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Real Time Hybrid Simulation

= Full scale tests can be expensive
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/ Real World Implementation \
] Computational Elements

= Hybrid Simulation:
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= Real Time Hybrid Simulation

Physical Elements

= Accurate dynamics

= Typically performed at 1024 Hz

= Constraints on numerical model size

Tidwell, Gao, Huang, Lu, Dyke, Gill,
2009
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Real Time Hybrid Simulation ) S
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Multi-Timestepping ) i,

= RTHS typically run at 1024 Hz

= Decompose into 2 Subdomains
= Physical-Numerical Interface at REAL TIME
= Rest of Numerical Model at slower rate




Motivation rh) p_

= Why do we want PML?
= Ship in Water
= Reentry vehicles in air
= QOther unbounded domains

= RTHS
= Nuclear reactor in soil (earthquake)
= Skyscraper
= Heterogenous Soil — classical approaches are not viable




Motivation rh) pes

= PML exhibits zero reflection coefficient at all angles of
incidence and all frequencies (on the continuous level)

=  This is not true for absorbing BC and infinite elements

= Once we discretize the problem, that property is lost — but it
can be recovered as mesh converges to continuous solution

= Thus PML converts absorbing boundary condition error into
discretization error.




Overview of PML )

WTF4

= Undamped wave equation: e’

= this wave will propagate indefinitely in the x direction

= Complex Coordinate System:
« £ = a(x) + ib(x)
= Wave Equation becomes:
= kT _ ei(—ka(m)—l—ikb(m)) _ e—kb(m)eika(m)

\

e
= Damped Wave Equation
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WTF4 I would just set a(x) = x
Walsh, Timothy Francis, 7/24/2014



Infinite Elements
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Partially submerged mine

" Infinite elements solve | ¢ I,
many of the same - Pe
problems

= |Infinite elements
cannot handle some
types of problems
= Non-homogenous I
domains (o \

= Explicit Time Integration Shirron 2006
(singular mass matrix)
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WTF5 add some pictures (buried mine), earthquake FEM model, etc
Walsh, Timothy Francis, 7/24/2014



Advantages of PML )

= Heterogeneous Materials
= Layers of elements
= Explicit Time Integration

= Research Goals

= Develop Ellipsoidal PML formulation and implement in Sierra-SD
= Compare performance of PML and Infinite Elements in Sierra-SD

= Evaluate performance of PML in a massively parallel environment
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Gaps in PML Literature

Ellipsoidal Formulation

= Massively Parallel Implementation
= Condition Numbers
= [teration Counts
= Decomposition

= Types of loss functions
= PML Parameters
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WTF10 ellipsoidal encompases both Spherical and Cartesian - existing approaches in the literature have to be either Spherical or

Cartesian
Walsh, Timothy Francis, 7/24/2014



Sand
Ellipsoidal PML ) i,

We can inscribe even the most complex shapes inside
of a miminal volume ellipsoid

4
= Sphere —Volume = 377

= Ellipsoid —Volume = ;_‘mbc
= Compare Volume of Ellipsoid to Sphere

= 10:1 aspect ratio ellipse 1% of Sphere
= 20:1 aspect ratio has 0.25% of Sphere
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WTF9 I'd show a picture of a long skinny structure and say "we can enscribe any complex shape inside of an ellipse"
Walsh, Timothy Francis, 7/24/2014



PML Mathematics - Overview )i,

= Cartesian PML
= Typically done with multiple PML regions

= Rotated Cartesian PML
Spherical PML

Ellipsoidal — most general
= Spherical is a special case of ellipsoidal formulation

= Cartesian is a special case of ellipsoidal/spherical formulations




Exterior Acoustic Formulatoin ) s,

We wish to solve the Helmholtz equation on
an exterior acoustic domain

Helmholtz equation

—Ap—Fkp=0
Sommerfeld condition
9]
Py ikp € L)
on
Neumann loading condition
Ip
€
B = g(z,1)

Domains €2; and €2 and interface I' for the exterior acoustic problem.
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WTF22 fourth equation needs tilde's
Walsh, Timothy Francis, 7/24/2014



WTF23

General Formulation for PML ).
Complex coordinate stretching & = & — é / g(f)dé a<xz<a
Helmholtz equation over —Ap _ k2p —0

complex coordinates

Weak form over = i 9 B
complex coordinates /QI (Vp, Vq) — k“pq dflf = A;S gqdS

Mapped weak form
back to real /ﬂ;

[(J~'Vp) - (J7'Vq) — kPpq] J(2,y.2)dQ; = / gqdS
coordinates

I's

Re-write as Helmholtz A(Vp,V§) — k*Jpg dQy = / ggdTls
equation with variable Q T's
coefficients - v~ 4=
A=JIJ"

16
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WTF23 fourth equation needs tilde's
Walsh, Timothy Francis, 7/24/2014



Rotated Cartesian PML
1D Loss Function in 3D Domain

Sandia
m National
Laboratories

I 0 0
y=10 1 0 &

1

00 =
r = Rx

L 9
5 _0@.9.%) _ 04,2 0y 2) _ [ B4
Oz, y.2) Oy, 2) O(xy.z) I- " ’8!

o -

oo ‘
v
»




WTF14

Cartesian PML Applied to Sphere [

= Apply Rotated Cartesian PML
to Each Outer Face of Sphere

= Good Results, but not Great

= Results converged with mesh,
but slowly

= Use spherical formulation to
account for “gaps” between
the elements
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WTF14 need a new title, but looks good
Walsh, Timothy Francis, 7/24/2014



Sandia

Spherical PML - Demkowicz ) ..

Mapping between spherical and Cartesian coordinates

x = rsin(¢)cos(6) T = rsin(¢)cos(6)
y = rsin(¢)sin(0) g = rsin(¢)sin(0)
z = rcos(¢) Z = r1cos(¢p)

The Jacobian follows directly

_ 0(5.5,5) _ 0(5,5,2) 0(,y,2) " [ F sin(g)cos(8) Fcos(@)cos(B) —Fsin(¢)sin(6) }
J= = = | 7sin(¢p)sin(0) rcos(¢p)sin(f) Tsin(¢p)cos(0)
8($,y,2) 8(T7 Qﬁ,g) 8(T7 gb!g) ?':’COS(Qb) —'Fszn(gb) 0

sin(¢p)sin(0) rcos(¢p)sin(8) rsin(¢)cos(d)
cos(¢) —rsin(@) 0

|: sin(¢)cos(0) rcos(gb)cos(@% —rsin(¢)sin(6) ]1




i
Ellipsoidal PML (under developmentyE.

Mapping between ellipsoidal and Cartesian coordinates

z = \/r2 — f2sin(¢)cos(0) % = /72 — f2sin(¢)cos(0)
Yy = mszn_(ﬁ?zz((z; § = \/msin(gb)sznw)

= Z = Tcos(¢)

The Jacobian follows directly J = 0(%,§,2) _ 0(£,§,%) 0(z,y,2) -

o(z,y,2)  O(r,¢,0) O(r, ¢,0)

" \/%sin(qb)cos(é)) V7 = fPeos(¢)cos(0) —+/7 — frsin()sin(6)

JAsin(@)sin(0) /7~ [Peos(@)sin(0) /7~ [sin(§)cos(0)

| geos(e) /P Psin(9) 0 _

[ sin(9)eos(6) /17— Peos($)eos(8) —/r7 = [Psin(@)sin(6) |

rzsin(9)sin(0) /r? = fPeos(@)sin(0) /% = fsin(8)cos(0)
Tz 008(9) —/12 — f2sin(¢) 0

|

20
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WTF17 I'd put a picture in here
Walsh, Timothy Francis, 7/24/2014



" mplementation in Sierra-SD
— Input Parser

Sandia
|I1 National

Laboratories

Perfectly Matched Layers Infinite Elements
BOUNDARY BOUNDARY
sideset 2 sideset 2

pml_element infinite_element
stack_depth 5 order =3
ellipsoid_dimensions 55 5 ellipsoid_dimensions 55 5
source_origin000 source_origin000
pml_thickness 1 neglect_mass yes
loss_function = polynomial END
loss_params = 0 960 960 960
pmiDirichlet

END

21
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WTF21

BOUNDARY
END

(missing the "END" part)
Walsh, Timothy Francis, 7/24/2014



Implementation in Salinas — Virtual Nod &b .

* Nodes are meshed
from original
boundary nodes
normal to center of
sphere (or foci of
ellipse)




Implementation in Salinas — Virtual
Meshing

 Elements are
added to the
nodes

« Each element
knows it's location
In the PML stack




" mplementation in Salinas — Virtual
Elements

= Wedge Elements are
meshed out from tetmesh

= Hexes are not supported

Faniaei
LA
Py
¥
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WTF18 I would combine slides 18 and 20
Walsh, Timothy Francis, 7/24/2014
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Parallel ) &

= Modify communication maps

= Reused technology for infinite elements

= PML Can unbalance decomposition — boundaries are
expensive
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WTF19 need a picture here for virtual nodes/elements
Walsh, Timothy Francis, 7/24/2014



Results — Pressure on an offset SphericaI@
Surface (Non Symmetric Domain)

Laboratories

= Acoustic velocity applied
to inner sphere

= Solution is spherically
symmetric about loading
surface

= Compared to exact
solution

= Solution obtained using
Clark Dohrmann’s GDSW
Helmholtz Solver
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Loss Functions ) dea

= PML Inner Boundary can
create reflections

= Something we are specifically
trying to avoid

= How do we pick loss functions
to get the best solution?




Types of Loss Functions )

Polynomial Singular

Linear

Quadratic
Cubic
Cuartic

Singular Type A

Singular Type B
Singular Type C

— Singular Type D




Types of Loss Functions
Limitations in PML Literature
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= Many PML papers include little to no numerical results

= Papers discussing loss functions tend to find that theirs is the
best

= PML results are often shown for only one frequency

= We want loss parameters that can be used for frequency sweeps




Results — Parameter Study — Loss

Parameters
= Each color represents another frequency

= Different frequencies have different discretization errors
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Results — Parameter Study —
Stackdepth with Thickness = 2
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Results — Parameter Study Thickness,
Stackdepth
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= |ncreased thickness with constant element size
Polynomial Singular
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Results - Formulations ) i,

Real Imaginary
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PML Theory — Neumann vs Dirichlet 0.

= Expect Same Results

"= Numerical Differences

= Neither is clearly better

" Do these have an effect on solve time?

200 ; - - ; ; 250

1501

200
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Real part of Acoustic Pressure

Imaginary part of Acoustic Pressure
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Comparison to Infinite Elements ) .

= Results match for sphere problem
= Ellipsoidal formulation under analysis
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Conclusions )

= We have one formulation that encompasses Ellipsoidal,
Spherical, Cartesian, and rotated Cartesian

= Qur results verify the literature for the spherical and
Cartesian problems

= Qur results on ellipsoidal are pending

= We have recommended parameters for material = air and a
method for finding these parameters for other materials

= For structural acoustic problems, we recommend using the
same PML parameters as the pure acoustic problem




Future Work ) &

= Repeat analysis for ellipsoidal formulation
= Compare computational costs on massively parallel problems
= Time domain problems

= Surface waves
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"mplementation — Use of Salinas Damping) .,
Matrix

Kp—w?Mp=f

K—w2M=§R[K_w2M] i3 [K_WQM]
iwS [K — w?*M|
W
=R [K — w*M] + iwC

=R [K —w’M] A

2
C:%K_WM

W

39
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WTF20 may not be needed
Walsh, Timothy Francis, 7/24/2014



