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TriData Overview ) jge,

= TriData — Trilinos for Large-Scale Data Analysis

= Leverages Trilinos Framework (Sandia National Labs)
= High performance linear algebra, traditional focus on CSE
= High performing eigensolvers, linear solvers
= Scales to billions of matrix rows/vertices

= \ision: Sparse Linear Algebra-Based Data Analysis
= Apply sparse linear algebra techniques to data analysis

= Target: very large data problems
= Target: distributed memory and single node HPC architectures

= Additionally

= Vehicle for improving how Trilinos can be leveraged for data analytics
(e.g., submatrix extraction, preconditioning, load-balancing)

= Support GraphBLAS-like linear algebra analysis techniques
= Focus: Graph and Hypergraph Analysis
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TriData Capabilities ) e
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= Eigen solver based capabilities
= Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)
= Supports several eigensolvers (through Trilinos): LOBPCG, TraceMin-
Davidson, Riemannian Trust Region, Block Krylov-Schur
= Linear solver based capability
= Mean hitting time analysis on graphs
= Support for different linear solvers (typically use CG) and preconditioners

= QOther

= K-means++, metrics (conductance, modularity, jaccard index)

= Random graph and hypergraph models, hypothesis testing
techniques/infrastructure for evaluation of clustering software 3




TriData Approach .

TriData

Distributed Memory (DM) Workstation
= Clusters, supercomputers = CPUs, GPUs, KNLs, ...
= Tpetra (MPIl, DM data structures) = Kokkos
= Kokkos (node level parallelism) = MTGL

Goal: Write algorithms once, run on both types of architectures




TriData Software Stack ) =

TriData

Trilinos Solvers

Solver Adapters

MTGL

Kokkos

gL

Multi-Core Many-Core CPU +GPU

Distributed memory computations Portable on-node performance

Flexible solver adapters enable solution for both architectures



Outline =

= TriData Overview

m) = [ocus 1: Hypergraphs and Incidence Matrices
= Focus 2: 2D Partitioning
= Focus 3: Interoperability

= Future TriData Focus: KokkosKernels
= Summary




Hypergraphs
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2 vertices G(V, E)

= Generalization of graph

= Hyperedges represent multiway relationships between vertices

Hyperedges connect
1 or more vertices

= Hyperedge — set of 1 or more vertices

= Key feature: hyperedges can connect more than 2 vertices




Why Hypergraphs? UL

Graph Hypergraph
Bob

Emails

G Bob

Users

Ed

Relational Data

= Convenient representation of relational data

= E.g., Each email represented by hyperedge (a subset of users)
= Multiway relationships can be represented nonambiguously
= Computation and storage advantages




Why Hypergraphs? UL

Spectral Clustering (Normalized Laplacians)
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= |mproved Modeling

= Clustering (above UCI ML Repository Zoo Data Set*)
= Clustering vs. ground truth (7 clusters): Graph JI=0.74, Hypergraph JI=0.81
= Clustering vs. ground truth (3 clusters): Graph JI=0.87, Hypergraph JI=1.00

= Eigencentrality 9




Incidence Matrices )
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= Compute with hypergraph incidence matrices when possible
= Relational data is often stored as hypergraph incidence matrix*
= Avoids costly SpGEMM operation for building adjacency matrices
= Dynamic data: easier to update incidence matrices than adjacency matrices

= Trilinos solver operators make this easy

= Hypergraphs require significantly less storage space and fewer

operations than graphs generated using clique expansion o



Runtimes — Graph vs. Hypergraph )

Runtime ratio = graph runtime / hypergraph runtime
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Hyperedge cardinality

Hypergraph models (with incidence matrices)

up to 30x faster than graph models ”




Outline ) S,

= TriData Overview

= Focus 1: Hypergraphs and Incidence Matrices
m) = [ocus 2: 2D Partitioning

= Focus 3: Interoperability

= Future TriData Focus: KokkosKernels
= Summary




2D Partitioning: Motivation
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Solver scalability severely limited when using one-dimensional
distributions (data partitioned by row or vertex) for social network data
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1D Partitioning: Communication Pattern®
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Latency due to all-to-all communication kills parallel performance for
large numbers of processors

M. Wolf and B. Miller, “Sparse Matrix Partitioning for Parallel Eigenanalysis of Large Static and Dynamic Graphs," in IEEE HPEC, 2014.

Sandia
National
Laboratories
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2D Partitioning ) 2=,

—_—

2D Block Cartesian

ImpFovéd communication
= 2D partitioning essential for high performance linear algebra-based
data analytics

=  More flexibility: no particular part for entire row, general sets of nonzeros
= Use flexibility of 2D partitioning to bound number of messages
= 2D Block Cartesian*
= Random (Yoo, et al. SC'11)
= Hypergraph (Boman, et al. SC’'13; Wolf, Miller IEEE HPEC 2014)

= Leads to further scaling

= New Zoltan2 Support: 2D block Cartesian partitioning .




Outline =

= TriData Overview
= Focus 1: Hypergraphs and Incidence Matrices
= Focus 2: 2D Partitioning

mp = [ocus 3: Interoperability

= Future TriData Focus: KokkosKernels
= Summary




High Performance Graph Analytics =

Linear Algebra Graph Traversal
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Clustering, eigenvector centrality, BFS, connected components,
commute time, mean hitting time page rank
TriData (SNL), GraphBLAS MTGL (SNL), BGL (PNNL)
K Device Interface / \ Device Interface /
[ System Architecture 1 ] [ System Architecture 2 ]

Two different approaches to graph analytics
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Interoperability: TriData + MTGL Graph Analysis ),

Linear Algebra

O]

Graph Traversal
oBETD )
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BFS, connected components,

Cluste_ring, eigenvector ce_ntrality,
page rank

commute time, mean hitting time

TriData (SNL) MTGL (SNL)
K Kokkos / k Kokkos /
I I
[ GPUs, Multicore CPUs, Intel KNL, ... ]

TriData MTGL adapter allows us to run linear-algebra based
algorithms directly on MTGL graphs
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TriData Centrality Results: Tpetra and MTGL @ =
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Eigenvector Centrality: Speedup vs. Serial
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= CPU: 20 core IBM Power 8, 3.42 GHz (serial, multithreaded)
= GPU: NVIDIA Pascal P100 (Tpetra, Kokkos/MTGL)

« GPU computation is up to 80x speedup over host serial
« TriData/MTGL in general better than TriData/Tpetra
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Outline ) =,

= TriData Overview

= Focus 1: Hypergraphs and Incidence Matrices
= Focus 2: 2D Partitioning

= Focus 3: Interoperability
=)= Fyture TriData Focus: KokkosKernels
= Summary




Future Focus: KokkosKernels for Node-
Level Performance

Multi-Core ~ Many-Core = APU  CPU+GPU

= Kokkos

= Tools for performance portable node-level parallelism
= Manages data access patterns, execution spaces, memory spaces
= Performance portability not trivial for sparse matrix and graph algorithms
= KokkosKernels
= Layer of performance-portable kernels for high performance
= Sparse/Graph: SpMV, SpGEMM, triangle enumeration
= Related Talk — Deveci, Friday 3:20pm, Room 52-303
= “Performance Portable Sparse Matrix Matrix Multiplication with Applications in
Scientific Computing and Graph Analytics”

KokkosKernels for performance-portable sparse/graph kernels
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KokkosKernels and IEEE/DARPA Graph Challenge @ =

KKTri

—
Linear Algebra Based KKMEM: KokkosKernels
Triangle Counting Matrix-Matrix Multiply
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= 2017 IEEE/DARPA Graph Challenge Submission

= Wolf, Deveci, Berry, Hammond, Rajamanickam: “Fast Linear Algebra-
Based Triangle Counting with KokkosKernels.”

= Triangle Counting Champion (focus: single node)
= Counted 34.8B triangles in 1.2B edge graph in 43 secs (Twitter2010)

Vision: Build software on top of highly optimized KokkosKernels
kernels (e.g., KKTri) to impact applications
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Graph Challenge: Lessons Learned ®i=.

Triangle Counting Challenge Submissions

10% ¢ . : . :
- O :
- 0o : Lessons Learned
:a ) _ O i .
g 10 o 1 | ® Linear algebra approach
§ [ ) 5 © can be competitive
107 o 3 -
5 e = Avoiding unnecessary
o © computation essential
o 10 o E )
o = Data compression often
© 10 o ] helps performance
o 3
% I | = Visitor pattern can add
§ 104 | more flexibility to linear
o Other submissions | piot courtesy of Jeremy Kepner, ] algebra approach
. MIT Lincoln Laboratory I
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Linear algebra-based KKTri as good as or better than
other state-of-the-art methods
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Future TriData Software Stack =,

Triangle Counting

30

B Kokkos Kernels
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Leverage highly optimized KokkosKernels kernels for
high performance data analysis




Summary UL

= Qverview of TriData
= Trilinos for Large-Scale Data Analytics
= Targeting both workstations and supercomputers

= Several key foci of TriData that enable high performance
= Use of hypergraphs, incidence matrices beneficial computationally
= 2D partitioning necessary for scalable solvers (on network problems)
= Flexible adapters support interoperability with MTGL

= Related Work

= Wolf, Klinvex, Dunlavy. “Advantages to modeling relational data using
hypergraphs versus graphs,” Proc of IEEE HPEC, 2016.

= Wolf, Deveci, Berry, Hammond, Rajamanickam. “Fast Linear Algebra-
Based Triangle Counting with KokkosKernels,” Proc of IEEE HPEC, 2017.

= Triangle Counting: https://github.com/Mantevo/miniTri

= KokkosKernels: https://github.com/kokkos/kokkos-kernels .
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Example: TriData + MTGL GPU Graph Analysis ) e,

C Example Application A

1. MTGL: build MTGL graph G, find largest component G,
2. TriData: spectral clustering on subgraph G to find clusters C
\3. MTGL: exploratory graph analysis on clusters C

/ TriData \

Linear algebra based algorithms:
clustering, eigenvector centrality,
commute time Adapter pamg

/

4 MTGL \

Traversal based algorithms:
BFS, connected components,
page rank

\ Kokkos / \ Kokkos /

[ [ ]

[ GPU

« TriData and MTGL uses Kokkos for performant GPU execution
« TriData use of MTGL graph directly (via adapter) avoids data copy

27




Sandia

TriData Spectral Clustering Results @&

Spectral Clustering: Speedup over Serial
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= CPU: 20 core IBM Power 8, 3.42 GHz (serial, multithreaded)
= GPU: NVIDIA Pascal P100 (Tpetra, Kokkos/MTGL)

 GPU computation up to 45x speedup over host serial
28




Sandia

Mean Hitting Time Results =

Hitting Times: Speedup over IBM Power8 Serial
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= Distributed memory TriData/Tpetra on GPU (not MTGL)

GPU computation is up to 35x speedup over host serial
29




Performance Portability ) .

= Kokkos: |
= Layered collection of template C++ m {
libraries C
= Manages data access patterns ﬁ
= Execution spaces, Memory spaces ﬂﬁ {
= Kokkos provides tools for G Mot o ol
portability « KokkosKernels:
= Performance portability does not — Layer of performance-
come for free. portable kernels
= Not trivial for sparse matrix and — SpGEMM

graph algorithms

KKTri leverages Kokkos and KokkosKernels for performance-

portable linear algebra-based triangle counting .




GC 1: Vertex Ordering and Triangle Counting .

Vertex Ordering Matters KKTri Ordering Challenging

B Densest row

[ 2nd Densest row
® ® Heuristic [] Sparsest row
Decreasing Good

wedge degree load-balance
- _—
# Wedges with d(i) < d(j) > d(k) : 56 dogren.
# Wedges with d(i) > d(j) < d(k) : O
« Ordering: essential first step for Interleaved” Best operation

triangle counting
« Impacts # operations
(# wedges visited)

count (of 3)

Avoiding computation essential for efficient triangle counting! .




GC 2: Matrix Compression ) .

Column Indices o |10 | Column set indices

row | 2 | 3| 6 | 8 |321|322|323|325|327 m

= Compression used to improve performance

= Encodes columns using fewer integers

332|174 | Local column ids

= Reduces number of operations and memory required in symbolic phase

= Allows "vectorized” bitwise union/intersection of different rows
= Effectiveness of compression varies greatly with data

= Large random graphs compress poorly (R-Mat <1% compression storage)

= However, still helpful for many random graphs (e.g., power-law) —
effective for dense rows (improves load balance, operation count)

Compression consistently improves triangle counting performance
32




GC 3: Visitor Pattern ) =,

= KKMEM based triangle counting supports visitor pattern
= Concept fundamental to BGL and MTGL
= Functor passed to triangle identification function, which
allows method to be run once triangle is found

= For triangle counting: triangleCount++;

= Flexibility allows for more complex analysis of triangles, miniTri

Visitor pattern support provides additional flexibility to analysts s




Graph Challenge Results ) .,

Triangle Counting Challenge Submissions
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Linear algebra-based KKTri achieves higher peak rate than

almost all other triangle counting submissions "




