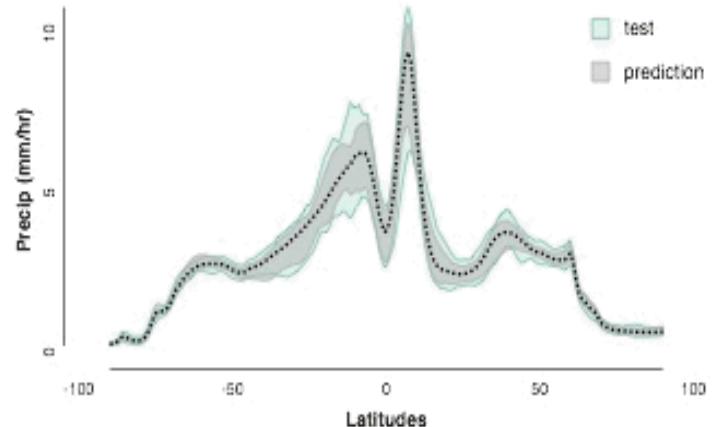


UQTk: A C++/Python Uncertainty Quantification Toolkit

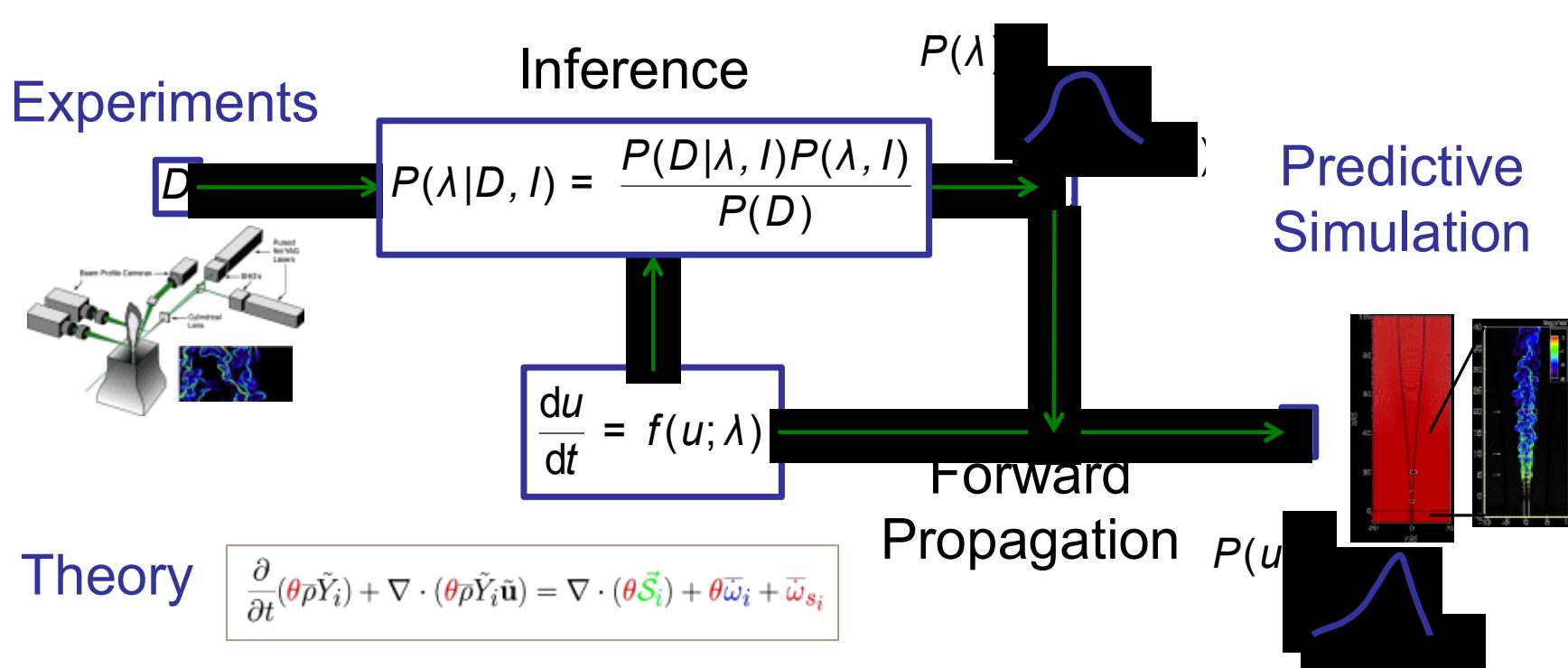
Bert Debusschere, Cosmin Safta, Khachik Sargsyan, Kenny Chowdhary
Sandia National Labs

Massachusetts
Institute
of
Technology

Rensselaer


SMU

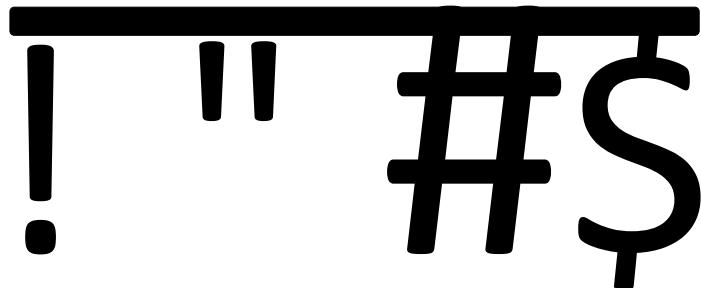
USC University
of
Southern California


Overview of the technology

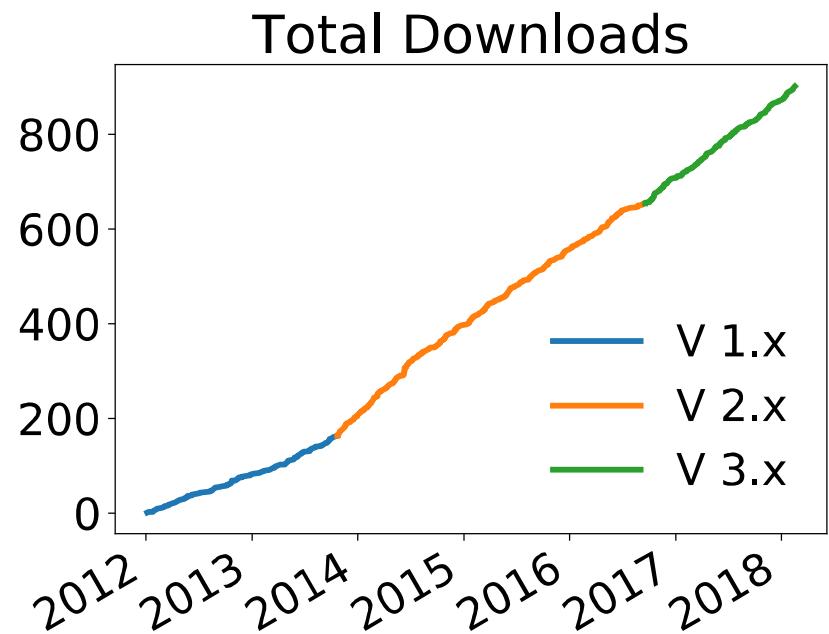
- **Technology Area: Uncertainty Quantification**
- **FASTMath Tasks:**
 - **FY18: Comparison of low-rank, adaptive quadrature, and Bayesian Compressed Sensing (BCS) for surrogate construction**
 - **FY19: Support for Machine Learning, and improved interoperability with third party libraries**
 - **FY20: Performance improvements and enhanced Polynomial Chaos basis types**
- **Relevant Software Tools:**
 - **UQTk, <http://www.sandia.gov/UQToolkit/>**
- **Applications Impacted (1-3 bullets)**
 - **E3SM Climate Modeling**
 - **Optimization of Sensor Networks for Improving Climate Model Predictions**
 - **Plasma Surface Interactions**
 - **Simulation of Fission Gas in Uranium Oxide Nuclear Fuel**

Approximation of ensemble of precipitation profiles with PCA and BCS

UQTk Description / Technology



- UQTk provides tools to build a general UQ workflow


UQTk Description / Technology

- Variety of tools
 - Representation of random variables and stochastic processes (Polynomial Chaos and Karhunen-Loève)
 - Forward UQ (intrusive and non-intrusive)
 - Bayesian Inverse Problems
 - Sensitivity Analysis
 - Bayesian Compressed Sensing
 - Low-Rank approximations
- Tools can be used stand-alone or combined into general workflow
 - C++/Python

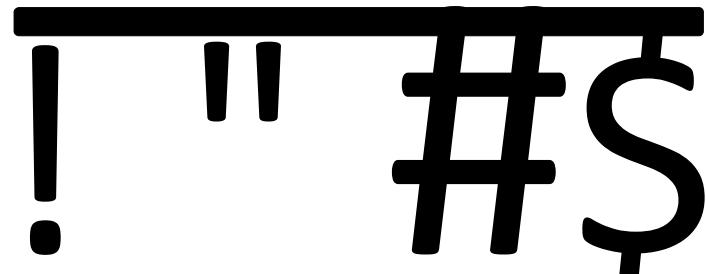
UQTk Description / Technology

- Target Usage:
 - Rapid prototyping of UQ workflows
 - Algorithmic research in UQ
 - Tutorials / Educational use

Proposed work in FASTMath including internal collaborations

- FY18:
 - Enhancements of tools for surrogate construction
 - Low-Rank approximations added
 - Comparison with Bayesian Compressed Sensing (BCS) and Adaptive Quadrature
 - Adaptive Quadrature may be imported from Dakota/Stokhos
 - Enhancements to MCMC libraries
 - Create unified workflow and interface across all MCMC methods
 - Create interface with MUQ (MIT) MCMC methods

Proposed work in FASTMath including internal collaborations


- FY19:
 - Implement interface with Dakota
 - Make Dakota methods available to UQTk users
 - Add Neural Network regression and classification tools
 - From Dakota, other 3rd party libraries, or in-house developed
 - More general interoperability with 3rd party libraries
 - Move away from fixed dependencies
 - Allow users to specify their favorite random number generator

Proposed work in FASTMath including internal collaborations

- FY20:
 - Exploring data types and constructs that better lend themselves to parallelization and GPU usage
 - Work with Kokkos
 - Mixed Polynomial Chaos basis types and associated multi-indices
 - Analysis of computational performance of PC basis ordering schemes

Description of the software tools

- The Uncertainty Quantification Toolkit (UQTk)
 - Intrusive and non-intrusive methods for forward UQ
 - Polynomial Chaos representations of random variables
 - Sensitivity analysis
 - Sparse surrogate construction
 - Bayesian inference tools
- Open Source LGPL
- <http://www.sandia.gov/UQToolkit/>

Application interactions

- BER-ASCR partnership: Optimization of Sensor Networks for Improving Climate Model Predictions (OSCM)
 - Led by Daniel Ricciuto (ORNL)
 - Expected impact:
 - Impacts E3SM, DOE's flagship climate modeling effort
 - UQTK is being used for both forward modeling (surrogate construction and GSA) and inverse modeling (parameter tuning, embedded structural error)

Application interactions

- FES-ASCR partnership: Plasma Surface Interactions: Bridging from the Surface to the Micron Frontier through Leadership Computing (PSI2)
 - Led by Brian Wirth (ORNL)
 - Expected impact:
 - Impacts Xolotl, an open-source, high performance plasma-surface interactions simulator that is under development within the DOE's SciDAC program.
 - UQTK has been used for building surrogates and propagating uncertain inputs towards Xolotl predictions.

Application interactions

- NE-ASCR partnership: Simulation of Fission Gas in Uranium Oxide Nuclear Fuel
 - Led by David Andersson (LANL)
 - UQTK is being used for forward and inverse UQ studies
 - Expected impact:
 - Modeling of degradation in nuclear fuel rods
 - Improved understanding of gas bubble diffusion and dynamics in nuclear fuel materials

Application interactions

- BES-ASCR partnership: Predictive Computing for Condensed Matter
 - Partnership led by So Hirata (UIUC)
 - Tool developed : Low rank tensor approximation for multivariate functions.
 - Expected impact:
 - Low rank canonical tensor approximations are used to approximate potential energy surfaces of molecules for estimating anharmonic energy and frequency corrections in quantum chemistry.
 - Relevant publication: Rai P., Sargsyan K., Najm H., Hermes M. and S. Hirata, "Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory", Molecular Physics, 115, 17-18, 2120-2134, 2017.