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Why UQ? Why in computational combustion?

Why UQ?
Assessment of confidence in computational predictions
Validation and comparison of scientific/engineering models
Design optimization
Use of computational predictions for decision-support
Assimilation of observational data and model construction

Further ...
Explore model response over range of parameter variation
Enhanced understanding extracted from computations
Particularly important given cost of computations
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Specific uses of UQ in LES studies

Forward uncertainty propagation

Given known uncertainties in model inputs, e.g.
subgrid model parameters, initial and boundary conditions

– estimate uncertainties in model output predictions
– evaluate global sensitivities to model inputs
– build surrogates for model output dependence on inputs

Inverse UQ – model calibration, parameter estimation
Given data on model output observables, e.g.

experimental measurements, DNS computations

– estimate values of model inputs/parameters
– estimate plausibility of, compare, select among models
– validate models
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Least-Squares Parameter Estimation

Fit model g(); unknown parameters λ; measurement y
Forward Problem:

g(λ) = ym

Estimate λ for best fit between g(λ) and y :

λfit = g−1(y)

This is a classic inverse problem
Typically solved using least-squares regression
e.g. Newton’s method

λrms = argmin
λ

(||y − g(λ)||)

i.e. minimize the χ2:

χ2 =

D∑
k=1

((g(λ)− y)2

σ2
k
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Issues with Least Squares (LS) Parameter Estimation

Choice of optimal number of fit parameters (p)
χ2 decreases with increased p
Danger of overfitting

No general means for handling nuisance parameter
LS best fit is the Maximum Likelihood Estimate (MLE)
assuming gaussian noise in the data
LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters
Support Planes method to estimate standard deviation

Variation of one parameter at a time
Solve the LS problem for remaining p− 1 params
Re-evaluate χ2

When χ2 decreases by a predetermined factor, the
parameter is nσ away from best fit
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Bayes formula for Parameter Inference

Data Model (fit model + noise): y = f(λ) + ε

Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)
Prior

p(λ)

p(y)

Evidence

Prior: knowledge of λ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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Advantages of Bayesian Methods

Formal means of logical inference and machine learning
Means of incorporation of prior knowledge/measurements
and heterogeneous data
Full probabilistic description of parameters
General means of handling nuisance parameters through
marginalization
Means of identification of optimal model complexity

Ockham’s razor
Only as much complexity as is required by the physics, and
no more
Avoid fitting to noise
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The Prior

Prior p(λ) comes from
Physical constraints
Prior data
Prior knowledge

The prior can be uninformative
It can be chosen to impose regularization
Unknown aspects of the prior can be added to the rest of
the parameters as hyperparameters
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Construction of the Likelihood p(y|λ)

Where does probability enter the mapping λ→ y in p(y|λ)?
Through a presumed error model:
Example:

Model:
ym = g(λ)

Data: y
Error between data and model prediction: ε

y = g(λ) + ε

Model this error as a random variable
Example

Error is due to instrument measurement noise
Instrument has Gaussian errors, with no bias

ε ∼ N(0, σ2)
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Construction of the Likelihood p(y|λ) – cont’d

For any given λ, this implies

y|λ, σ ∼ N(g(λ), σ2)

or

p(y|λ, σ) = 1√
2π σ

exp

(
−(y − g(λ))2

2σ2

)
Given N measurements (y1, . . . , yN ), and presuming
independent identically distributed (iid) noise

yi = g(λ) + εi

εi ∼ N(0, σ2)

L(λ) = p(y1, . . . , yN |λ, σ) =

N∏
i=1

p(yi|λ, σ)
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Construction of the Likelihood p(y|λ) – cont’d

Recall that the weighted least-squares data mis-fit is given by

χ2 =

N∑
i=1

[
yi − g(λ)

σi

]2

and the best-fit estimate of λ is

λrms = argmin
λ

(χ2(λ))

Minimizing χ2 is equivalent to maximizing the likelihood
Maximum Likelihood Estimate (MLE):

λMLE ≡ λrms

Exploration of the likelihood provides for a more general
examination of quality of fit than χ2
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Experimental Data

Empirical data error model structure can be informed
based on knowledge of the experimental apparatus
Both bias and noise models are typically available from
instrument calibration
Noise PDF structure

A counting instrument would exhibit Poisson noise
A measurement combining many noise sources would
exhibit Gaussian noise

Noise correlation structure
– Point measurement
– Field measurement
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Line fitting example

Consider the fitting of a straight line

ym = ax+ b

to data D = {(xi, yi), i = 1, . . . , N}.
Consider an (improper) uninformative prior

π(a, b) = Const

providing no prior information on (a, b).
Assume iid additive unbiased Gaussian noise in y with a given
constant noise variance σ2, thus the data model is:

y = ax+ b+ ε, ε ∼ N(0, σ2)

with no noise in the independent variable x.
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Line fitting example

Presuming σ known, we have the likelihood,

L(a, b) = p(D|a, b) =
N∏
i=1

p(yi|a, b)

where

p(yi|a, b) =
1√
2π σ

exp

(
−(yi − axi − b)2

2σ2

)
and, per Bayes formula, the posterior density p(a, b|D) is

p(a, b|D) =
p(D|a, b)π(a, b)

p(D)
∝ p(D|a, b)π(a, b)
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Line fitting example – cont’d

The posterior on (a, b) is the two-dimensional Multivariate
Normal (MVN) distribution

p(a, b|D) ∝ (2πσ2)−N/2
N∏
i=1

exp

(
−(yi − axi − b)2

2σ2

)

∝ (2πσ2)−N/2 exp

(
−

N∑
i=1

(yi − axi − b)2

2σ2

)

Linear model, Gaussian noise, σ-given, and a Gaussian or
constant-uninformative prior.
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Line fitting example – Effect of data size on p(a, b|D)
Low data noise: σ = 0.25
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Line fitting example – Effect of data size on p(a, b|D)
Medium data noise: σ = 0.5
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More data⇒ more accurate parameter estimates
Higher noise amplitude⇒ higher uncertainty
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Line fitting example – Effect of data size on p(a, b|D)
High data noise: σ = 1.0
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More data⇒ more accurate parameter estimates
Higher noise amplitude⇒ higher uncertainty
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Line fitting example – prior vs. data-size
20 data points
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Line fitting example – prior vs. data-size
80 data points
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Line fitting example – prior vs. data-size
200 data points
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Line fitting example – prior vs. data-size
2000 data points
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Exploring the Posterior

Given any sample λ, the un-normalized posterior
probability can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Line fitting example – MCMC – (a, b, lnσ) samples
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Initial transient “Burn-in” period, ≈ 100 steps
Problem and initial condition dependent
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Line fitting example – MCMC – (a, b, lnσ) samples
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Visual inspection reveals “good mixing”
No significant long-term correlation or periodicity
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Line fitting example – MCMC – posterior density
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Chain finds high posterior density (HPD) region
stays there generating many random samples
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Chemical Rate Parameter Estimation example

Synthetic ignition data generated using a detailed model+noise

Ignition using
GRImech3.0 methane-air
chemistry
Ignition time versus Initial
Temperature
Multiplicative noise error
model
11 data points:

τdi = τGRI(T oi ) (1 + σεi)

ε ∼ N(0, 1)
1000 1100 1200 1300

Initial Temperature (K)
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Fitting with a simple chemical model

Fit a global single-step
irreversible chemical
model

CH4+2O2 → CO2+2H2O

R = [CH4][O2]kf

kf = A exp(−E/RoT )

Infer 3-D parameter
vector (lnA, lnE, lnσ)
Good mixing with
adaptive MCMC when
start at MLE

28
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Marginal Posteriors on lnA and lnE
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lnA = 32.15± 3× 0.61 lnE = 10.73± 3× 0.032
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(lnA, lnE) exhibits strong
correlation

Nominal fit model is con-
sistent with the true model
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Model UQ

No model of a physical system is strictly true
The probability of a model being strictly true is zero
Given limited information, some models may be relied
upon for describing the system

LetM = {M1,M2, . . .} be the set of all models

p(Mk|I) is the probability that Mk is the model behind the
available information

Model Plausibility

Parameter estimation from data is conditioned on the
model

p(θ|D,Mk) =
p(D|θ,Mk)π(θ|Mk)

p(D|Mk)
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Bayesian Model Comparison

Evidence (marginal likelihood) for Mk:

p(D|Mk) =

∫
p(D|θ,Mk)π(θ|Mk)dθ

Bayes Factor Bij :

Bij =
p(D|Mi)

p(D|Mj)

Plausibility of Mk:

p(Mk|D,M) =
p(D|Mk) π(Mk|M)∑
s p(D|Ms)π(Ms|M)

k = 1, . . .

Posterior odds:

p(Mi|D,M)

p(Mj |D,M)
= Bij

π(Mi|M)

π(Mj |M)
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Marginal Likelihood example

Consider Fitting with data from a truth model

yt = x3 + x2 − 6

Gaussian iid additive noise model with fixed variance s
Bayesian regression with a Gaussian Likelihood, iid and
given s
Consider a set of Legendre Polynomial expansion models,
order 1-10

ym =
P∑
k=0

ckψk(x)

Uniform priors [−D,D] on all coefficients
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Too much model complexity leads to overfitting

Order = 1
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Too much model complexity leads to overfitting

Order = 2

−1.0 −0.5 0.0 0.5 1.0
−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

Fitted model

Noisy data

True function

SNL Najm Bayes 37 / 45



Intro Bayes Illust Models Closure

Too much model complexity leads to overfitting

Order = 3

−1.0 −0.5 0.0 0.5 1.0
−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

Fitted model

Noisy data

True function

SNL Najm Bayes 37 / 45



Intro Bayes Illust Models Closure

Too much model complexity leads to overfitting

Order = 4
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Too much model complexity leads to overfitting

Order = 5
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Too much model complexity leads to overfitting

Order = 6
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Too much model complexity leads to overfitting

Order = 7
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Too much model complexity leads to overfitting

Order = 8
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Too much model complexity leads to overfitting

Order = 9
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Too much model complexity leads to overfitting

Order = 10
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Evidence – Marginal Likelihood
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Evidence and Validation Error
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Validation error is minimal at the 3rd-order evidence peak
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Evidence
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amount of data
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Evidence
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Discrimination among models is more clear-cut with less
data noise
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Bayesian Model Comparison in Physical Models

Bayesian methods for model comparison and selection have
been used in

Combustion
Turbulent combustion modeling (Cheung, Rel. Eng. 2011)
Graphite nitridation chemistry (Miki, AIAA Conf. 2012)
Syngas chemistry (Braman, CTM 2013)

Cosmology
Social science
Biology – phylogenetics
Climate modeling
...
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Validation

Validity is a statement of model utility for predicting a given
observable under given conditions
Inspection of model utility requires accounting for
uncertainty
Statistical tool-chest for model validation

– Cross-validation
– Bayes Factor
– Model Plausibility
– Posterior Odds
– Posterior predictive:

p(D̃|D,Mk) =

∫
p(D̃|θ,Mk)p(θ|D,Mk)dθ
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Model Averaging

When multiple models are acceptable, and no model is a
clear winner, model averaging can be used to provide a
prediction of interest

If prediction errors among models are uncorrelated, then
averaging is expected to reduce prediction errors

Not likely if models are dependent, or if they have
comparable large bias errors in a given observable of
interest

Bayesian Model Averaging

p(φ|D,M) =
∑
k

p(φ|D,Mk)p(Mk|D,M)
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Closure

Probabilistic UQ framework
Forward and Inverse UQ

Bayesian inference
Model calibration: parameter estimation
Parametric and model uncertainty

Model comparison, validation, averaging

Prediction with uncertainty
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