
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos Update

Programming Models and Apps Workshop
August 5, 2014

SAND2014-****P (Unlimited Release)

SAND2014-16477PE

Increasingly Complex Heterogeneous Future
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Managing Heterogeneous Future
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
 Memory spaces’ diverse capabilities and performance characteristics
 Vendors’ diverse programming models for optimal utilization of hardware

 Desire standardized performance portable programming model
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 Execution { CPU, Xeon Phi, NVIDIA GPU }, Memory { GDDR, DDR, NVRAM }
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Programmatics
 ASC/CSSE (FY11 start): Heterogeneous Computing project
 Tight integration with co-design, mini-application, and testbed projects
 Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X
 Kokkos library is the “X” for fine grain data parallelism

 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE)

 ASCR/EASI : Sparse Linear Algebra Kernels on Manycore
 Some portion of this project also working on Kokkos core

 LDRD (FY14 start): Unified Task+Data Manycore Parallelism
 For solver-preconditioners, finite elements, informatics, transport sweeps, ...
 0.9 FTE split among ~4 staff

 Internal/external interests, and resource challenge ahead
 Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ...
 ISO C++ standards addressing fine grain parallelism (am a voting member)
 Currently under-resourced for production-growth support

3

Application and Domain Specific Library Layer

4

Kokkos: A Layered Collection of Libraries
 Standard C++, Not a language extension

 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)
 Moving to C++2011 for concise lambda syntax (required by LLNL’s RAJA)

 Vendors slowly catching up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

5

Performance Portability Challenge:
Device-Specific Memory Access Patterns are Required

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Hyperthreads’ cooperative use of L1 cache
 Array alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?
This has been the wrong question
Right question: Abstractions for Performance Portability ?

6

Kokkos Performance Portability Answer
 Thread parallel computation

 Dispatched to an execution space
 Operates on data in memory spaces
 Should use device-specific memory access pattern; how to portably?

 Multidimensional Arrays, with a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
Choose layout to satisfy device-specific memory access pattern
 Layout changes are invisible to the user code;
IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

 Manage device specifics under simple portable API
 Dispatch computation to one or more execution spaces
 Polymorphic multidimensional array layout
 Utilization of special hardware; e.g., GPU texture cache

Recent Publication
Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns, Journal of Parallel and
Distributed Computing, July 2014
http://dx.doi.org/10.1016/j.jpdc.2014.07.003

Recent Use and Evaluations

7

http://dx.doi.org/10.1016/j.jpdc.2014.07.003

Evaluate Performance Impact of Array Layout

8

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

9

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

Thread-Scalable Fill of Sparse Linear System

10

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

11

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms and ASCR/EASI
 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...
 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
 Hidden in Kokkos, can neglect memory spaces and maintain correctness
 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation
 Identified performance issue in driver
 NVIDIA fixed before their release

12

LAMMPS (molecular dynamics application)
Porting to Kokkos has begun

 Funded by LAMMPS’ projects
 Enable thread scalability throughout code
 Replace redundant hardware-specialized manycore parallel packages

 Current release has optional use of Kokkos
 Data and device management
 Some simple simulations can

now run entirely on device

 Performs as well or better
than original hardware-
specialized packages

13

Recent and In-Progress Enhancements to
Programming Model Abstractions:

Spaces, Policies, Defaults, C++11, and Tasks

14

15

Execution Space
 Execution Space Instance
 Hardware resources (e.g., cores, hyperthreads) in which functions execute
 Functions may execute concurrently on those resources
 Concurrently executing functions have coherent view to memory
 Degree of potential concurrency determined at runtime
 Number of execution space instances determined at runtime

 Execution Space Type (CPU, Xeon Phi, CUDA)
 Functions compiled to execute on an instance of a specified type
 Types determined at configure/compile time

 Host Space
 The main process and its functions execute in the Host Space
 One type, one instance, and is serial (potential concurrency == 1)

 Execution Space Default
 Configure/build with one type – it is the default
 Initialize with one instance – it is the default

16

Memory Spaces
 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)
 The type of memory is defined with respect to an execution space type
 Anticipated types, identified by their dominant usage
 Primary: (default) space with allocable memory (e.g., can malloc/free)
 Performant : best performing space (e.g., GDDR)
 Capacity : largest capacity space (e.g., DDR)
 Contemporary system: Primary == Performant == Capacity

 Scratch : non-allocable and maximum performance
 Persistent : usage can persist between process executions (e.g., NVRAM)

 Memory Space Instance
 Has relationship with execution space instances (more later)
 Directly addressable by functions in that execution space
 Contiguous range of addresses

 Memory Space Default
 Default execution spaces’ default memory space

17

Examples of Execution and Memory Spaces

Compute Node

Multicore
Socket DDR

Attached Accelerator

GPU
GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore
Socket DDR

primary
shared

deep_copy

Attached Accelerator

GPU
GDDR primary

perform shared

18

Execution / Memory Space Relationships
 (Execution Space , Memory Space , Memory Access Traits)
 Accessibility : functions can/cannot access memory space
 E.g., Host functions can never access GPU scratch memory
 E.g., GPU functions can access Host capacity memory only if it is pinned
 E.g., Host functions can access GPU performant memory only if it is UVM

 Readable / Writeable
 E.g., GPU performant memory using texture cache is read-only

 Bandwidth : potential rate at which concurrent instructions can read or write
 Capacity for views to (allocable) data

 Memory Access Traits (extension point) potential examples:
 read-only, write-only, volatile/atomic, random, streaming, ...
 Converting between “views” with same space and different traits
 Default is simple readable/writeable – no special traits

 Future opportunity
 Execution space access to remote memory space (similar to MPI 1-sided)

19

Views, Defaults, and Subviews
 typedef View< ArrayType , Layout , Space , Traits > view_type ;
 Omit Traits : no special compile-time defined access traits
 Omit Space : default execution space’s default memory space
 Omit Layout : allocable memory space’s default layout
 default everything: View< ArrayType >

 view_type a(optional_traits , N0 , N1 , ...);
 optional_traits : a collection of optional runtime defined traits
 label trait : string used in error and warning messages, default none
 initialize trait : default parallel_for(N0,[=](int i){ a(i,...) = 0 ; })
 Default uses memory space’s preferred execution space with static scheduling
 Common override is to not initialize after allocating

 dst_view = subview< DestViewType >(src_view , ...args...)
 Subviews of views increasingly important to users
 Growing capability, challenging with polymorphic layout
 C++11 ‘auto’ type would help address this challenge

20

Execution Policy
 How Potentially Concurrent Functions are Executed
 Where : in what execution space (instance & type)
 Parallel Work: current capabilities [0..N) or (#teams, #thread/team)
 Scheduling : currently static scheduling of data parallel work
 Map work function calls onto resources of the execution space
 E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern
 E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern

 Compose Pattern & Policy : parallel_for(policy , functor);
 Policy::execution_space to replace Functor::device_type
 Allows functor to be a C++11 lambda without impeding flexibility
 Default Policy and Space for Simple Functors
 Policy ‘size_t N’ is [0..N) with static scheduling and default execution space
 E.g., parallel_for(N , [=](int i) { /* lambda-function body */ });

21

Execution Policies, Patterns, and Defaults
 Patterns: parallel_for, parallel_reduce, parallel_scan
 parallel_pattern(policy , functor);
 Execute on policy’s execution space according to policy’s scheduling
 functor API requirements defined by pattern and policy
 functor API omissions have defaults

 parallel_reduce functor API requirements and defaults
 functor::init(value_type & update); // { new(& update) value_type(); }
 functor::join(volatile value_type & update ,
 volatile const value_type & in) const ; // { update += in ; }
 functor::final(value_type & update) const ; // {;}

 parallel_scan functor has similar requirements and defaults

22

Defaults enable C++11 Lambda for Functors
 Dot product becomes simple with C++11 lambda with defaults

double dot(View<double*> x , View<double*> y) {
 double d = 0 ;
 parallel_reduce(x.dimension_0() , [=](int i, double & v) { v += x(i) * y(i); } , d);
 return d ;
}

 Execution Policy – how to execute
 Execution Policy’s Execution Space – where to execution
 Default for a single type and instance

 Parallel reduce and scan defaults
 Reduction type – deduced from lambda’s argument list
 Initialize – default constructor
 Join – operator +=

 Expect Cuda / nvcc version 7 to support C++11 lambda
 Portability!

 Anecdote: our experienced developers prefer functors

23

Execution Policy – an extension point
 Policy calls functor’s work function in parallel
 PolicyType<ExecSpace>::member_type // data parallel work item

void Func::operator()(PolicyType<...>::member_type) const ;

 Range policy (existing)
 parallel_for(RangePolicy<ExecSpace>(0,N) , functor);

void Func::operator()(integer_type i) const ;

 Thread team policy (existing)
 parallel_for(TeamPolicy<ExecSpace>(#teams,thread/team) , functor);

void Func::operator()(TeamPolicy<ExecSpace>::member_type team) const ;
 Replaces “device” interface

 Extension point for new policies
 Multi-indices [0..M)x[0..N)
 Dynamic scheduling / work stealing

 Parallel execution over Raja-like index sets is an execution policy

24

Execution Policy, Functor with multiple ‘()’
 Allow functors to have multiple parallel work functions
 typedef PolicyType< ExecSpace , TagType > policy ;
 parallel_pattern(policy(...) , functor);
void FunctorType::operator()(const TagType &, policy::member_type) const ;
 Parallel work functions differentiated by ‘TagType’
 TagType used instead of class’ method name

 Motivations
 Algorithm (class) with multiple parallel passes using the same data
 miniFENL sparse matrix graph construction from FEM connectivity

 Common need in LAMMPS
 allow LAMMPS to remove “wrapper functors”

25

Execution Policy for Task Parallelism
 Kokkos/Qthreads LDRD
 TaskManager< ExecSpace > execution policy
 Policy object shared by potentially concurrent tasks

TaskManager<...> tm(exec_space , ...);
Future<> fa = spawn(tm , task_functor_a); // single-thread task
Future<> fb = spawn(tm , task_functor_b);

 Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N) , functor_c);
Future<value_type> fd = spawn_reduce(tm.team(N,M) , functor_d);
wait(tm); // wait for all tasks to complete

 Destruction of task manager object waits for concurrent tasks to complete

 Task Managers
 Define a scope for a collection of potentially concurrent tasks
 Have configuration options for task management and scheduling
 Manage resources for scheduling queue

26

Execution Policy for Task Parallelism
 Tasks’ execution dependences
 Start a task only after other specified tasks have completed

Future<> array_of_dep[M] = { /* future for other specified tasks */ };
 Single threaded task:

Future<> fx = spawn(tm.depend(M,array_of_dep) , task_functor_x);
 Data parallel task:

spawn_for(tm.depend(M,array_of_dep).range(0..N) , task_functor_y);
 Tasks and dependences define a directed acyclic graph (dag)

 At most one active task manager on an execution space
 Well-defined scope and lifetime for collection of potentially current tasks
 Don’t consume resources when not in use

	Kokkos Update�
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Programmatics
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Device-Specific Memory Access Patterns are Required
	Kokkos Performance Portability Answer
	Slide Number 8
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Slide Number 15
	Execution Space
	Memory Spaces
	Examples of Execution and Memory Spaces
	Execution / Memory Space Relationships
	Views, Defaults, and Subviews
	Execution Policy
	Execution Policies, Patterns, and Defaults
	Defaults enable C++11 Lambda for Functors
	Execution Policy – an extension point
	Execution Policy, Functor with multiple ‘()’
	Execution Policy for Task Parallelism
	Execution Policy for Task Parallelism

