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Outline

I Dielectric Response of Warm Dense Matter
I Our Implementation of Ehrenfest-TDDFT
I Stopping Power
I X-Ray Thomson Scattering
I Conclusion

I Nomenclature:
I BO→ Born-Oppenheimer
I BZ→ Brillouin Zone
I DFT→ Density Functional Theory
I DSF→ Dynamic Structure Factor
I KS→ Kohn-Sham
I MD→ Molecular Dynamics
I PAW→ Projector Augmented-Wave
I TD→ Time-Dependent
I WDM→Warm Dense Matter
I XRTS→ X-ray Thomson Scattering
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Warm Dense Matter

I Motivation: ICF, shock diagnostics, planetary science

I What is it?
I Warm: temperatures on the order of eVs (10kK+)
I Dense: electron densities 2-4× solid
I ‘Exotic’: neither standard condensed phase nor ideal plasma
I Challenging: both experimentally and theoretically
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Dielectric Response of WDM

I How do we study it?
I Time-honored tradition among physicists...
I Throw something at it, watch what happens.[

δρ(r, t)
δj(r, t)

]
=

∫
dt ′dr′

[
χd,d (r, r′, t − t ′) χd,c(r, r′, t − t ′)
χc,d (r, r′, t − t ′) χc,c(r, r′, t − t ′)

]
·
[

Vext (r′, t ′)
Aext (r′, t ′)

]
I What can we compute?

I Stopping power
I Optical response
I XRTS spectrum

I We seek to model experimental process, i.e., throw and watch
I Real-time electron dynamics→ dielectric response
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Our Approach

I Ehrenfest-TDDFT: MD simulation with concurrent electron-ion motion
I Ehrenfest: ionic forces on average potential energy surface
I TDDFT: theory in which real-time electron dynamics evolve

I Method:
I Start in Mermin state: n0(r) =

∑
n,k

fn,k|ψn,k(r)|2

I Integrate TD-KS equations in the presence of perturbing potential:

i
∂

∂t
ψn,k(r, t) =

[
−∇

2

2
+ VKS(r, t) + Vext (r, t)

]
ψn,k(r, t)

I Compute ionic forces along the way, update (x,p) if needed
I Record response in terms of observables (density functionals):

〈Ô(t)〉 = O [n(r, t)] , n(r, t) =
∑
n,k

fn,k|ψn,k(r, t)|2

I Goal of Talk: describe capabilities developed over the past 16 months
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A Simple Example

I Ignoring ionic motion for a moment. . .
I Consider subjecting a Na dimer to a homogeneous vector potential
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I Time evolved dipole moment→ polarizability/optical absorption
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I Time evolved dipole moment→ polarizability/optical absorption
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Implementation Details

I Ehrenfest-TDDFT in VASP:
I Uses PAW method
I Crank-Nicolson time integration

w/gauge correction
I Demonstrated scalability on BGQ
I 1 of 3 implementations for

extended systems
I Advantages:

I Easier to scale than BOMD
I Lower cost complexity
I “Real” information about

excitations
I Disadvantages:

I Small time step
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Stability of CN Propagator for Liquid Be (5000 K)

16 atoms, 40 bands, 2 as time step
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Stopping Power

I Electronic contribution: dielectric response to charged particle

δρ(r, t) =
∫

dt ′
∫

dr′χd ,d(r, r′, t − t ′)Vion(r′ − vt ′)

I Average force of medium on ion
as a function of velocity and Z

I BOMD: stopping power zero
I Ehrenfest-TDDFT: agrees well

with experiment
I Note: Movies are 2D projection

of 3D simulation
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bomd_al_stopping.mpeg
Media File (video/mpeg)




ehrenfest_al_stopping.mpeg
Media File (video/mpeg)



Stopping Validation
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Stopping Forces on Proton in Aluminium <100>
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I Validation against Correa, et.
al., PRL 108, 213201 (2012)

I Proton stopping in fcc Al
I 193 electrons
I 20 k-points in BZ
I Fixed resolution of path
I ∆t ≤ 2 as

I Experimental error ∼ 10%

I Disagreement beyond peak
I Core excitations?
I Trajectory sampling?
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Stopping in WDM

I Cold metallic systems are not our primary interest:
I Warm dense systems
I Heterogeneous systems (e.g., GDP, Xe+D/T, etc.)

I Stopping in warm dense Be
I Different paths show stronger

variation in stopping
I Characteristic of condensed

phase rather than plasma
I Gathering data for model

I Average nearest neighbor
distance to projectile

I Other dependencies?

Stopping Power Mail: adbacze@sandia.gov




wd_stopping.mpeg
Media File (video/mpeg)



Stopping in WDM

I Cold metallic systems are not our primary interest:
I Warm dense systems
I Heterogeneous systems (e.g., GDP, Xe+D/T, etc.)

I Stopping in warm dense Be
I Different paths show stronger

variation in stopping
I Characteristic of condensed

phase rather than plasma
I Gathering data for model

I Average nearest neighbor
distance to projectile

I Other dependencies?  2
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X-Ray Thomson Scattering

I Compute response to Vext (r, t) = V0eik·rf (t)
I Studying conditions in Lee, et. al., PRL 102, 213201 (2009)
I 3x compressed Be at T=13 eV, measured in collective regime

I Method:
I Ion configuration from DFT-MD
I Compute Mermin state
I Integrate TD-KS equations
I Ramp up x-ray pulse
I Record ∆ρ(k, t)

I χ(k, ω) = F{∆ρ(k, ·)}(ω)/F{V0f (·)}(ω)

I S(k, ω) = − f (βeω)
π

Im [χ(k, ω)]

XRTS Mail: adbacze@sandia.gov
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X-Ray Thomson Scattering

I Compute response to Vext (r, t) = V0eik·rf (t)
I Studying conditions in Lee, et. al., PRL 102, 213201 (2009)
I 3x compressed Be at T=13 eV, measured in collective regime
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DSF for 10 independent ionic configurations.

I Our calculation:
I Adiabatic AM05 xc-functional
I Excitation has FWHM of ≈ 780 eV
I Integrated for 2.5 fs at ∆t = 1 as
I |k| = 2.25a−1

B
I 4 electron Be PAW

I Independent of Chihara model
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Averaged DSF including negative part of spectrum.

I Our calculation:
I Adiabatic AM05 xc-functional
I Excitation has FWHM of ≈ 780 eV
I Integrated for 2.5 fs at ∆t = 1 as
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I Independent of Chihara model

XRTS Mail: adbacze@sandia.gov



X-Ray Thomson Scattering

I Compute response to Vext (r, t) = V0eik·rf (t)
I Studying conditions in Lee, et. al., PRL 102, 213201 (2009)
I 3x compressed Be at T=13 eV, measured in collective regime

Souza, et. al., PRE 89, 023108 (2014)

I Our calculation:
I Adiabatic AM05 xc-functional
I Excitation has FWHM of ≈ 780 eV
I Integrated for 2.5 fs at ∆t = 1 as
I |k| = 2.25a−1

B
I 4 electron Be PAW

I Independent of Chihara model
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Summary and Future Work

I New tool at SNL:
I Ehrenfest-TDDFT for coupled electron-ion dynamics in bulk
I Stable, accurate, and scalable PAW implementation
I Real-time electron dynamics→ dielectric response

I Ongoing work: statistics for stopping and XRTS in WDM
I Future work: investigation of time-dependent current DFT
I Long-term challenge: electron-ion energy transfer in TDDFT?
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