output (1012 photons-s-1) 

0 

0.5 

1.0 

1.5 

g
(2

) (
0

) 

2.0 

2 QDs 

3 QDs 

1 QD 

5 QDs 

10 QDs 

Increasing single-photon production rate 

with few-emitter active region 



QW 𝒏𝒆,𝒌
𝑸𝑾

 ,  𝒏𝒉,𝒌
𝑸𝑾

 

Injection current 

𝜸𝒄−𝒄 , 𝜸𝒄−𝒑  

𝒈  

QDs 

𝒄𝒏
†𝒄𝒏  

𝒄𝒏
†𝒃𝒏

†𝒂  

𝒃𝒏
†𝒃𝒏  𝝎𝒏 

Present model 

Photons 

𝒂†𝒂  

𝒂†𝒂†𝒂 𝒂  𝒂†𝒂†𝒂 𝒃𝒏𝒄𝒏  

𝒂†𝒂 𝒄𝒏
†𝒄𝒏  𝒂†𝒂 𝒃𝒏

†𝒃𝒏  

𝒂†𝒂 𝝉  

More rigorous treatment of 

excitation necessary for 

few-QD situations 

Beyond doublet 

Concerns and next refinements 





Photons 

Nanocavity 

Quantum dot 

structure 

Constitutive equation 

𝑫 = 𝜺𝑬 = 𝜺𝒓 𝐫 + 𝒊𝜺𝒊 𝐫 𝑬 +P 

from QDs Passive cavity: 

𝜵 × 𝑬 = −
𝝏𝑩

𝝏𝒕
 

𝜵 × 𝑩 = −𝝁𝟎𝜺𝒓 𝐫
𝝏𝑬

𝒅𝒕
 

𝑬 ∝ 𝑾 𝐫 𝒆−𝒊𝝂𝒕 

Solution 

𝑬 𝐫 = 𝝐  
ℏ𝝂

𝟐𝝐𝒃𝑽
𝑾 𝐫  𝒂 + 𝒂†   

Optical 

transition 

𝒌⊥ 

E 

Electronic structure 

𝝍𝒆 𝐫 = 𝑪 𝐫  𝐫  
1
2 , 𝒔𝒛  𝒄𝒆 

𝝍𝒉 𝐫 = 𝑽 𝐫 𝐫 𝑚  𝒄𝒉 
+ Adjoint 



Hamiltonian 

𝐇 = ℏ𝝂 𝒂†𝒂 +
𝟏

𝟐
+  𝜺𝒆,𝜶

𝑸𝑫
 𝒄𝜶

†𝒄𝜶 + 𝜺𝒉,𝜶
𝑸𝑫

 𝒃𝜶
†𝒃𝜶 − ℏ𝒈 𝒄𝜶

†𝒃𝜶
†𝒂 − 𝒂†𝒃𝜶𝒄𝜶

𝜶

 

 
℘

𝝂

ℏ𝝐𝒃𝑽
 𝑾 𝑹𝑸𝑫  𝑪 𝑹𝒏

𝒏

𝑽 𝑹𝒏  Inhomogeneous broadening 

QW 𝒏𝒆,𝒌
𝑸𝑾

 ,  𝒏𝒉,𝒌
𝑸𝑾

 

Injection current 

𝜸𝒄−𝒄 , 𝜸𝒄−𝒑  

𝒈  

QDs 

𝒄𝒏
†𝒄𝒏  

𝒄𝒏
†𝒃𝒏

†𝒂  

𝒃𝒏
†𝒃𝒏  𝝎𝒏 

Present model 

Photons 

𝒂†𝒂  

𝒂†𝒂†𝒂 𝒂  𝒂†𝒂†𝒂 𝒃𝒏𝒄𝒏  

𝒂†𝒂 𝒄𝒏
†𝒄𝒏  𝒂†𝒂 𝒃𝒏

†𝒃𝒏  

𝒂†𝒂 𝝉  Coherence time 

g(2) (0) 



Pump rate (1012s-1) 
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𝒈(𝟐) 𝟎  > 1 𝒈(𝟐) 𝟎  = 1 
2nd order 

correlation 

Types of light 

In
te

n
s
it

y
 

Time Time 

Coherent Chaotic 

Classical 

Picture 

Photon 

Picture 

Random Bunched 

Thermal 

P
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n
) 

Photon number 

Poisson 

Photon 

Statistics 

Photon number 

Time 

Time 

Nonclassical 

Antibunched  

Sub-Poisson 

Photon number 

𝒈(𝟐) 𝟎  < 1 



Second-order 

correlation function 

2 

1 

0 
1 0 2 

g
(2
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)

 

/ c 

Coherent 

Chaotic 

D2 

D1 
Stop 

Start 

Counter/timer 

Hanbury-Brown-Twiss 

experiment 

𝒈(𝟐) 𝝉  =
𝑰 𝒕 𝑰 𝒕 + 𝝉

𝑰 𝒕 𝟐 
 

=  
𝒏𝟏 𝒕 𝒏𝟐 𝒕 + 𝝉

𝒏𝟏 𝒕 𝒏𝟐 𝒕 + 𝝉
 

=  
𝒂† 𝒕 𝒂† 𝒕 + 𝝉  𝒂 𝒕 + 𝝉 𝒂 𝒕

𝒂† 𝒕  𝒂 𝒕 𝒂† 𝒕 + 𝝉  𝒂 𝒕 + 𝝉
 



Example of Nanolaser 
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DBR 

1
 w

a
v
e
 

Active region 

Photonic crystal 

with defect Photons 

Nanocavity 

Quantum dot 

structure 

Theoretical model 


