

TriData: High Performance Linear Algebra-Based Data Analytics

Michael Wolf, Danny Dunlavy, Rich Lehoucq, Jon Berry, Daniel Bourgeois

SIAM PP18
2018-03-08

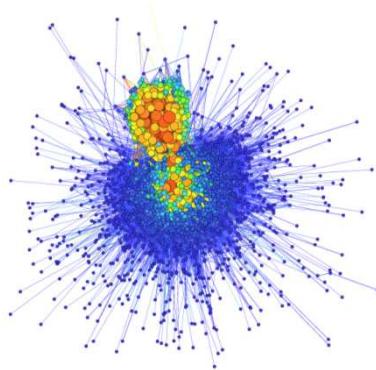
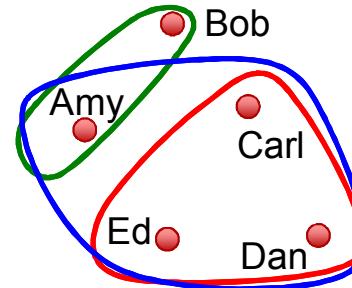
U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

TriData Overview

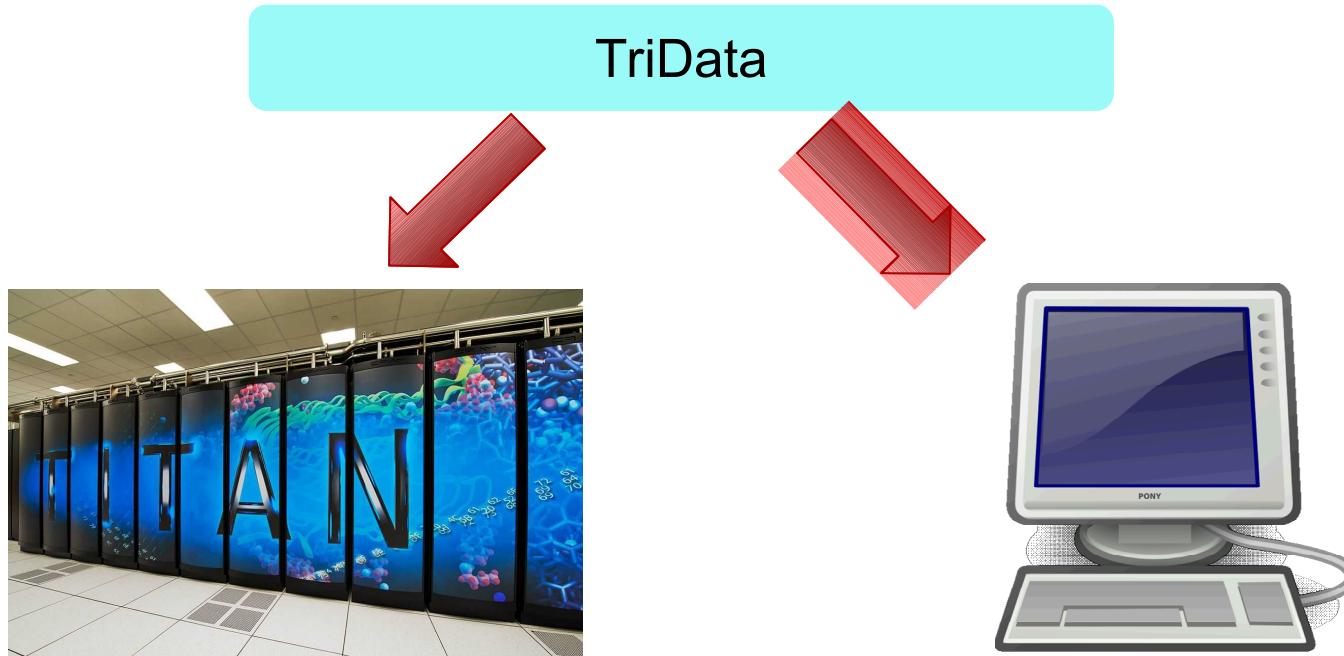
- TriData – Trilinos for Large-Scale Data Analysis
 - Leverages Trilinos Framework (Sandia National Labs)
 - High performance linear algebra, traditional focus on CSE
 - High performing eigensolvers, linear solvers
 - Scales to billions of matrix rows/vertices
- Vision: Sparse Linear Algebra-Based Data Analysis
 - Apply sparse linear algebra techniques to data analysis
 - Target: very large data problems
 - Target: distributed memory and single node HPC architectures
- Additionally
 - Vehicle for improving how Trilinos can be leveraged for data analytics (e.g., submatrix extraction, preconditioning, load-balancing)
 - Support GraphBLAS-like linear algebra analysis techniques
- Focus: Graph and Hypergraph Analysis

TriData Capabilities



- Eigen solver based capabilities
 - Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)
 - Supports several eigensolvers (through Trilinos): LOBPCG, TraceMin-Davidson, Riemannian Trust Region, Block Krylov-Schur
- Linear solver based capability
 - Mean hitting time analysis on graphs
 - Support for different linear solvers (typically use CG) and preconditioners
- Other
 - K-means++, metrics (conductance, modularity, jaccard index)
 - Random graph and hypergraph models, hypothesis testing techniques/infrastructure for evaluation of clustering software

TriData Approach



Distributed Memory (DM)

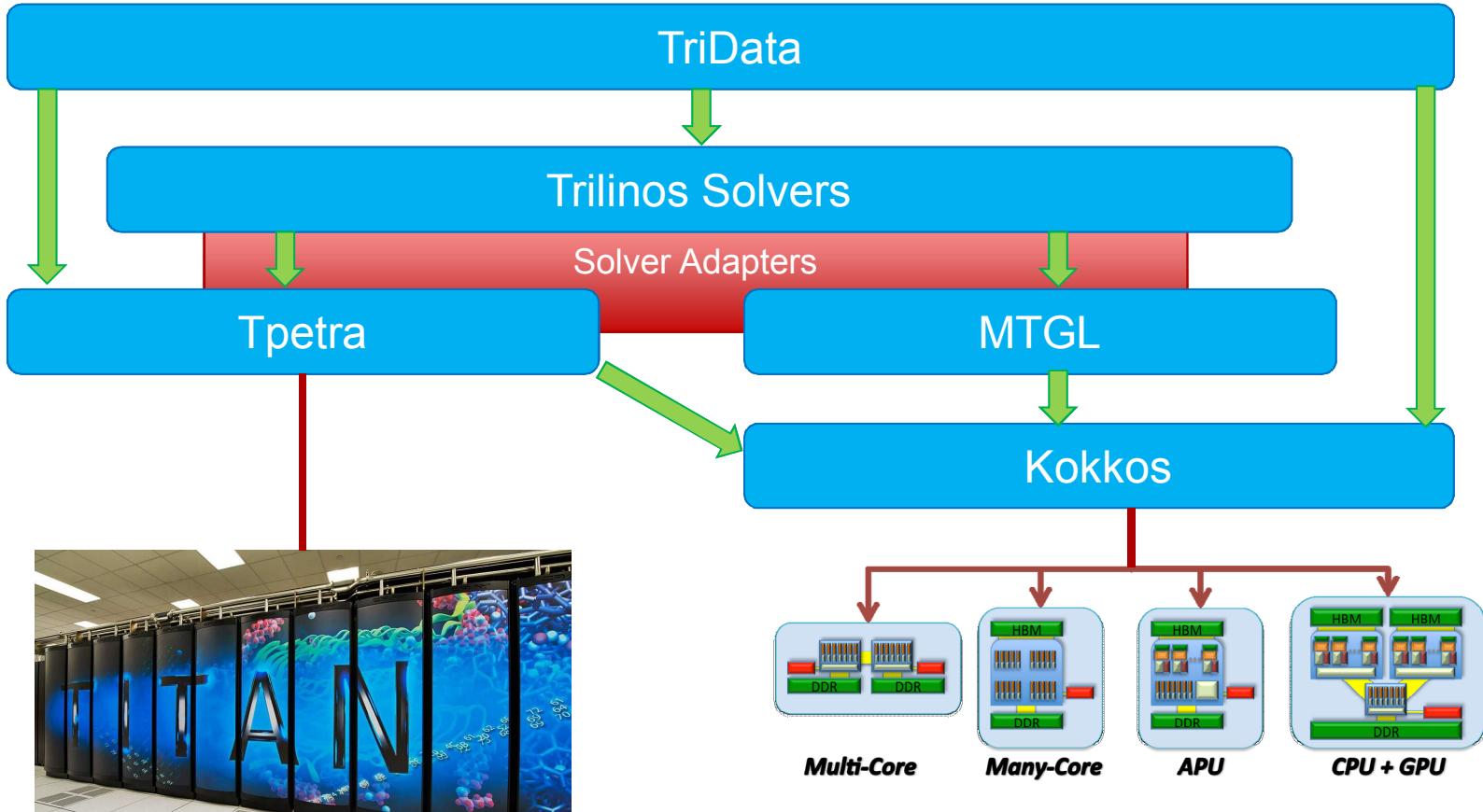
- Clusters, supercomputers
- Tpetra (MPI, DM data structures)
- Kokkos (node level parallelism)

Workstation

- CPUs, **GPUs**, KNLs, ...
- Kokkos
- MTGL

Goal: Write algorithms once, run on both types of architectures

TriData Software Stack

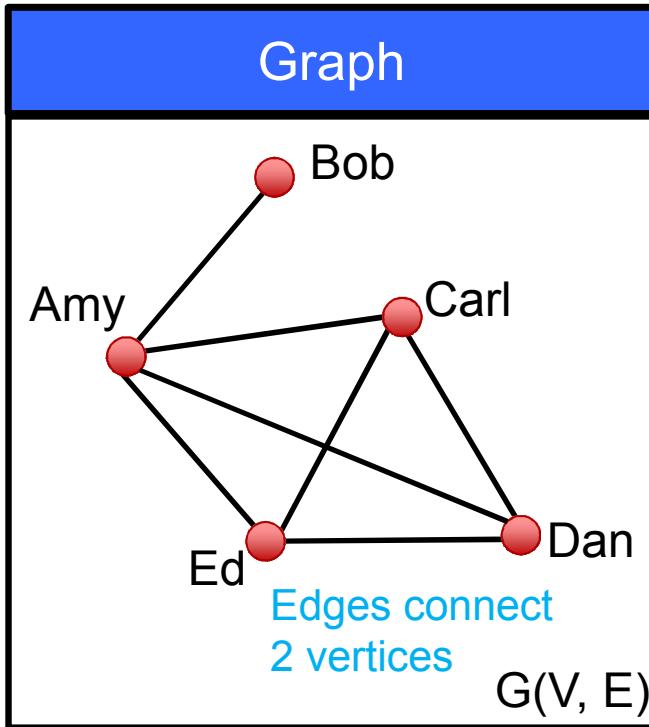
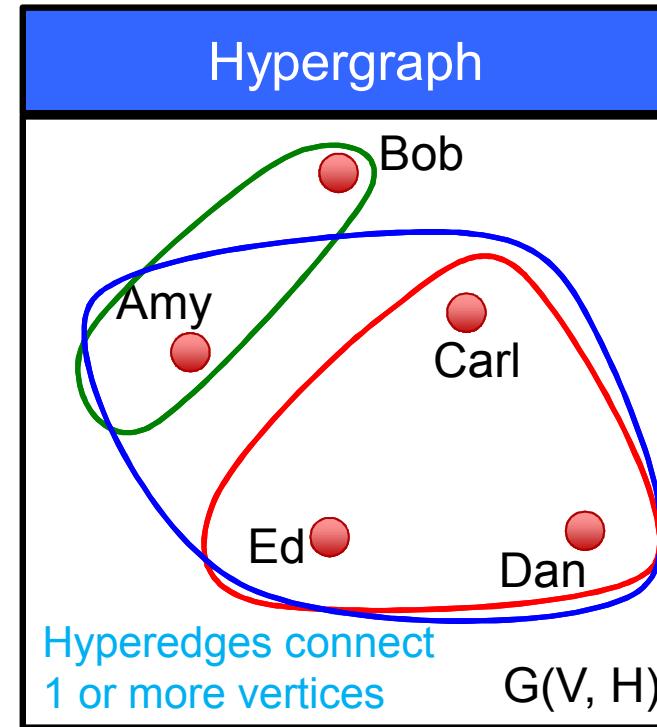


Flexible solver adapters enable solution for both architectures

Outline

- TriData Overview
- ➡■ Focus 1: Hypergraphs and Incidence Matrices
- Focus 2: 2D Partitioning
- Focus 3: Interoperability
- Future TriData Focus: KokkosKernels
- Summary

Hypergraphs

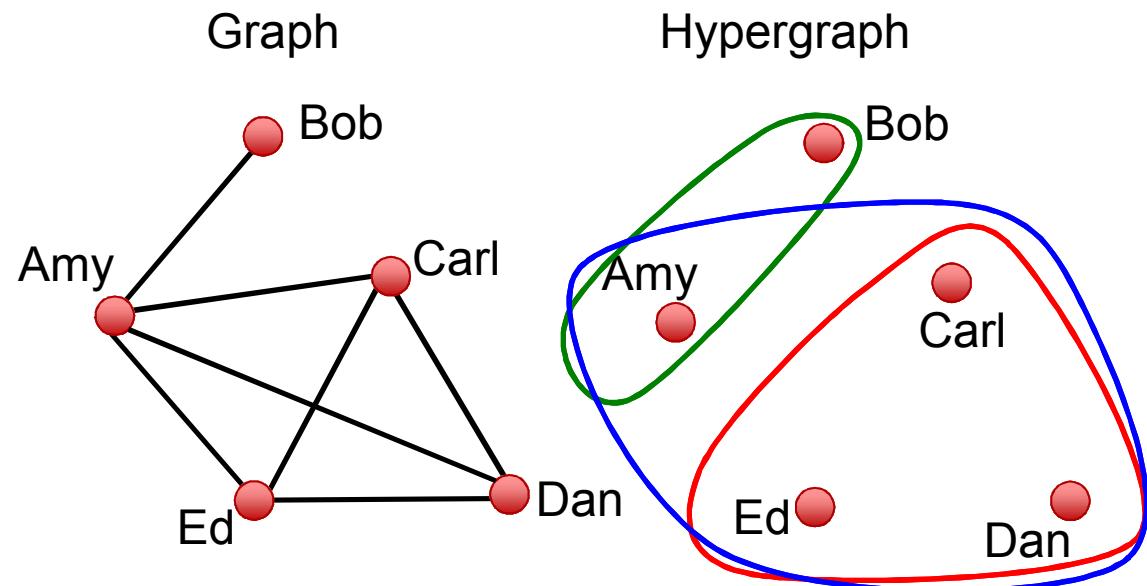


- Generalization of graph
 - Hyperedges represent multiway relationships between vertices
 - Hyperedge – set of 1 or more vertices
 - Key feature: hyperedges can connect more than 2 vertices

Why Hypergraphs?

	1	2	3
Users			
Amy	x		x
Bob	x		
Carl		x	x
Dan		x	x
Ed	x		x

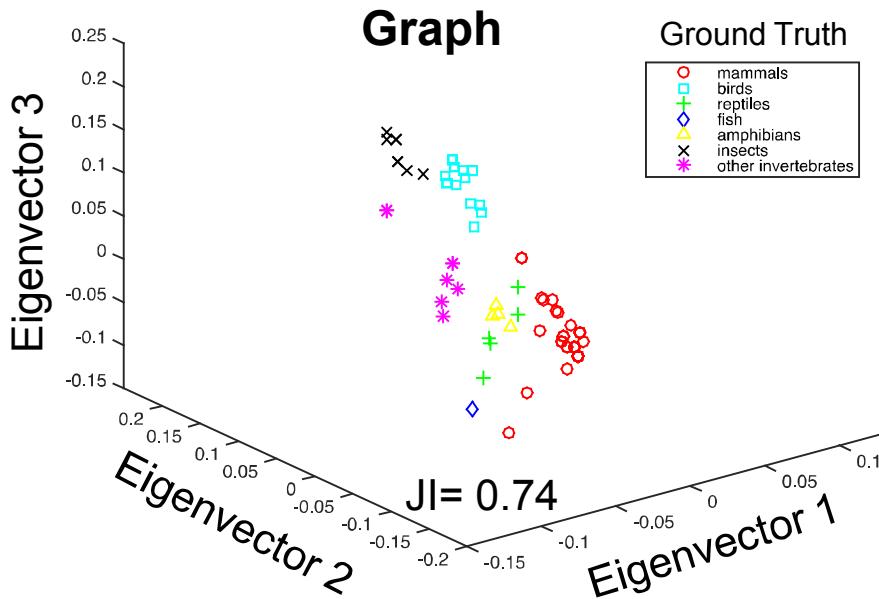
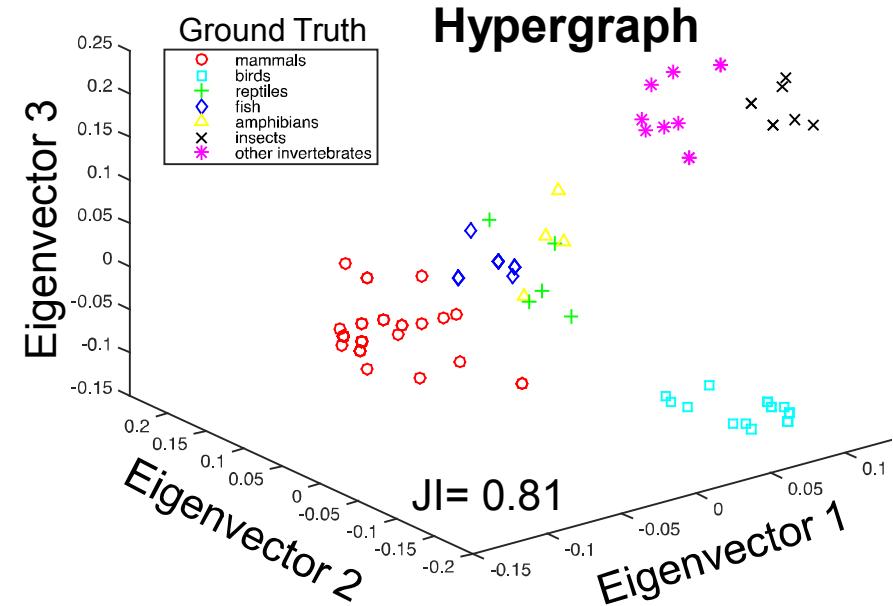
Relational Data



- Convenient representation of relational data
 - E.g., Each email represented by hyperedge (a subset of users)
- Multiway relationships can be represented nonambiguously
- Computation and storage advantages

Why Hypergraphs?

Spectral Clustering (Normalized Laplacians)



- Improved Modeling
 - Clustering (above UCI ML Repository Zoo Data Set*)
 - Clustering vs. ground truth (7 clusters): Graph $JI=0.74$, Hypergraph $JI= 0.81$
 - Clustering vs. ground truth (3 clusters): Graph $JI=0.87$, Hypergraph $JI= 1.00$
 - Eigencentrality

Incidence Matrices

1		1
1		
	1	1
	1	1
	1	1

Hypergraph incidence matrix

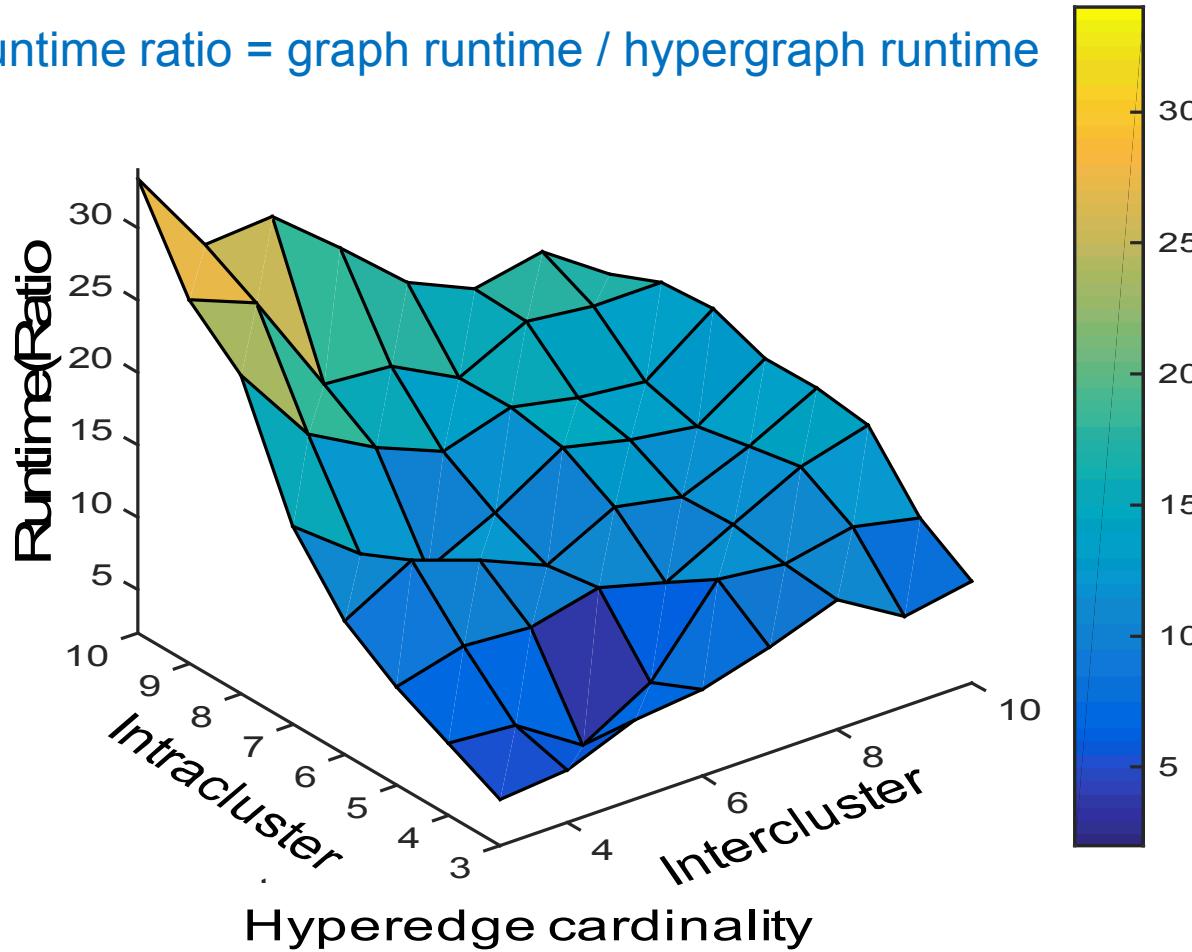
1				1	1	1			
1									
	1	1		1			1	1	
	1		1		1		1		1
		1	1			1		1	1

Graph Incidence matrix

- Compute with **hypergraph incidence matrices** when possible
 - Relational data is often stored as hypergraph incidence matrix*
 - Avoids costly SpGEMM operation for building adjacency matrices
 - Dynamic data: easier to update incidence matrices than adjacency matrices
 - Trilinos solver operators make this easy
- Hypergraphs require significantly **less storage space** and **fewer operations** than graphs generated using clique expansion

Runtimes – Graph vs. Hypergraph

Runtime ratio = graph runtime / hypergraph runtime

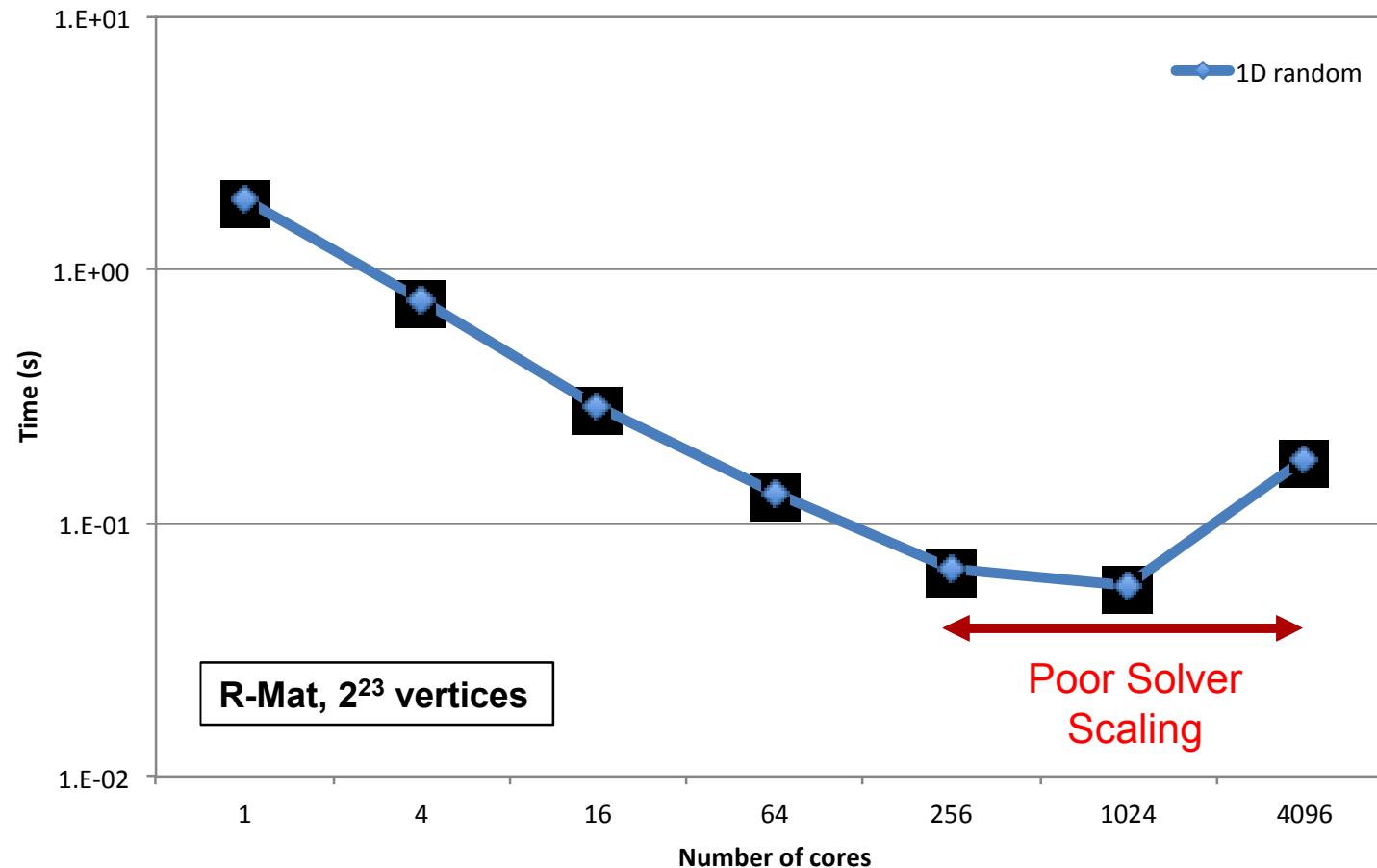


**Hypergraph models (with incidence matrices)
up to 30x faster than graph models**

Outline

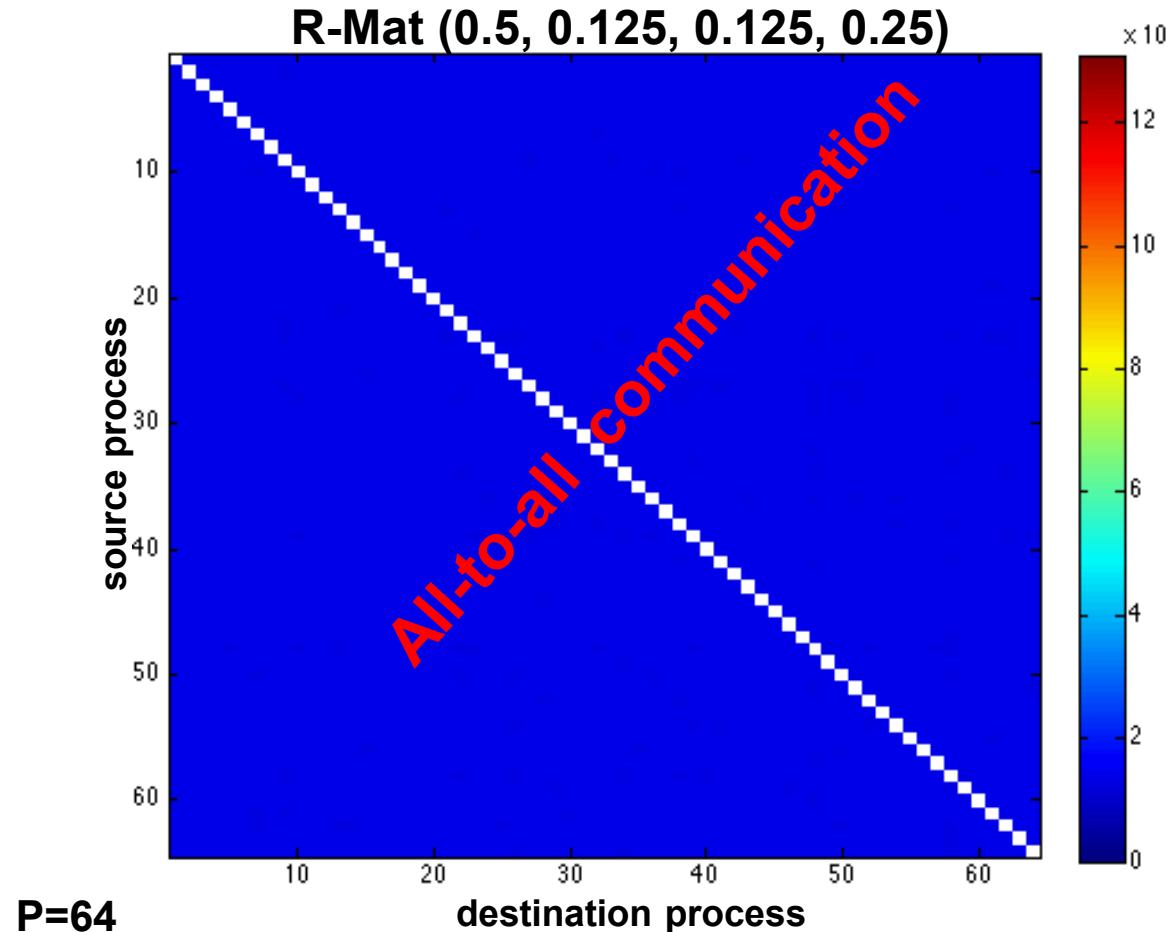
- TriData Overview
- Focus 1: Hypergraphs and Incidence Matrices
- ■ Focus 2: 2D Partitioning
- Focus 3: Interoperability
- Future TriData Focus: KokkosKernels
- Summary

2D Partitioning: Motivation



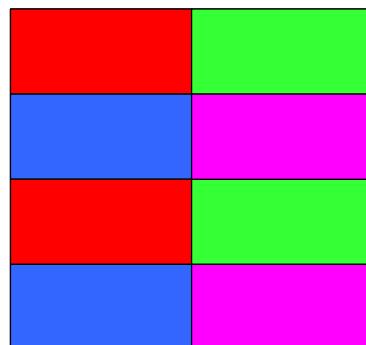
Solver scalability severely limited when using one-dimensional distributions (data partitioned by row or vertex) for social network data

1D Partitioning: Communication Pattern

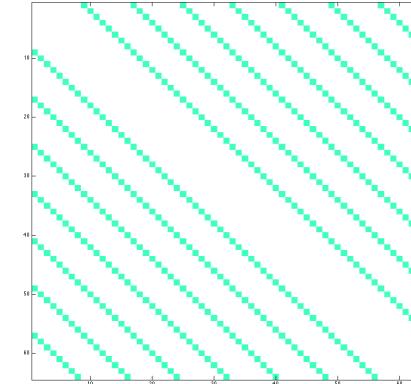


Latency due to all-to-all communication kills parallel performance for large numbers of processors

2D Partitioning



2D Block Cartesian



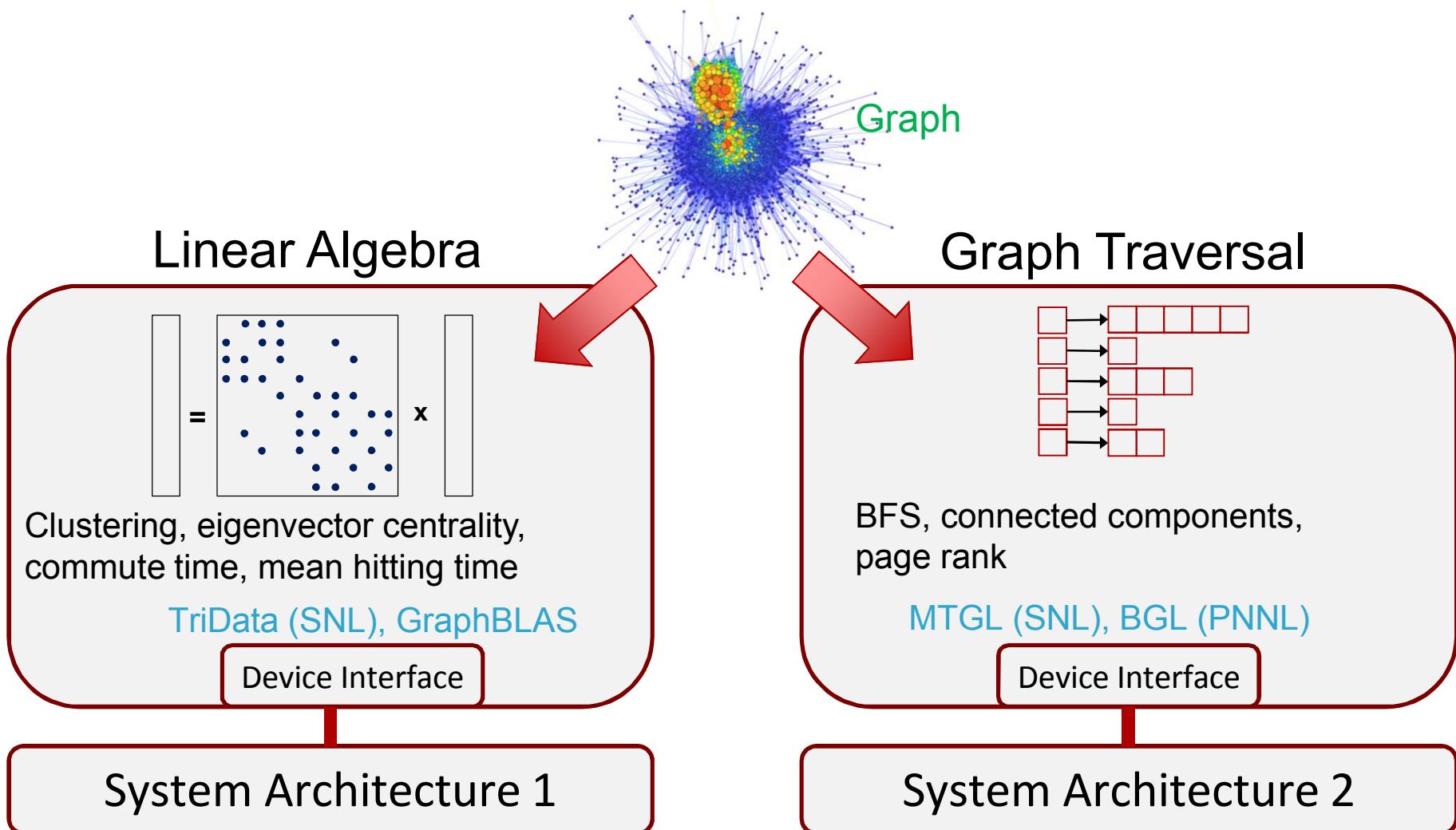
Improved communication

- 2D partitioning essential for high performance linear algebra-based data analytics
 - More flexibility: no particular part for entire row, general sets of nonzeros
 - Use flexibility of 2D partitioning to bound number of messages
- 2D Block Cartesian*
 - Random (Yoo, et al. SC'11)
 - Hypergraph (Boman, et al. SC'13; Wolf, Miller IEEE HPEC 2014)
 - Leads to further scaling
- **New Zoltan2 Support:** 2D block Cartesian partitioning

Outline

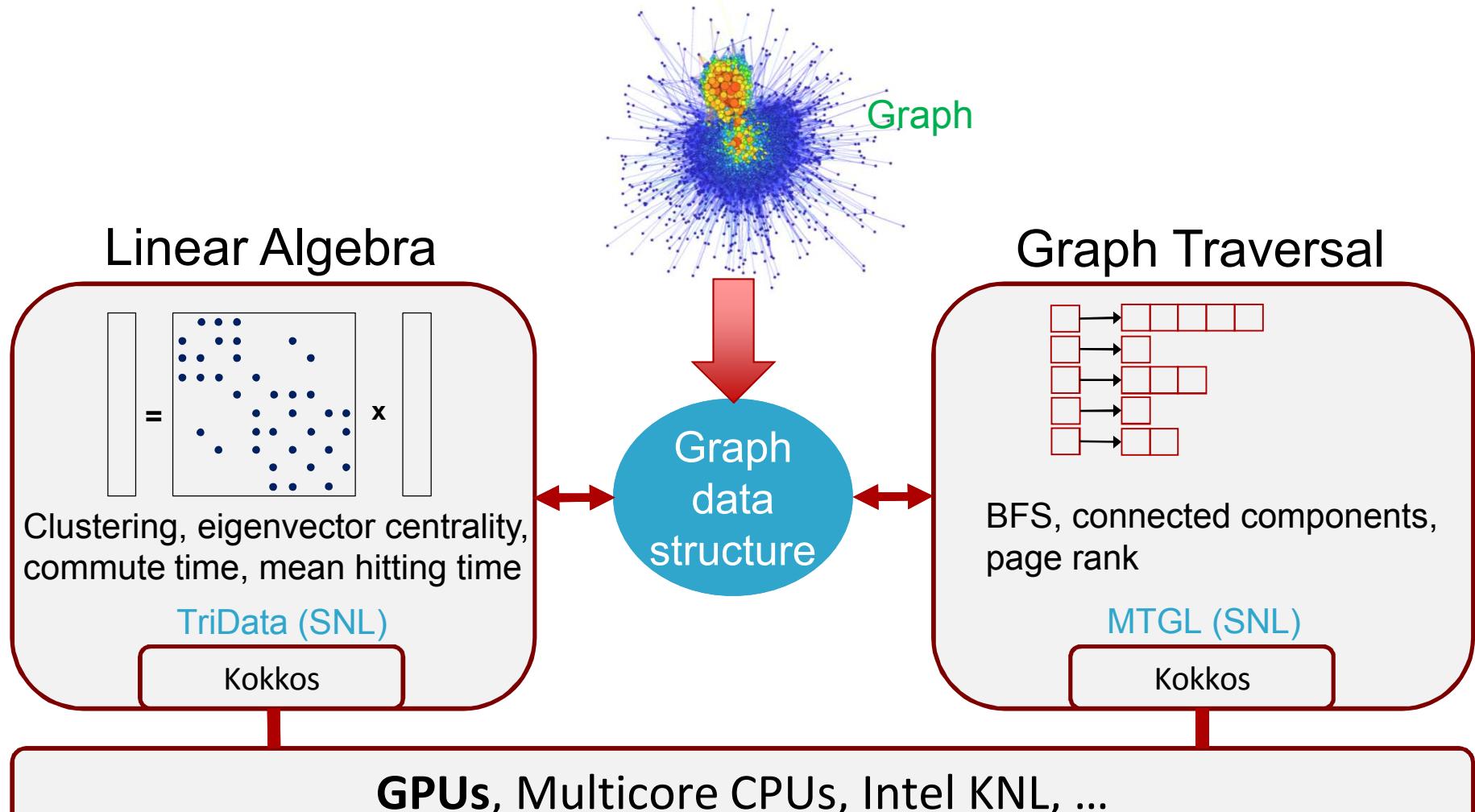
- TriData Overview
- Focus 1: Hypergraphs and Incidence Matrices
- Focus 2: 2D Partitioning
- ■ Focus 3: Interoperability
- Future TriData Focus: KokkosKernels
- Summary

High Performance Graph Analytics



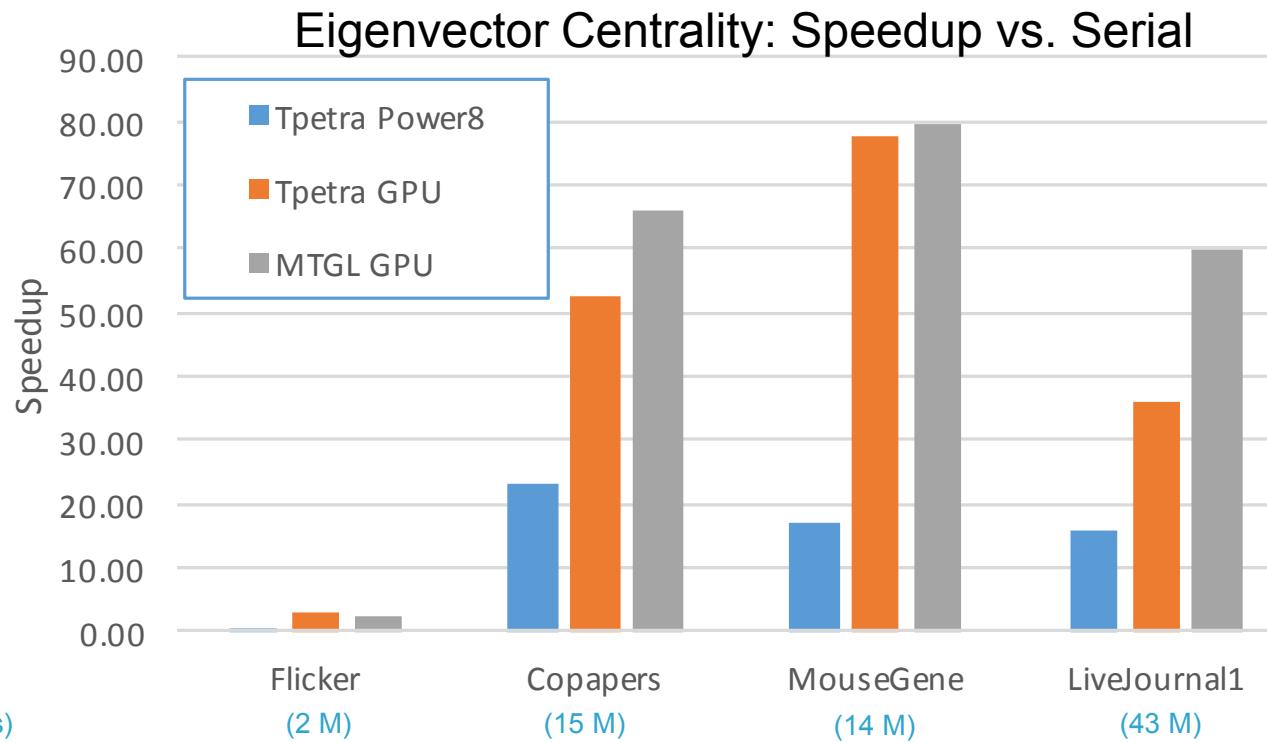
Two different approaches to graph analytics

Interoperability: TriData + MTGL Graph Analysis



TriData MTGL adapter allows us to run linear-algebra based algorithms directly on MTGL graphs

TriData Centrality Results: Tpetra and MTGL



(Number of Edges)

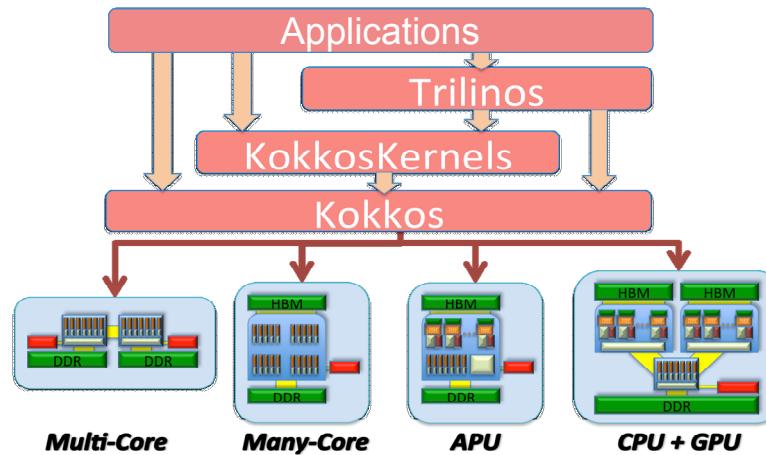
- CPU: 20 core IBM Power 8, 3.42 GHz (serial, multithreaded)
- GPU: NVIDIA Pascal P100 (Tpetra, Kokkos/MTGL)

- **GPU computation is up to 80x speedup over host serial**
- **TriData/MTGL in general better than TriData/Tpetra**

Outline

- TriData Overview
- Focus 1: Hypergraphs and Incidence Matrices
- Focus 2: 2D Partitioning
- Focus 3: Interoperability
- ➡■ Future TriData Focus: KokkosKernels
- Summary

Future Focus: KokkosKernels for Node-Level Performance

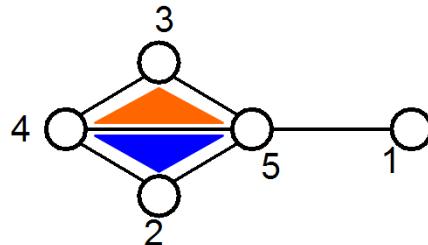


- Kokkos
 - Tools for performance portable node-level parallelism
 - Manages data access patterns, execution spaces, memory spaces
 - Performance portability not trivial for sparse matrix and graph algorithms
- KokkosKernels
 - Layer of performance-portable kernels for high performance
 - Sparse/Graph: SpMV, SpGEMM, triangle enumeration
- **Related Talk – Deveci, Friday 3:20pm, Room 52-303**
 - “Performance Portable Sparse Matrix Matrix Multiplication with Applications in Scientific Computing and Graph Analytics”

KokkosKernels for performance-portable sparse/graph kernels

KKTri

Linear Algebra Based Triangle Counting



KKMEM: KokkosKernels Matrix-Matrix Multiply

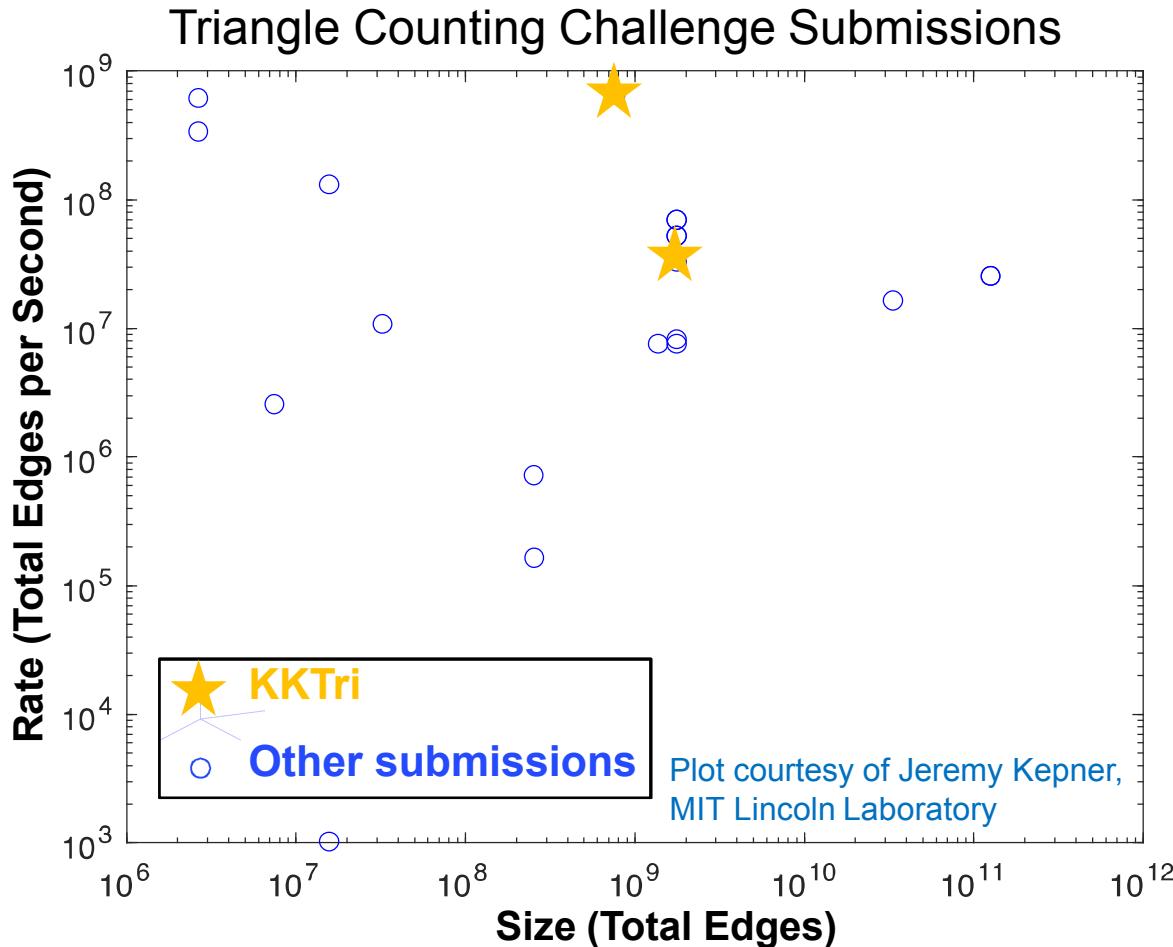
SpGEMM

$$\begin{array}{c|c|c}
 \begin{array}{ccc}
 * & * & * \\
 * & * & * \\
 * & & * \\
 * & & * \\
 \end{array} & = & \begin{array}{ccc}
 * & * & * \\
 * & & * \\
 & & * \\
 * & & * \\
 \end{array} \cdot \begin{array}{ccc}
 * & & \\
 * & * & * \\
 * & & * \\
 * & & * \\
 \end{array} \\
 C & & A & & B
 \end{array}$$

- 2017 IEEE/DARPA Graph Challenge Submission
 - Wolf, Deveci, Berry, Hammond, Rajamanickam: “Fast Linear Algebra-Based Triangle Counting with KokkosKernels.”
 - **Triangle Counting Champion** (focus: single node)
 - Counted 34.8B triangles in 1.2B edge graph in 43 secs (Twitter2010)

Vision: Build software on top of highly optimized KokkosKernels kernels (e.g., KKTri) to impact applications

Graph Challenge: Lessons Learned

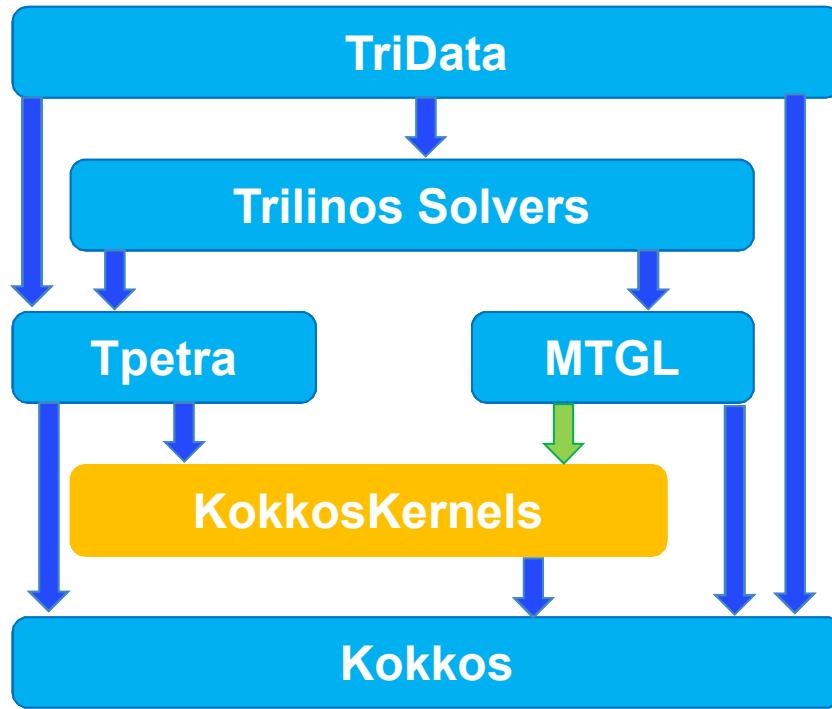
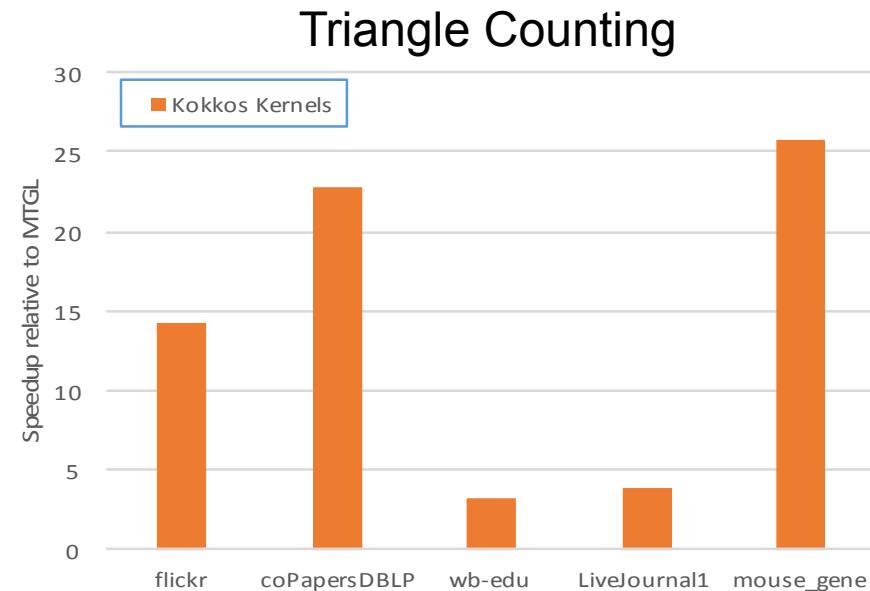


Lessons Learned

- Linear algebra approach can be competitive
- Avoiding unnecessary computation essential
- Data compression often helps performance
- Visitor pattern can add more flexibility to linear algebra approach

Linear algebra-based KKTri as good as or better than other state-of-the-art methods

Future TriData Software Stack



Leverage highly optimized KokkosKernels kernels for high performance data analysis

Summary

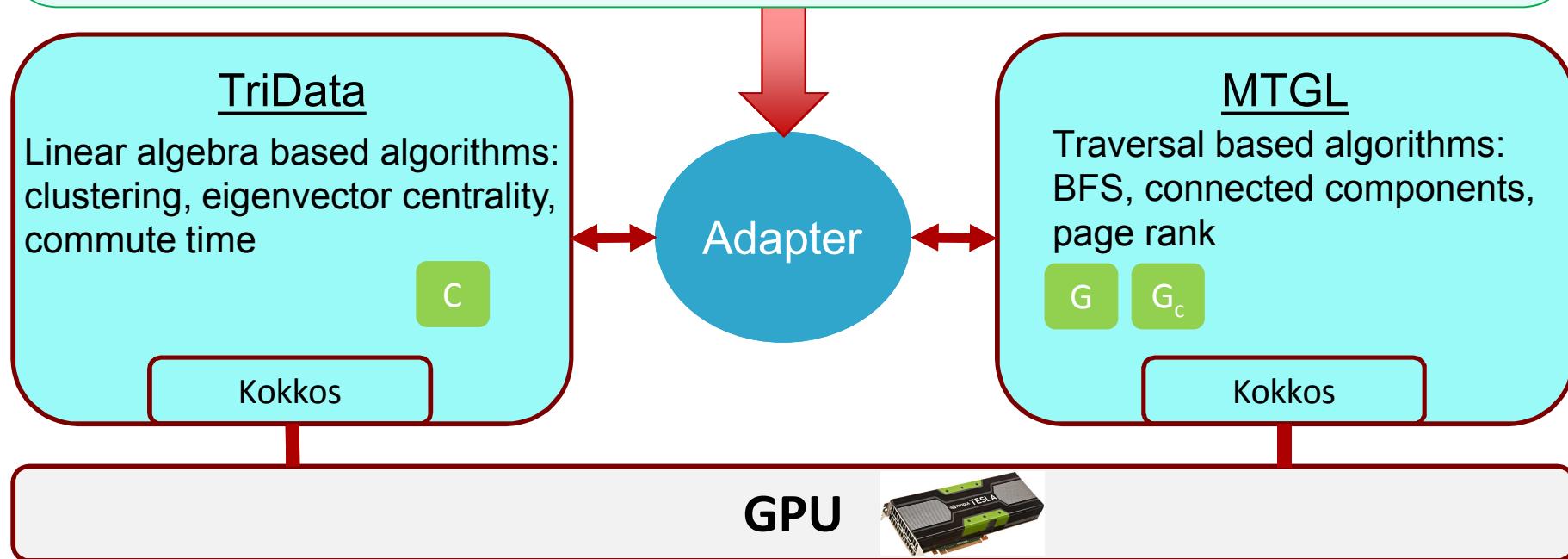
- Overview of TriData
 - Trilinos for Large-Scale Data Analytics
 - Targeting both workstations and supercomputers
- Several key foci of TriData that enable high performance
 - Use of hypergraphs, incidence matrices beneficial computationally
 - 2D partitioning necessary for scalable solvers (on network problems)
 - Flexible adapters support interoperability with MTGL
- Related Work
 - Wolf, Klinvex, Dunlavy. “Advantages to modeling relational data using hypergraphs versus graphs,” *Proc of IEEE HPEC*, 2016.
 - Wolf, Deveci, Berry, Hammond, Rajamanickam. “Fast Linear Algebra-Based Triangle Counting with KokkosKernels,” *Proc of IEEE HPEC*, 2017.
 - **Triangle Counting:** <https://github.com/Mantevo/miniTri>
 - **KokkosKernels:** <https://github.com/kokkos/kokkos-kernels>

Extra

Example: TriData + MTGL GPU Graph Analysis

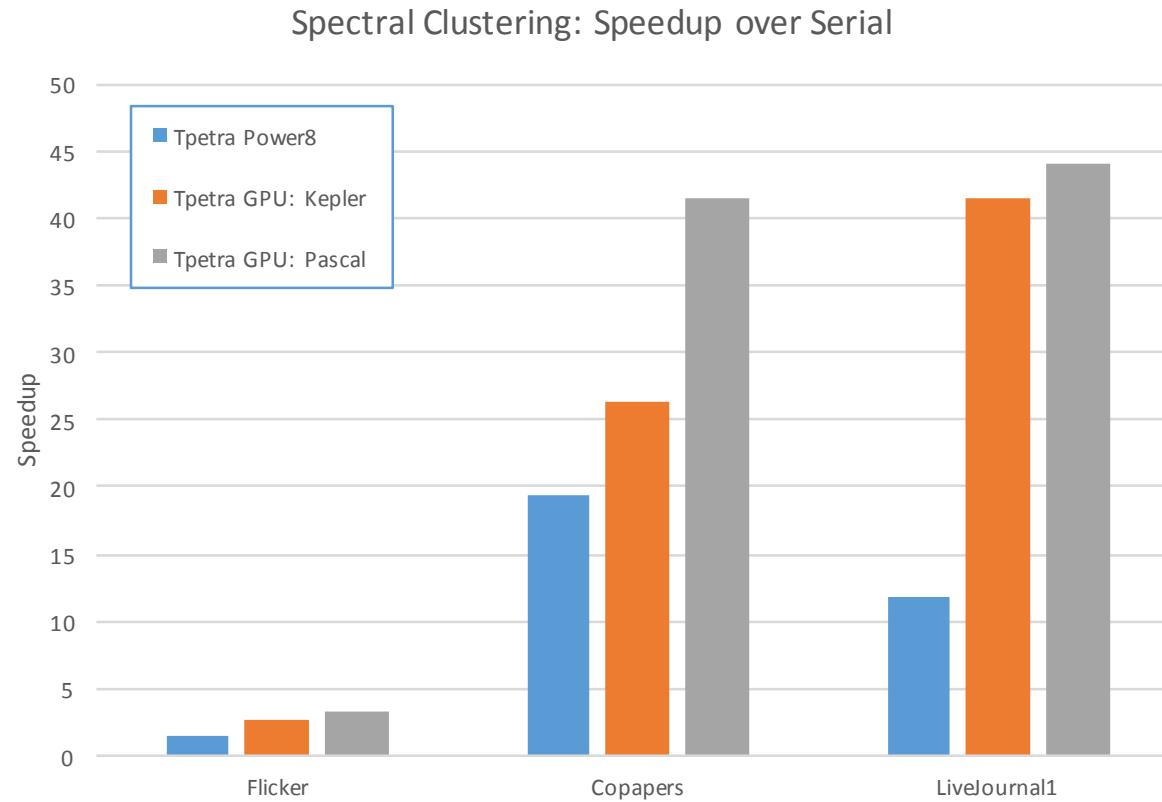
Example Application

1. MTGL: build MTGL graph G , find largest component G_c
2. TriData: spectral clustering on subgraph G_c to find clusters C
3. MTGL: exploratory graph analysis on clusters C



- TriData and MTGL uses Kokkos for performant GPU execution
- TriData use of MTGL graph directly (via adapter) avoids data copy

TriData Spectral Clustering Results

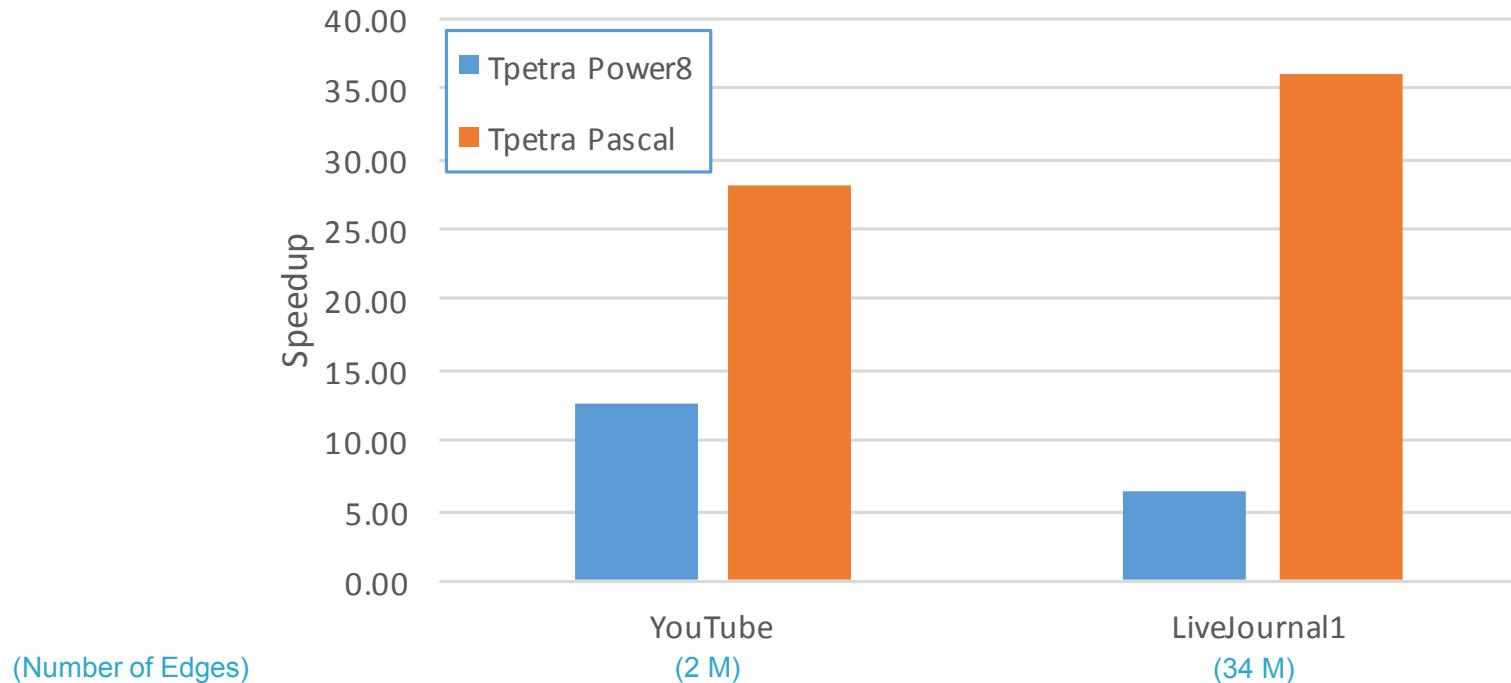


- CPU: 20 core IBM Power 8, 3.42 GHz (serial, multithreaded)
- GPU: NVIDIA Pascal P100 (Tpetra, Kokkos/MTGL)

- **GPU computation up to 45x speedup over host serial**

Mean Hitting Time Results

Hitting Times: Speedup over IBM Power8 Serial

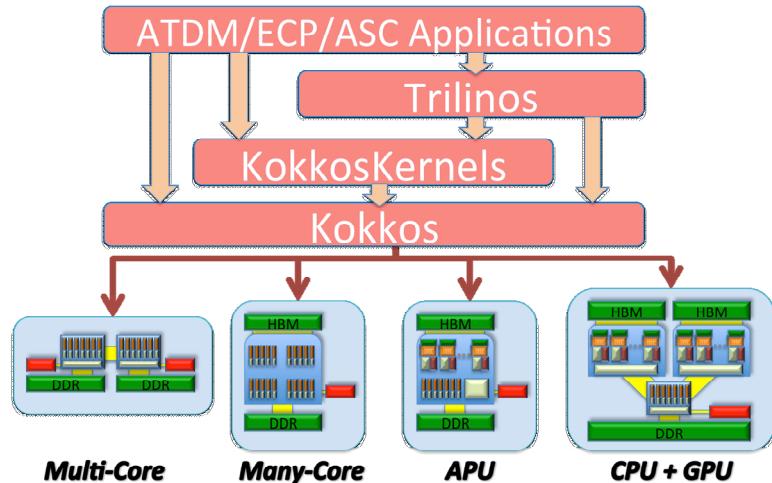


- Distributed memory TriData/Tpetra on GPU (not MTGL)

GPU computation is up to 35x speedup over host serial

Performance Portability

- Kokkos:
 - Layered collection of template C++ libraries
 - Manages data access patterns
 - Execution spaces, Memory spaces
- Kokkos provides tools for portability
 - Performance portability does not come for free.
 - Not trivial for sparse matrix and graph algorithms

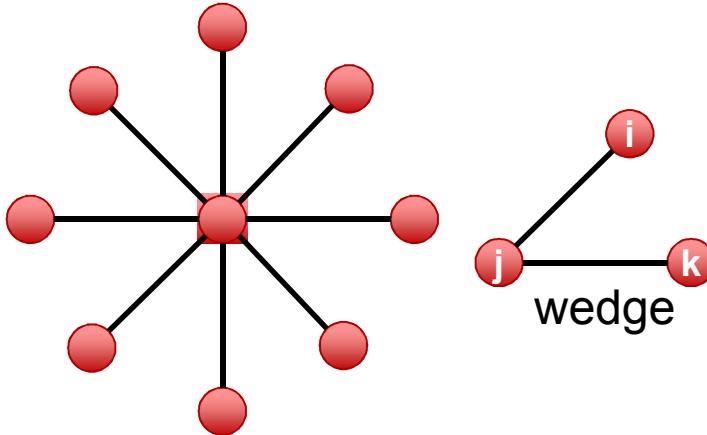


- KokkosKernels:
 - Layer of performance-portable kernels
 - SpGEMM

KKTri leverages Kokkos and KokkosKernels for performance-portable linear algebra-based triangle counting

GC 1: Vertex Ordering and Triangle Counting

Vertex Ordering Matters



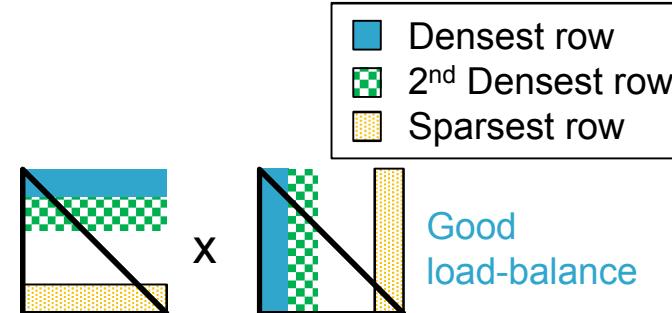
Wedges with $d(i) < d(j) > d(k)$: 56
Wedges with $d(i) > d(j) < d(k)$: 0

- **Ordering: essential first step for triangle counting**
- **Impacts # operations (# wedges visited)**

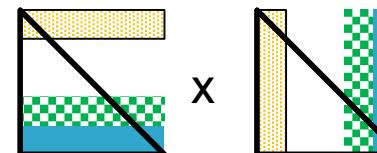
KKTri Ordering Challenging

Heuristic

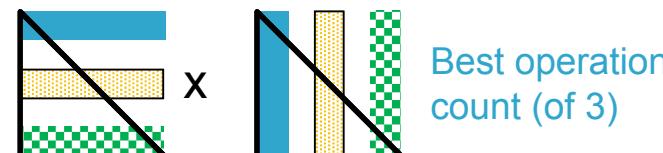
Decreasing degree



Increasing degree



“Interleaved”



Avoiding computation essential for efficient triangle counting!

GC 2: Matrix Compression

- Compression used to improve performance
 - Encodes columns using fewer integers
 - Reduces number of operations and memory required in symbolic phase
 - Allows “vectorized” bitwise union/intersection of different rows
- Effectiveness of compression varies greatly with data
 - Large random graphs compress poorly (R-Mat <1% compression storage)
 - However, still helpful for many random graphs (e.g., power-law) – effective for dense rows (improves load balance, operation count)

Compression consistently improves triangle counting performance

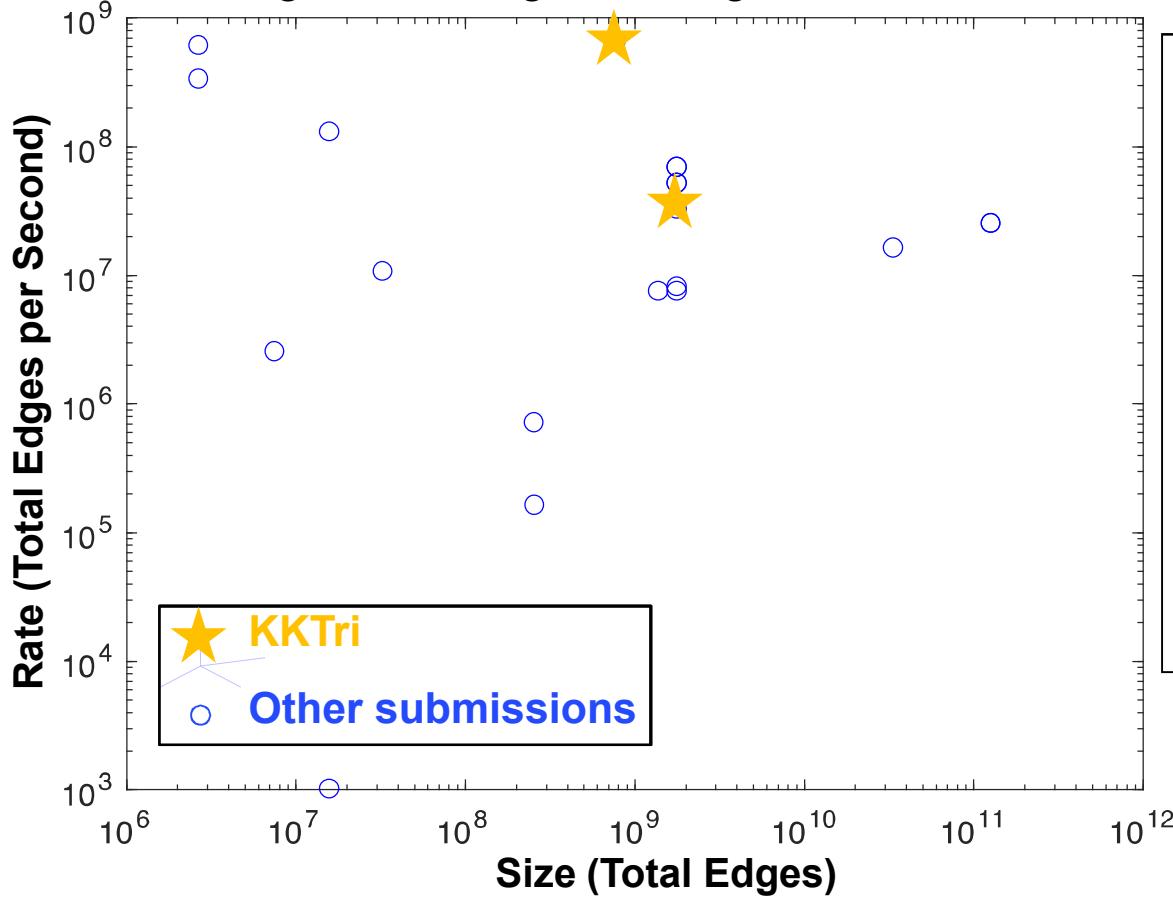
GC 3: Visitor Pattern

- KKMEM based triangle counting supports visitor pattern
 - Concept fundamental to BGL and MTGL
- Functor passed to triangle identification function, which allows method to be run once triangle is found
 - For triangle counting: triangleCount++;
 - Flexibility allows for more complex analysis of triangles, miniTri

Visitor pattern support provides additional flexibility to analysts

Graph Challenge Results

Triangle Counting Challenge Submissions



- 2017 Graph Challenge
 - Sponsors: DARPA, Amazon, IEEE HPEC, MIT Lincoln Lab
 - 3 problems, 5 champions
 - **KKTri: Champion** status for triangle counting
- Top rates per submission
 - Largest graph and rate
 - Highest rate and size

Plot courtesy of Jeremy Kepner,
MIT Lincoln Laboratory

Linear algebra-based KKTri achieves higher peak rate than almost all other triangle counting submissions