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Parallel Sparse Matrices

CongratulaƟons! You can store a parallel sparse matrix w/ MPI!

What’s next?

You probably want to be able tomulƟply this matrix by a vector.

What sort of communicaƟon structures do we need (presuming

row-wise storage)?

The domain distribuƟon of the vector.

The column distribuƟon of the matrix.

The list of (data,desƟnaƟon) pairs each rank sends.

The list of (data,source) pairs each rank receives.



Finding Neighbors in General

So, supposing we had this:
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How do we fill out our send and receive lists?



Data DistribuƟon #1
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General Algorithms

Idea: Use assumed parƟƟon [1] or rendezvous scheme.

Create assumed parƟƟon w/ easy to calculate range.

Each owning proc talks to assumed owner.

Each proc asks assumed owner who owns needed unknowns.

Requires O(log(p)) distributed terminaƟon detecƟon [2].

Message: You need to exploit structure (of some kind) to get

O(1) storage and communicaƟon.

BUT, once you have a hammer, everything looks like a nail.

[1] Barker, Falgout and Yang, 2006.

[2] Pinar and Hendrickson, 2001.
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Data DistribuƟon #1
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Data DistribuƟon #2 (Reversed)
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MigraƟon from #1 to #2

From this: Xfer 1 =

Rank Sends Receives
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Via this: Mat / X MigraƟon =
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To this: Xfer 2 =
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What happens: Focus on Row 1
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Row 1 goes from� to�.

Row 1 recv’d X2 from�, but now that is owned by�. How does

� know this?

Moreover, how does� know it needs to send X2 to�?

What should we do?



Forward Algorithm by Picture (Row 1)
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This solves the recv problem, but what about sends?



Reverse Algorithm by Picture (Row 1)
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Now we know our recv’s.



Algorithm (in more detail)

A

B

C

D

Xfer 1

Mat Mig

Xfer 1

X Mig

Forward round

A: ∀ row in (xfer 1) send id ∩ (x migraƟon) send id, pass a (global

domain id, owning domain rank) pair.

B: ∀ nonzeros in (mat migraƟon) send row ids, pass a (value,

global column id, owning domain rank) triplet.

Reverse round

C: ∀ (xfer 1) recv’d id i, pass a list of ranks to whom an entry in

global column i was sent during B.

D: ∀ (xfer 1) recv’d id i from C that is no longer owned, pass that

message along (x migraƟon).



Algorithm OpƟmizaƟons

A

B

C

D

Xfer 1

Mat Mig

Xfer 1
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This can be implemented as a 4 round algorithm.

However, the only data dependencies are B on A and D on C→
this can be implemented in as liƩle as two rounds.

If rows in the X vector aren’t moving, we can skip steps A & D

(this is the case for matrix-matrix mulƟplicaƟon and transpose).

And we can combine B & C if we want to.



ComputaƟonal Example

Example: 3D Laplacian (A) and prolongator (P) from

Trilinos/MueLu.

Matrix migraƟon: Off-processor porƟons of P needed to

compute C = A P.

Doing B and C only, done (and Ɵmed) separately.

Compare: CommunicaƟon costs

Building communicaƟon structures ex nihilo.

Building them via the aforemenƟoned algorithm.

Trilinos/Epetra code used in both cases.

Three machines: SNL’s Redsky, SNL’s Serrano and NERSC’s

Edison.

Note: Pack/unpack costs will be neglected to focus on comm.



Edison: 15k Unknowns / Core



Serrano: 20k Unknowns / Core



Redsky: Speedup
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Conclusions

There is enough structure in matrix migraƟon to get O(1) cost
neighbor discovery.

Four rounds in general, but can be reduced to 1 in the matrix

mulƟplicaƟon & transpose case.

A screwdriver usually does a beƩer job than a hammer…

But with the right machine and enough data per core, maybe a

hammer is good enough.

Future direcƟons

Complete deployment in Trilinos/Tpetra.

Implement the 1-round combinaƟon of B & C.

Demonstrate relevance on Xeon Phi / Cuda architectures.
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