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Intro

Why UQ? Why in computational combustion?

Why UQ?

@ Assessment of confidence in computational predictions

@ Validation and comparison of scientific/engineering models
@ Design optimization

@ Use of computational predictions for decision-support

@ Assimilation of observational data and model construction

@ Explore model response over range of parameter variation
@ Enhanced understanding extracted from computations
@ Particularly important given cost of computations




Intro

Specific uses of UQ in LES studies

Forward uncertainty propagation

@ Given known uncertainties in model inputs, e.g.
e subgrid model parameters, initial and boundary conditions
— estimate uncertainties in model output predictions
— evaluate global sensitivities to model inputs
— build surrogates for model output dependence on inputs

Inverse UQ — model calibration, parameter estimation

@ Given data on model output observables, e.g.
e experimental measurements, DNS computations
— estimate values of model inputs/parameters
— estimate plausibility of, compare, select among models
— validate models




Intro

Least-Squares Parameter Estimation

@ Fit model g(); unknown parameters \; measurement y
@ Forward Problem:

9(A) = ym
@ Estimate ) for best fit between g(\) and y :

At = g_l(y)

@ This is a classic inverse problem
e Typically solved using least-squares regression
e e.g. Newton’s method

Arms = argm)}n(Hy - g(>‘)”)

i.e. minimize the y*:

Xzziw

a
k=1

Najm Bayes



Intro

Issues with Least Squares (LS) Parameter Estimation

@ Choice of optimal number of fit parameters (p)
e \2 decreases with increased p
e Danger of overfitting
@ No general means for handling nuisance parameter

@ LS best fit is the Maximum Likelihood Estimate (MLE)
assuming gaussian noise in the data

@ LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

@ Support Planes method to estimate standard deviation

Variation of one parameter at a time

Solve the LS problem for remaining p — 1 params

Re-evaluate x?

When x? decreases by a predetermined factor, the

parameter is no away from best fit




SEVES
Bayes formula for Parameter Inference

Data Model (fit model + noise): y=f(\)+e
Bayes Formula:

p(Ay) = p(Ay)p(y) = p(y[A\)p(N)

Likelihood  Prior
p(ylA)  p(A)

p(Aly) _

Posterior

p(y)

Evidence
Prior: knowledge of A prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context

Najm Bayes



Advantages of Bayesian Methods

@ Formal means of logical inference and machine learning

@ Means of incorporation of prior knowledge/measurements
and heterogeneous data

@ Full probabilistic description of parameters

@ General means of handling nuisance parameters through
marginalization
@ Means of identification of optimal model complexity

@ Ockham’s razor

e Only as much complexity as is required by the physics, and
no more

e Avoid fitting to noise




SEVES
The Prior

@ Prior p(\) comes from

e Physical constraints
e Prior data
e Prior knowledge

@ The prior can be uninformative

@ It can be chosen to impose regularization

@ Unknown aspects of the prior can be added to the rest of
the parameters as hyperparameters




SEVES

Construction of the Likelihood p(y|\)

@ Where does probability enter the mapping A — y in p(y|A\)?
@ Through a presumed error model:
@ Example:
o Model:
Ym = g(A)
e Data: y
e Error between data and model prediction: e

y = g\ +e

@ Model this error as a random variable
@ Example

@ Error is due to instrument measurement noise
e Instrument has Gaussian errors, with no bias

e~ N(0,07)

Najm Bayes



SEVES

Construction of the Likelihood p(y|\) — contd

For any given A, this implies

y’)‘70 ~ N(g()\), 02)

— 2

Given N measurements (yi,...,yn), and presuming
independent identically distributed (iid) noise

or

yi = g(\)+e
€& ~ N(0,0%)

LX) =p(y1,...,yn|A o) = p(yilA, o)

=

1

i=




SEVES

Construction of the Likelihood p(y|\) — contd

Recall that the weighted least-squares data mis-fit is given by
N 2
2\~ 49N
e

and the best-fit estimate of A is

Arms = argm/\in(Xz ()\) )

Minimizing x? is equivalent to maximizing the likelihood
Maximum Likelihood Estimate (MLE):

)\MLE = >\rms

Exploration of the likelihood provides for a more general
examination of quality of fit than 2

Najm Bayes



Experimental Data

@ Empirical data error model structure can be informed
based on knowledge of the experimental apparatus

@ Both bias and noise models are typically available from
instrument calibration
@ Noise PDF structure

@ A counting instrument would exhibit Poisson noise
e A measurement combining many noise sources would
exhibit Gaussian noise

@ Noise correlation structure

— Point measurement
— Field measurement




Line fitting example

Consider the fitting of a straight line
Ym =ax + b

todata D = {(zi,y:), i=1,...,N}.
Consider an (improper) uninformative prior

m(a,b) = Const
providing no prior information on (a, b).
Assume iid additive unbiased Gaussian noise in y with a given
constant noise variance o2, thus the data model is:

y=ax+b+e, e~ N(0,02)

with no noise in the independent variable .

Najm Bayes



Line fitting example

Presuming o known, we have the likelihood,

N

L(a,b) = p(Dla,b) = Hp(yi|aa b)
=1

where

1 yi — ax; — b)?
p(yila,b) = Jorg P <—<%g

and, per Bayes formula, the posterior density p(a, b|D) is

plabp) = PLEOIT@D) i by(an)

p(D)




Line fitting example — cont'd

The posterior on (a, b) is the two-dimensional Multivariate
Normal (MVN) distribution

p(a,b|D) < (270?) —N/2 Hexp( cm—b))

N

R . B2
x (27_[_0_2)—]\//2 exp (_Z (yl ;L:; b) )

i=1

Linear model, Gaussian noise, o-given, and a Gaussian or
constant-uninformative prior.




SEVES

Line fitting example — Effect of data size on p(a, b|D)

Low data noise: 0 = 0.25

28 266
2 2
25 25
3 % 3
35 35
4 4
45 45
5 5

0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

N =20 N =200

@ More data = more accurate parameter estimates




SEVES

Line fitting example — Effect of data size on p(a, b|D)

Medium data noise: 0 = 0.5

18 -86
2 -2
25 G 25
3 \ 3
35 35
-4 4
45 45
5 -5
05 1 15 2 25 3 05 1 15 2 25 3
N =20 N =200

@ More data = more accurate parameter estimates
@ Higher noise amplitude = higher uncertainty




SEVES

Line fitting example — Effect of data size on p(a, b|D)

High data noise: ¢ = 1.0

8 18
2 - 2
25 ® -2.5
NS

-3 )\ -3 %
35 ) -3.5

-4 4

4.5 4.5

5 -5

0.5 1 15 2 2.5 3 0.5 1 1.5 2 25 3
N =20 N =200

@ More data = more accurate parameter estimates
@ Higher noise amplitude = higher uncertainty




SEVES

Line fitting example — prior vs. data-size

20 data points

15 15

2 2
25 25

\ -3 3
-35 -35

)14 @ -4
-45 -4.5

0

5 -5
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35

Constant uninformative prior Gaussian prior




SEVES

Line fitting example — prior vs. data-size

80 data points
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SEVES

Line fitting example — prior vs. data-size

200 data points

15 15
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25 25
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SEVES

Line fitting example — prior vs. data-size

2000 data points

10
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Constant uninformative prior
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Exploring the Posterior

@ Given any sample ), the un-normalized posterior
probability can be easily computed

p(Aly) o< p(y|A)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
e Random walk with proposal PDF & rejection rules

— Computationally intensive, ©O(10°) samples
— Each sample: evaluation of the forward model

e Surrogate models

@ Evaluate moments/marginals from the MCMC statistics
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Line fitting example — MCMC — (a, b, In o) samples

| _ . | . | . ! . ! .
A 2040 80 83 " d0c 0 200 400 600 800 100C
@ Initial transient “Burn-in” period, ~ 100 steps
@ Problem and initial condition dependent




SEVES

Line fitting example — MCMC — (a, b, In o) samples

Inc

-3

B P R R R B
40 2000 4000 6000 8000 1000(

@ Visual inspection reveals “good mixing”
@ No significant long-term correlation or periodicity

Najm Bayes



SEVES

Line fitting example — MCMC — posterior density

0 0 : :

.5007 ; —500[ ;
-1000 -{ -1000| 7
-1500+ < 1500 ]
2000354565 80 Toc 2’0 200 400 600 800  100C

@ Chain finds high posterior density (HPD) region
@ stays there generating many random samples




Chemical Rate Parameter Estimation example

Synthetic ignition data generated using a detailed model+noise

@ Ignition using
GRImech3.0 methane-air
chemistry

@ Ignition time versus Initial
Temperature

@ Multiplicative noise error
model

GRI
| GRI+noise
0.1¢ E

Ignition time (sec)

@ 11 data points:

= ORI (1 + 0e) 0otk

)

. | . | . 3
1000 1100 1200 130C
€ ~ N(O, 1) Initial Temperature (K)




Fitting with a simple chemical model

@ Fit a global single-step
irreversible chemical
model

CH4+209 — CO5+2H50

N = [CH4J[O2]ky
kf = Aexp(—E/R°T)

@ Infer 3-D parameter
vector (In A,In E,In o) N

® Good mixing with - 3500043006000 8400 Tabox

adaptive MCMC when Chain Step

start at MLE




lllust

Marginal Posteriors onIn A and In £
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lllust

Bayesian Inference Posterior and Nominal Prediction

1;\ 1
[ — GRI ]
r GRI [=—=GRl+noise ]

\; Fit Model

| GRI+noise
0.1k

Ignition time (sec)

0.01,

‘ ! ‘ ! =
30 31 32 33 34 35 1000 1100 1200 130C
Initial Temperature (K)

Marginal joint posterior on

(In A, In E) exhibits strong Nominal fit model is con-
correlation sistent with the true model




Model UQ

@ No model of a physical system is strictly true

@ The probability of a model being strictly true is zero

@ Given limited information, some models may be relied
upon for describing the system

Let M = {M;, Mo, ...} be the set of all models

@ p(M;|I) is the probability that A, is the model behind the
available information

o Model Plausibility

@ Parameter estimation from data is conditioned on the
model

p(0|D, M) = (D10, My )7 (0] M)

p(D|My)




Models
Bayesian Model Comparison

Evidence (marginal likelihood) for Mj:
p(DIM) = [ (D16 2)w(614,)30

Bayes Factor B;;:

Plausibility of Mj:

_ p(D[My) 7(M| M) _
p(Mg|D, M) = S~ p(DIM,)r (M. M) k=1,...

Posterior odds:

p(M;|D, M) ’

Najm Bayes



Marginal Likelihood example

@ Consider Fitting with data from a truth model
Y = 23+ 22 -6

@ Gaussian iid additive noise model with fixed variance s

@ Bayesian regression with a Gaussian Likelihood, iid and
given s

@ Consider a set of Legendre Polynomial expansion models,
order 1-10

P
k=0

@ Uniform priors [—D, D] on all coefficients




Too much model complexity leads to overfitting

Order =1
-35
— Fitted model
—4.0f ¢ e Noisy data T P
=== True function ,"

~4.5




Too much model complexity leads to overfitting

Order =2
-3.5
— Fitted model
-4.0{| ¢ o Noisy data o =
--- True function /
—4.5
-5.0}-
-5.5} 4 ;
_607 ---,-,, ,,,,,,,,,
-6.5

10 05 0.0 05 1.0




Too much model complexity leads to overfitting

Order =3

— Fitted model
—4.0r| o e Noisy data
=== True function

-4.51




Too much model complexity leads to overfitting

Order =4

— Fitted model
—4.0r| o e Noisy data
=== True function

_45,




Too much model complexity leads to overfitting

Order =5

— Fitted model
—4.0r| o e Noisy data
=== True function

~4.5




Too much model complexity leads to overfitting

Order =6

— Fitted model
—4.0r| o e Noisy data
=== True function

-4.51




Too much model complexity leads to overfitting

Order =7
—-3.5
— Fitted model
—4.0F| « e Noisy data ‘
=== True function A |

_45,




Too much model complexity leads to overfitting

Order = 8
-3.5
— Fitted model
—4.0F| ¢ e Noisy data ‘
=== True function K |

~4.5




Too much model complexity leads to overfitting

Order =9
-3.5
— Fitted model
—4.0F| ¢ e Noisy data ‘
=== True function A |

~4.5




Too much model complexity leads to overfitting

Order =10
-3.5
— Fitted model 1
—4.0r| e e Noisy data o ‘
=== True function ,"‘

~4.5




Evidence — Marginal Likelihood

...........

................

-2 ....:‘ *.\\\
o .: .\.". \\
5 B Tl ~
é —4 :' b S~~~
o H Tt
E .-/ .......
e
-8 / «-e Fit

e-e Complexity
~— Evidence
7 8 9 10

—-10

1 2 3 4 5
Order

@ Log evidence: sum of two scores, balances complexity & fit
@ Peaks at 3rd order

Najm Bayes



Evidence and Validation Error

-1 -25
-2 \\\
\ | ™ /1
-3 \‘
A ~/| ¢
S 2
S =5 ©
4 I \ s
o
S e\ /// -4 Oi
o
|
N
| \ A 45
N
B R B 160
Order

@ Validation error — /5 error for a random set of 1000 points
@ Validation error is minimal at the 3rd-order evidence peak

Najm Bayes



Evidence

10 :
N‘
—
—_— S— >
//79 ‘ T
g/
; /
o
c
[
el
2 20
o
g /
o
-
—30
—40! s N = 31
— N=51
— N=101
-0 IR " T 9 10

=)
Order

@ Discrimination among models is more clear-cut with higher
amount of data

Najm Bayes



Evidence

N
i

I e—e Data variance = 0.1

Log (Evidence)

~— Data variance = 0.01
~— Data variance = 0.001

6 7 8 9 10

R B B
Order

@ Discrimination among models is more clear-cut with less
data noise

Najm Bayes



Bayesian Model Comparison in Physical Models

Bayesian methods for model comparison and selection have
been used in
@ Combustion

e Turbulent combustion modeling (Cheung, Rel. Eng. 2011)
e Graphite nitridation chemistry (Miki, AIAA Conf. 2012)
e Syngas chemistry (Braman, CTM 2013)

@ Cosmology

@ Social science

@ Biology — phylogenetics
@ Climate modeling




Models
Validation

@ Validity is a statement of model utility for predicting a given
observable under given conditions

@ Inspection of model utility requires accounting for
uncertainty

@ Statistical tool-chest for model validation

— Cross-validation

Bayes Factor

Model Plausibility

Posterior Odds

Posterior predictive:

p(D|D, My) = / p(D]6, My)p(6]D, My)do




Model Averaging

@ When multiple models are acceptable, and no model is a
clear winner, model averaging can be used to provide a
prediction of interest

@ If prediction errors among models are uncorrelated, then
averaging is expected to reduce prediction errors

o Not likely if models are dependent, or if they have
comparable large bias errors in a given observable of
interest

@ Bayesian Model Averaging

p(¢|D, M) =" p(¢|D, My)p(M.|D, M)
k




Closure
Closure

@ Probabilistic UQ framework
e Forward and Inverse UQ

@ Bayesian inference

@ Model calibration: parameter estimation
e Parametric and model uncertainty

@ Model comparison, validation, averaging

@ Prediction with uncertainty
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