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Motivation: Hole Spin Qubits

 Holes provide an alternate approach to spin based qubits
 Recent demonstrations of hole spin manipulation in various systems

 Strained Ge/SiGe heterostructures are an attractive substrate
 Low Disorder system

 Absence of valley states (or near degenerate ground states)

 All electrical control of spins through spin-orbit coupling

 Small effective mass (~0.08 me)

 Zero nuclear spin isotopes exist for Si and Ge

 Weaker hyperfine interactions
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Material System 
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*Laroche,  Lu et al., APL 2016 and T.M. Lu et al. APL 2017

The strained Ge layer splits the Light Hole 
and Heavy Hole bands by ~10 meV, leaving 
Heavy Holes as the ground state 



Low Disorder Substrate
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*Laroche T.M. Lu et al., APL 2016 and T.M. Lu et al. APL 2017
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For 2DHG in 58 nm spacer sample 
Density Range: 3 x1010 – 1.8 x 1011 cm-2

Peak Mobility: ~2 x 105 cm2/Vs

gperp~28       
gpar~1.3   
m*~0.08 me

Spin Orbit Length:  643 nm



Material Properties
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*Laroche T.M. Lu et al., APL 2016 and T.M. Lu et al. APL 2017

lSO ~  643 nm

m*~0.08 me

Parameters extracted from 2DHG

gpar~1.3

B0

B0

WAL: lSO~640 nm



Device Structure
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Single Metal Layer (110 nm Al2O3 oxide)

Device Design similar to Si/SiGe in Lu et al. APL (2016)

Typical Threshold curve



Device Tune up
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Single metal layer Ge/SiGe Device

CAGU=53.3 aF
CRPU=10.3 aF
CCPU=5.09 aF
CRISO=8.51 aF
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Top gate capacitance similar to that expected from 
lithographic dimensions (55 aF)T=30 mK



Coulomb Blockade
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Single metal layer Ge/SiGe Device
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LPU CPU
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VAGU=-1.127 V
VCPU=0.06 V
VLISO=0.8 V
VLPU=-0.05

Lower gates grounded

-1.127 V

0.06 V-0.05 V

0.8 V



Coulomb Diamonds
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Addition energy expected from capacitances
Eadd = 1.7 meV

Increasing charging energy indicates we have 
achieved the low hole occupancy regime
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Conclusions
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• Strained Ge/SiGe heterostructures are a compelling system for hole spin qubits
• Ge/SiGe heterostructures are a low-disorder material system (~200,000 cm2/Vs)
• Demonstrated Lithographic Quantum Dot operation in a single metal layer device
• Achieved low hole regime
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Backup Slides
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Device Tune up
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Single metal layer Ge/SiGe Device

CAGU=53.3 aF
CRPU=10.3 aF
CCPU=5.09 aF
CLPU=4.53 aF
CRISO=8.51 aF
CLISO=1.27 aF
CAGL=9.39 aF
CCPL=1.35 aF
CLPL=0.88 aF
CRPL=1.75 aF

Ctot=96.4 aF
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Effective Mass
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Effective mass extracted from 
Quantum Hall Effect data. 

m*=0.08 me (independent of 
density)



g-factor
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Lu et al., Appl. Phys. Lett. 111, 102108 (2017) 


