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Why fund nanolaser development?

Attojoule optoelectronics —

why and how
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Towards smaller and smaller lasers
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Towards smaller and smaller lasers
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Figure 6. Combining semiconductors and metals
enables nanolasers having a footprint roughly a
factor 100 smaller than that of a classical
VCSEL. Adapted from a figure originally created
by C.Y. Lu et al., UIUC.
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How we used to study semiconductor lasers
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What we do differently with nanolasers
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Similarities and difference with AMO
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Why work on nanolasers?

Most lasers Sp(_)ntgneous Nano lasers
emission spectrum
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B=0.01

Photon number
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B=0.01

Photon number
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Why work on nanolasers?

Spontaneous
Most lasers . Nanolasers
emission spectrum
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Photon number

Single-quantum-dot active region

Single-photon source = Nonclassical-light source == Laser
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Photon number

Few-quantum-dot active region

Question: Can we increase single-photon production rate?
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Single-photon source with few-emitter active region?
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Concerns and next refinements

Present model
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Nanocavity # Constitutive equation
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Hamiltonian
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LED — Laser — Thresholdless laser
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