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Neural Computing at Sandia Labs Leverages a 
Large Research Foundation
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Neuromorphic Computing
• What is neural-inspired, neuromorphic, brain-

inspired computing?
• Many terms 
• Fundamental notion of taking inspiration from 

how the brain performs computation 

• With the advent of mathematical reductionist 
models going back to 1943 there have been 
many parallel efforts to likewise implement 
them in hardware

• HOWEVER, many of these efforts are simply 
accelerators of classic architectures

• Do NOT incorporate many neural principles 
since 1940s

• Rather took advantage of Moore’s Law & 
Dennard scaling to allow neural networks to 
deliver upon original promise

James, et al., BICA 2017
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Spiking Neurons
• Neurons are connected via synapses and 

communication is sent in single-state signals 
called spikes

• Spikes require time to propagate

• Time Dimension/Spikes are the main 
differentiator between Spiking Neural Networks 
and more basic Artificial Neural Networks

• Incoming spikes adjust an internal potential by 
some weight; if potential reaches a threshold, 
the neuron sends out spikes

• If potential is sub-threshold, it decays according 
to a leakage constant

• Leaky Integrate and Fire neurons roughly 
approximate biological neurons
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Neuromorphic Processors
Analog

• Focus on Kirchhoff Law – enabled computation
• Neurons sum current across weighted synapses
• Neural nodes sum current over weighted memristors

• Substantial energy and time savings
• Non-trivial costs of precision
• Practical issues limit size and integration with digital logic

• Ideal scenario
• Train weights in situ
• Compatible with linear algorithms

Agarwal et al., E3S 2015

Digital
• Rely on event-driven “spiking” for communication

• Communication only needed for ‘1’s’, not otherwise
• Equivalent to large threshold gate networks + time dimension

• Substantial energy savings
• Information in time dimension; limiting time savings

• Compatible and scalable using conventional technology
• Ideal scenario

• Algorithms can be reframed in discrete spiking form
• Learning algorithms are reformulated for spiking approaches
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Architectural Landscape
Landscape of emerging neuromorphic architectures (non-exhaustive)
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Neuromorphic Computing Algorithms 

• May require different algorithmic approaches

• May require different encodings
• Example: Rate coding vs. temporal coding

Non-spiking vs. spiking 
• Fundamentally changing how computation and representation are done

• Compile/Link standard does not yet exist

• Requires new metrics for benchmarking

Verzi et al., IJCNN 2017
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Whetstone

8

• An accessible, platform-
independent method for training 
spiking DNNs for neuromorphic 
processors



Whetstone
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• Modifications for the network topology are limited to the activation function and output layer
• Many standard, effective techniques translate immediately to the spiking neural network: 

Dropout, Max Pooling, Batch Normalization
• Batch normalization greatly improves convergence to spiking activations

• Majority of accuracy degradation occurs during the sharpening of the first layer
• Batch normalization helps mitigate this loss
• Useful for even smaller networks

• Activation sharpening is optimizer agnostic → However, certain optimizers are better suited.  
Moving average modulation improves repeatability.  



Spiking Neural Algorithms

Spiking Neural Circuits
• Optimization

• Max/Min
• Sort
• Median Filter

• Machine Learning
• spiking-Nearest Neighbor
• Spiking-ART

• PDE 
• Monte Carlo Random Walker for 

Diffusion
• Cross-Correlation

Universal Function Approximation
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Spiking Optimization Algorithms

Sorted integers: 9, 7, 6, 6, 6, 5, 3, 2, 1, 1, 0

maximum

minimum

median

• Finding the min where 𝑃𝑃 ≥ 𝑁𝑁
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Spiking Machine Learning Algorithms

Spiking Similarity

Spiking Nearest Neighbor (s-NN)
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FUGU: PIV Cross-Correlation Example
• Particle Image Velocimetry (PIV) 

is a well studied  method for 
using particles to determine the 
local velocity flow in many 
applications throughout science 
and engineering

• Cross-Correlation finds 
agreement in signals

• Computed as a sliding scalar 
product

• (𝑓𝑓⋆𝑔𝑔)(𝑛𝑛)=Σ𝑚𝑚𝑓𝑓(𝑛𝑛)𝑔𝑔(𝑚𝑚+𝑛𝑛)

• Mapped to the SNL STPU & IBM 
TrueNorth Neuromorphic 
architectures

Severa et al.,ICRC2016
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Neural Exploration & Research Lab (NERL)
• Enables researchers to explore the boundaries 

of neural computation
• Consists of a variety of neuromorphic hardware 

& neural algorithms providing a testbed facility 
for comparative benchmarking and new 
architecture exploration
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Conclusion

• There are some bold & exciting claims surrounding neuromorphic 
computing

• The interplay of algorithms, architectures, and hardware is incredibly 
important 

• In our approach, we’ve been focusing upon the significance neuroscience & 
fundamental theory

• Sandia Labs is working to understand this landscape & employ neural-
inspired computing for scientific computing and other domains 
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Neuromorphic Hardware in Practice and Use
Description of the workshop

• Abstract – This workshop is designed to explore the current advances, challenges and best practices for working with and implementing algorithms on 
neuromorphic hardware. Despite growing availability of prominent biologically inspired architectures and corresponding interest, practical guidelines 
and results are scattered and disparate. This leads to wasted repeated effort and poor exposure of state-of-the-art results. We collect cutting edge 
results from a variety of application spaces providing both an up-to-date, in-depth discussion for domain experts as well as an accessible starting point 
for newcomers.

Goals & Objectives

• This workshop strives to bring together algorithm and architecture researchers and help facilitate how challenges each face can be overcome for 
mutual benefit. In particular, by focusing on neuromorphic hardware practice and use, an emphasis on understanding the strengths and weaknesses 
of these emerging approaches can help to identify and convey the significance of research developments. This overarching goal is intended to be 
addressed by the following workshop objectives:

• Explore implemented or otherwise real-world usage of neuromorphic hardware platforms
• Help develop ‘best practices’ for developing neuromorphic-ready algorithms and software
• Bridge the gap between hardware design and theoretical algorithms
• Begin to establish formal benchmarks to understand the significance and impact of neuromorphic architectures

http://neuroscience.sandia.gov/research/wcci2018.html

Call: https://easychair.org/cfp/nipu2018

http://neuroscience.sandia.gov/research/wcci2018.html
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