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TriData Overview

 TriData – Trilinos for Large-Scale Data Analysis
 Leverages Trilinos Framework (Sandia National Labs)

 High performance linear algebra, traditional focus on CSE

 High performing eigensolvers, linear solvers 

 Scales to billions of matrix rows/vertices

 Vision: Sparse Linear Algebra-Based Data Analysis
 Apply sparse linear algebra techniques to data analysis

 Target: very large data problems

 Target: distributed memory and single node HPC architectures

 Additionally
 Vehicle for improving how Trilinos can be leveraged for data analytics 

(e.g., submatrix extraction, preconditioning, load-balancing)

 Support GraphBLAS-like linear algebra analysis techniques

 Focus: Graph and Hypergraph Analysis
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TriData Capabilities

 Eigen solver based capabilities
 Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)

 Supports several eigensolvers (through Trilinos):  LOBPCG, TraceMin-
Davidson, Riemannian Trust Region, Block Krylov-Schur

 Linear solver based capability
 Mean hitting time analysis on graphs

 Support for different linear solvers (typically use CG) and preconditioners

 Other
 K-means++, metrics (conductance, modularity, jaccard index)

 Random graph and hypergraph models, hypothesis testing 
techniques/infrastructure for evaluation of clustering software 3
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TriData Approach

Workstation
 CPUs, GPUs, KNLs, …

 Kokkos

 MTGL

Distributed Memory (DM)
 Clusters, supercomputers

 Tpetra (MPI, DM data structures) 

 Kokkos (node level parallelism)

TriData

Goal: Write algorithms once, run on both types of architecturesGoal: Write algorithms once, run on both types of architectures
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Solver Adapters

TriData Software Stack

TriData

MTGL

Trilinos Solvers

Kokkos

Tpetra

Portable on-node performanceDistributed memory computations

5
Flexible solver adapters enable solution for both architecturesFlexible solver adapters enable solution for both architectures



 TriData Overview

 Focus 1: Hypergraphs and Incidence Matrices

 Focus 2: 2D Partitioning

 Focus 3: Interoperability

 Future TriData Focus: KokkosKernels

 Summary

Outline
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Hypergraphs

 Generalization of graph
 Hyperedges represent multiway relationships between vertices

 Hyperedge – set of 1 or more vertices

 Key feature:  hyperedges can connect more than 2 vertices
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Why Hypergraphs?

 Convenient representation of relational data
 E.g., Each email represented by hyperedge (a subset of users)

 Multiway relationships can be represented nonambiguously

 Computation and storage advantages
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Why Hypergraphs?

 Improved Modeling 

 Clustering (above UCI ML Repository Zoo Data Set*)

 Clustering vs. ground truth (7 clusters):  Graph JI=0.74, Hypergraph JI= 0.81

 Clustering vs. ground truth (3 clusters):  Graph JI=0.87, Hypergraph JI= 1.00

 Eigencentrality
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* https://archive.ics.uci.edu/ml/

JI= 0.81JI= 0.74
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Incidence Matrices

 Compute with hypergraph incidence matrices when possible
 Relational data is often stored as hypergraph incidence matrix*

 Avoids costly SpGEMM operation for building adjacency matrices

 Dynamic data: easier to update incidence matrices than adjacency matrices

 Trilinos solver operators make this easy

 Hypergraphs require significantly less storage space and fewer 
operations than graphs generated using clique expansion
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Hypergraph incidence matrix

*Kepner, Jeremy, et al. "Dynamic distributed dimensional data model (D4M) database and computation system." Acoustics, Speech and Signal 
Processing (ICASSP), 2012 IEEE International Conference on. IEEE, 2012.
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Hypergraph models (with incidence matrices) 
up to 30x faster than graph models

Hypergraph models (with incidence matrices) 
up to 30x faster than graph models

Runtimes – Graph vs. Hypergraph

Runtime ratio = graph runtime / hypergraph runtime
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 TriData Overview

 Focus 1: Hypergraphs and Incidence Matrices

 Focus 2: 2D Partitioning

 Focus 3: Interoperability

 Future TriData Focus: KokkosKernels

 Summary

Outline
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2D Partitioning:  Motivation

Solver scalability severely limited when using one-dimensional 
distributions (data partitioned by row or vertex) for social network data

Solver scalability severely limited when using one-dimensional 
distributions (data partitioned by row or vertex) for social network data
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M. Wolf and B. Miller, “Sparse Matrix Partitioning for Parallel Eigenanalysis of Large Static and Dynamic Graphs," in IEEE HPEC, 2014.
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1D Partitioning: Communication Pattern

Latency due to all-to-all communication kills parallel performance for
large numbers of processors 

Latency due to all-to-all communication kills parallel performance for
large numbers of processors 

M. Wolf and B. Miller, “Sparse Matrix Partitioning for Parallel Eigenanalysis of Large Static and Dynamic Graphs," in IEEE HPEC, 2014.
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2D Partitioning

 2D partitioning essential for high performance linear algebra-based 
data analytics
 More flexibility: no particular part for entire row, general sets of nonzeros

 Use flexibility of 2D partitioning to bound number of messages

 2D Block Cartesian*
 Random (Yoo, et al. SC’11)

 Hypergraph (Boman, et al. SC’13;  Wolf, Miller IEEE HPEC 2014)

 Leads to further scaling

 New Zoltan2 Support:  2D block Cartesian partitioning

*Previous work by Hendrickson, et al.; Bisseling, et al.

2D Block Cartesian Improved communication
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 TriData Overview

 Focus 1: Hypergraphs and Incidence Matrices

 Focus 2: 2D Partitioning

 Focus 3: Interoperability

 Future TriData Focus: KokkosKernels

 Summary

Outline
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High Performance Graph Analytics

Device Interface

Two different approaches to graph analytics Two different approaches to graph analytics 

System Architecture 1 System Architecture 2

Device Interface

Linear Algebra Graph Traversal

MTGL (SNL), BGL (PNNL)TriData (SNL), GraphBLAS

Clustering, eigenvector centrality, 
commute time, mean hitting time

BFS, connected components, 
page rank 

Graph

= x

BFS = Breadth First Search; SNL=Sandia National Labs; PNNL (Pacific Northwest National Labs)
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Interoperability:  TriData + MTGL Graph Analysis

Kokkos

TriData MTGL adapter allows us to run linear-algebra based 
algorithms directly on MTGL graphs

TriData MTGL adapter allows us to run linear-algebra based 
algorithms directly on MTGL graphs

GPUs, Multicore CPUs, Intel KNL, …

Kokkos

Linear Algebra Graph Traversal

MTGL (SNL)TriData (SNL)

Clustering, eigenvector centrality, 
commute time, mean hitting time

BFS, connected components, 
page rank 

Graph 
data 

structure

Graph 
data 

structure

Graph
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TriData Centrality Results: Tpetra and MTGL

 CPU: 20 core IBM Power 8, 3.42 GHz (serial, multithreaded)

 GPU: NVIDIA Pascal P100 (Tpetra, Kokkos/MTGL)

• GPU computation is up to 80x speedup over host serial
• TriData/MTGL in general better than TriData/Tpetra
• GPU computation is up to 80x speedup over host serial
• TriData/MTGL in general better than TriData/Tpetra
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 TriData Overview

 Focus 1: Hypergraphs and Incidence Matrices

 Focus 2: 2D Partitioning

 Focus 3: Interoperability

 Future TriData Focus: KokkosKernels

 Summary

Outline
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Future Focus: KokkosKernels for Node-
Level Performance

 Kokkos
 Tools for performance portable node-level parallelism

 Manages data access patterns, execution spaces, memory spaces

 Performance portability not trivial for sparse matrix and graph algorithms

 KokkosKernels
 Layer of performance-portable kernels for high performance

 Sparse/Graph: SpMV, SpGEMM, triangle enumeration

 Related Talk – Deveci, Friday 3:20pm, Room 52-303
 “Performance Portable Sparse Matrix Matrix Multiplication with Applications in 

Scientific Computing and Graph Analytics”

KokkosKernels for performance-portable sparse/graph kernelsKokkosKernels for performance-portable sparse/graph kernels

Applications

21



KokkosKernels and IEEE/DARPA Graph Challenge

Vision: Build software on top of highly optimized KokkosKernels
kernels (e.g., KKTri) to impact applications

Vision: Build software on top of highly optimized KokkosKernels
kernels (e.g., KKTri) to impact applications

Linear Algebra Based 
Triangle Counting

4 
5 1 

2 

3 

KKMEM: KokkosKernels
Matrix-Matrix Multiply

SpGEMM

 2017 IEEE/DARPA Graph Challenge Submission
 Wolf, Deveci, Berry, Hammond, Rajamanickam: “Fast Linear Algebra-

Based Triangle Counting with KokkosKernels.”

 Triangle Counting Champion (focus: single node)

 Counted 34.8B triangles in 1.2B edge graph in 43 secs (Twitter2010)

22
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Graph Challenge: Lessons Learned
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Triangle Counting Challenge Submissions

KKTri

Other submissions

 Linear algebra approach 
can be competitive

 Avoiding unnecessary 
computation essential

 Data compression often 
helps performance

 Visitor pattern can add 
more flexibility to linear 
algebra approach

Linear algebra-based KKTri as good as or better than 
other state-of-the-art methods

Linear algebra-based KKTri as good as or better than 
other state-of-the-art methods
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Plot courtesy of Jeremy Kepner, 
MIT Lincoln Laboratory

Lessons Learned



Future TriData Software Stack

TriData

MTGL

Trilinos Solvers

KokkosKernels

Tpetra
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Leverage highly optimized KokkosKernels kernels for 
high performance data analysis

Leverage highly optimized KokkosKernels kernels for 
high performance data analysis

Triangle Counting
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Summary

 Overview of TriData
 Trilinos for Large-Scale Data Analytics

 Targeting both workstations and supercomputers

 Several key foci of TriData that enable high performance
 Use of hypergraphs, incidence matrices beneficial computationally

 2D partitioning necessary for scalable solvers (on network problems)

 Flexible adapters support interoperability with MTGL

 Related Work
 Wolf, Klinvex, Dunlavy. “Advantages to modeling relational data using 

hypergraphs versus graphs,” Proc of IEEE HPEC, 2016.

 Wolf, Deveci, Berry, Hammond, Rajamanickam. “Fast Linear Algebra-
Based Triangle Counting with KokkosKernels,” Proc of IEEE HPEC, 2017.

 Triangle Counting: https://github.com/Mantevo/miniTri

 KokkosKernels:  https://github.com/kokkos/kokkos-kernels
25
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Example: TriData + MTGL GPU Graph Analysis 

• TriData and MTGL uses Kokkos for performant GPU execution
• TriData use of MTGL graph directly (via adapter) avoids data copy
• TriData and MTGL uses Kokkos for performant GPU execution
• TriData use of MTGL graph directly (via adapter) avoids data copy

27

TriData

Kokkos

MTGL

GPU

Kokkos

Linear algebra based algorithms:
clustering, eigenvector centrality, 
commute time

Traversal based algorithms:
BFS, connected components, 
page rank AdapterAdapter

Example Application
1. MTGL:  build MTGL graph G, find largest component GC

2. TriData: spectral clustering on subgraph GC to find clusters C
3. MTGL: exploratory graph analysis on clusters C

G GcC



TriData Spectral Clustering Results

 CPU: 20 core IBM Power 8, 3.42 GHz (serial, multithreaded)

 GPU: NVIDIA Pascal P100 (Tpetra, Kokkos/MTGL)
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• GPU computation up to 45x speedup over host serial• GPU computation up to 45x speedup over host serial
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Mean Hitting Time Results

 Distributed memory TriData/Tpetra on GPU (not MTGL) 

GPU computation is up to 35x speedup over host serialGPU computation is up to 35x speedup over host serial
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Performance Portability

 Kokkos: 

 Layered collection of template C++ 
libraries

 Manages data access patterns 

 Execution spaces, Memory spaces

 Kokkos provides tools for 
portability

 Performance portability does not 
come for free.

 Not trivial for sparse matrix and 
graph algorithms

• KokkosKernels:

– Layer of performance-
portable kernels

– SpGEMM

KKTri leverages Kokkos and KokkosKernels for performance-
portable linear algebra-based triangle counting

KKTri leverages Kokkos and KokkosKernels for performance-
portable linear algebra-based triangle counting
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GC 1: Vertex Ordering and Triangle Counting

Avoiding computation essential for efficient triangle counting!Avoiding computation essential for efficient triangle counting!

# Wedges with d(i) < d(j) > d(k) : 56
# Wedges with d(i) > d(j) < d(k) : 0

j

i

k

Vertex Ordering Matters KKTri Ordering Challenging

wedge

• Ordering: essential first step for 
triangle counting

• Impacts # operations
(# wedges visited) 

“Interleaved”

Decreasing 
degree x

x

Increasing 
degree x

Heuristic

Densest row
2nd Densest row
Sparsest row

Good 
load-balance

Best operation 
count (of 3)
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GC 2: Matrix Compression

 Compression used to improve performance
 Encodes columns using fewer integers

 Reduces number of operations and memory required in symbolic phase

 Allows ”vectorized” bitwise union/intersection of different rows

 Effectiveness of compression varies greatly with data
 Large random graphs compress poorly (R-Mat <1% compression storage)

 However, still helpful for many random graphs (e.g., power-law) –
effective for dense rows (improves load balance, operation count)

Column Indices

2 3 6 8 321 322 323 325 327

0 10

332 174

Column set indices

Local column ids

row Compression

Compression consistently improves triangle counting performanceCompression consistently improves triangle counting performance
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GC 3: Visitor Pattern

 KKMEM based triangle counting supports visitor pattern
 Concept fundamental to BGL and MTGL

 Functor passed to triangle identification function, which 
allows method to be run once triangle is found
 For triangle counting:  triangleCount++;

 Flexibility allows for more complex analysis of triangles, miniTri

BGL = Boost Graph Library, MTGL = MultiThreaded Graph Library

Visitor pattern support provides additional flexibility to analystsVisitor pattern support provides additional flexibility to analysts
33



Graph Challenge Results

Plot courtesy of Jeremy Kepner, 
MIT Lincoln Laboratory
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Triangle Counting Challenge Submissions

KKTri

Other submissions

 2017 Graph Challenge

 Sponsors: DARPA, Amazon, 
IEEE HPEC, MIT Lincoln Lab

 3 problems, 5 champions

 KKTri: Champion status for 
triangle counting

 Top rates per submission

 Largest graph and rate

 Highest rate and size

Linear algebra-based KKTri achieves higher peak rate than 
almost all other triangle counting submissions

Linear algebra-based KKTri achieves higher peak rate than 
almost all other triangle counting submissions
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