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Neuromorphic Computing

What is neural-inspired, neuromorphic, brain-
inspired computing?

* Many terms

¢ Fundamental notion of taking inspiration from
how the brain performs computation

With the advent of mathematical reductionist
models going back to 1943 there have been
many parallel efforts to likewise implement
them in hardware

HOWEVER, many of these efforts are simply
accelerators of classic architectures

Do NOT incorporate many neural principles
since 1940s

Rather took advantaﬁ e of Moore’s Law &
Dennard scaling to allow neural networks to
deliver upon orlglnal promise
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Spiking Neurons )

* Neurons are connected via synapses and
communication is sent in single-state signals
called spikes

» Spikes require time to propagate _
Pre-synaptic

e Time Dimension/Spikes are the main Neurons
differentiator between Spiking Neural Networks
and more basic Artificial Neural Networks

* Incoming sEikes adjust an internal potential by .
some weight; if potential reaches a threshold, Input spikes
the neuron sends out spikes I "

Post-synaptic
Neuron

e |f potential is sub-threshold, it decays according
to a leakage constant

* Leaky Integrate and Fire neurons roughly
approximate biological neurons




Neuromorphic Processors

Analog

e Focus on Kirchhoff Law — enabled computation
e Neurons sum current across weighted synapses
* Neural nodes sum current over weighted memristors

e Substantial energy and time savings
e Non-trivial costs of precision
* Practical issues limit size and integration with digital logic

e |deal scenario
e Train weights in situ
e Compatible with linear algorithms
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Fig I: Analog RRAMs can be used to reduce the energy of a
vector matrix multiply. The conductance of each RRAM
represents a weight. Analog input values are represented by the
input voltages or input pulse lengths. This allows all the read
operations, multiplication operations and sum operations to occur
in a single step. A conventional architecture must perform these
operations sequentially for each weight resulting in a higher

cnergy and delay. Agarwal et al., E3S 2015
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Digital
Rely on event-driven “spiking” for communication

* Communication only needed for ‘1’s’, not otherwise
* Equivalentto large threshold gate networks + time dimension

Substantial energy savings
* Information in time dimension; limiting time savings

Compatible and scalable using conventional technology

Ideal scenario
e Algorithms can be reframed in discrete spiking form
e Learning algorithms are reformulated for spiking approaches
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Architectural Landscape ) .

Landscape of emerging neuromorphic architectures (non-exhaustive)
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Neuromorphic Computing Algorithms .

. . . . X t(W1xT+W1n)
 May require different algorithmic approaches S B S B
X; _;. W:f% E(w;x" + wp) > 5;
* May require different encodings y % g‘gawmuw S
P Wp g
e Example: Rate coding vs. temporal coding i

Verzi et al., IJCNN 2017

Non-spiking vs. spiking
 Fundamentally changing how computation and representation are done

e Compile/Link standard does not yet exist

e Requires new metrics for benchmarking
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Whetstone

e An accessible, platform-
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Whetstone ) 5,

 Modifications for the network topology are limited to the activation function and output layer

 Many standard, effective techniques translate immediately to the spiking neural network:
Dropout, Max Pooling, Batch Normalization

e Batch normalization greatly improves convergence to spiking activations
e Majority of accuracy degradation occurs during the sharpening of the first layer
e Batch normalization helps mitigate this loss
o Useful for even smaller networks

* Activation sharpening is optimizer agnostic - However, certain optimizers are better suited.
Moving average modulation improves repeatability.

Fashion MNIST without Batch Normalization Fashion MNIST with Batch Normalization Optimizers and Learning Rate
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Spiking Neural Algorithms ) .

Universal Function Approximation Spiking Neural Circuits
* Optimization
i f(x) e Max/Min
e Sort

— f(x)

e Median Filter

 Machine Learning
e spiking-Nearest Neighbor
e Spiking-ART

* PDE

e Monte Carlo Random Walker for
Diffusion

e Cross-Correlation




Splkmg Optlmlzatlon Algorlthms
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Spiking Machine Learning Algorithms ).

/ Spiking Nearest Neighbor (s-NN) \
Spiking-ART
Spiking Similarity

Lo T T T TTTTTTE T m T E T m T ~Q X
’ N k-winner layer
/ o > Y 4..&_, A
/ similarity layer | 1
! | max layer n
1 1
X 1 » > X1 - ;
AEE L PR B p1(t) | - @ A T 10 z
N e " nq | e ¥
R » -
| X1in ~Win ny | ' Xn = n;
1 - 1 n,
1 X : 1 . . .
J1 - Wy . (t 1 classification
! Wir | x; @ P z1- ‘ ) ' Pp(t)
. +# . _—
L Xin Wi n; 1 a i '. Zp
1 |
: X f I '. np
1 Xp1w !
I CHPL 1 Xp '. pp() .y, s ®
1 P i p t
. 1 1 u
: xPn an np : R O """""""""""""" > Zu
1
1 1 ny
\ 1
\ 1
\ /

\ /
e
\\_ _-




FUGU

Source o
Code

Library of
Spiking
Algorithms

Spiking Neural
Circuit

Neuromorphic
Translation
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FUGU: PIV Cross-Correlation Example L

e Particle Image Velocimetry (PIV) ( _Fuau [ Mmoo i
is a well studied method for o *{%ﬁ; s
using particles to determine the s == ~| Lok R

. . _Code ler?lr_yof ~ T‘z Q ;éf#ﬁ)‘% Xy
local velocity flow in many R 739 Al
applications throughout science | h— o [t
and engineering P J ST

\ J
’ B \ : )
* Cross-Correlation finds i h
agreement in signals g
* Computed as a sliding scalar .~ B
product
* (fxg)n)=%,f(n)g(m+n) ~

* Mapped to the SNL STPU & IBM
TrueNorth Neuromorphic
architectures |
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Severa et al.,ICRC2016




Neural Exploration & Research Lab (NERL) @

e Enables researchers to explore the boundaries
of neural computation

* Consists of a variety of neuromorphic hardware
& neural algorithms providing a testbed facility
for comparative benchmarking and new
architecture exploration

SpiNNaker48 Node Board IBM TrueNorth* IBM TrueNorth NS16e* Intel Neural Compute Stick Cognimem CM1K KnuPath Hermosa

I shipinsu

NvidiaJetson TX1
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e There are some bold & exciting claims surrounding neuromorphic
computing

e The interplay of algorithms, architectures, and hardware is incredibly
important

* |n our approach, we’ve been focusing upon the significance neuroscience &
fundamental theory

e Sandia Labs is working to understand this landscape & employ neural-
inspired computing for scientific computing and other domains




Sandia
IEEE WORLD CONMN ESS OMN Ly oo

o-}@
-t COMPUTATIOMNAL
P> 4 T 8-13 July 2018, Rio-

TEEE Wr Ol = — s
LmaeTas saneire, Semee o

Neuromorphic Hardware in Practice and Use
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Description of the workshop

e Abstract — This workshop is designed to explore the current advances, challenges and best ﬁractices for working with and implementing algorithms on
neuromorphic hardware. Despite growing availability of prominent biolof%ically inspired architectures and correspondinginterest, practical guidelines
and results are scattered and disparate. This leads to wasted repeated effort and F;])oor exposure of state-of-the-art results. We collect cutting edge

;esults from a variety of application spaces providing both an up-to-date, in-depth discussion for domain experts as well as an accessible starting point
or newcomers.

Goals & Objectives

e This workshop strives to brin%to ether algorithm and architecture researchers and help facilitate how challenges each face can be overcome for
mutual benefit. In particular, by focusing on neuromorphic hardware practice and use, an emphasis on understanding the strengths and weaknesses
of these emerging approaches can help to identify and convey the significance of research developments. This overarching goal is intended to be
addressed by the following workshop objectives:

e Exploreimplemented or otherwise real-world usage of neuromorphichardware platforms
¢ Help develop ‘best practices’ for developing neuromorphic-ready algorithms and software
e Bridge the gap between hardware design and theoretical algorithms

e Begin to establish formal benchmarksto understand the significance and impact of neuromorphicarchitectures

http://neuroscience.sandia.gov/research/wcci2018.html

Call: https://easychair.org/cfp/nipu2018


http://neuroscience.sandia.gov/research/wcci2018.html
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