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Mission	
  

§  Assess	
  &	
  address	
  fundamental	
  challenges	
  imposed	
  by	
  the	
  
need	
  for	
  performant,	
  portable,	
  scalable,	
  fault-­‐tolerant	
  
programming	
  models	
  at	
  extreme-­‐scale	
  

§  Two	
  focus	
  areas	
  
§  Programming	
  model	
  analysis	
  for	
  next	
  genera6on	
  plaUorms	
  
§  Demonstra6on	
  of	
  fault-­‐tolerant	
  programming	
  model	
  at	
  extreme-­‐scale	
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DHARMA	
  is	
  a	
  fundamental	
  Hindu	
  concept	
  referring	
  to	
  	
  
•  the	
  order	
  and	
  custom	
  which	
  make	
  life	
  and	
  a	
  universe	
  possible	
  
•  the	
  behaviors	
  appropriate	
  to	
  the	
  maintenance	
  of	
  that	
  order	
  
	
  
The	
  classical	
  Sanskrit	
  noun	
  DHARMA	
  derives	
  from	
  dhr	
  
•  meaning	
  to	
  hold,	
  maintain,	
  keep	
  



Programming	
  model	
  analysis	
  for	
  next	
  
genera6on	
  plaUorms	
  

§  Asynchronous	
  many-­‐task	
  programming	
  
models	
  are	
  a	
  leading	
  new	
  paradigm	
  
with	
  many	
  variants	
  

§  Goal:	
  Address	
  knowledge	
  gaps	
  	
  
§  Compara6ve	
  analysis	
  of	
  leading	
  
candidate	
  solu6ons	
  	
  

§  Quan6ta6ve	
  &	
  qualita6ve	
  tests	
  using	
  
ASC-­‐relevant	
  codes	
  

§  Outcome:	
  Guidance	
  to	
  code	
  
development	
  road	
  map	
  for	
  next	
  
genera6on	
  plaUorms	
  for	
  ASC/
Integrated	
  Codes	
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  MPI	
  



Demonstra6on	
  of	
  fault-­‐tolerant	
  
programming	
  model	
  at	
  extreme-­‐scale	
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§  Asynchronous	
  many-­‐task	
  
programming	
  models	
  
+  Show	
  promise	
  at	
  sustaining	
  performance	
  
+ Work	
  stealing	
  enables	
  load	
  balancing	
  
+  Failed	
  tasks	
  can	
  be	
  re-­‐executed	
  
	
  

§  Recovery	
  (beyond	
  checkpoint/restart)	
  
is	
  challenging	
  
-  Distributed	
  coherency	
  problem	
  
-  Care	
  is	
  required	
  to	
  iden6fy	
  lost	
  tasks	
  due	
  

to	
  work-­‐stealing	
  and	
  asynchrony	
  

Task	
  Graph	
  

Nodes	
  are	
  tasks	
  
Edges	
  are	
  data	
  



A	
  holis6c	
  solu6on	
  requires	
  a	
  number	
  of	
  
fault-­‐tolerant	
  components	
  

§  Distributed	
  Hash	
  Table	
  (DHT):	
  Store	
  task	
  descriptors/data	
  pointers	
  
§  Collec6on/task	
  queue:	
  Maintain	
  state	
  &	
  work	
  assignments	
  
§  Resilient	
  Transport	
  Layer	
  

§  Fault-­‐aware	
  collec6ves:	
  terminate	
  cleanly	
  with	
  no	
  result	
  	
  
§  Fault-­‐tolerant	
  collec6ves:	
  heartbeat	
  via	
  overlay	
  network	
  to	
  
rigorously	
  agree	
  on	
  which	
  nodes	
  are	
  alive	
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Related	
  work	
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§  Distributed	
  Hash	
  Table	
  (DHT):	
  Linda,	
  Intel	
  CnC,	
  FOX,	
  MATRIX	
  
§  Collec6on/task	
  queue:	
  Scioto,	
  DAGuE,	
  Legion,	
  Uintah,	
  Charm++	
  
§  Transport	
  Layer:	
  MPI-­‐ULFM,	
  FT-­‐MPI,	
  Hursey	
  et.	
  al	
  “A	
  log-­‐scaling	
  

fault	
  tolerant	
  agreement	
  algorithm	
  for	
  a	
  fault	
  tolerant	
  MPI”	
  



An	
  example	
  of	
  a	
  dense	
  Conjugate	
  
Gradient	
  (CG)	
  task-­‐graph	
  

§  Coarse-­‐grained	
  DAG	
  +	
  data	
  parallelism	
  
§  Squares	
  denote	
  data	
  (matrix/vector/scalar).	
  
§  Circles	
  denote	
  compute	
  kernels.	
  	
  
§  Data	
  parallelism	
  (matrix/vector)	
  =>	
  large	
  task	
  parallelism.	
  
§  Each	
  node	
  (circle)	
  in	
  the	
  coarse-­‐grained	
  DAG	
  becomes	
  a	
  task	
  collec6on.	
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Code	
  example:	
  Sejng	
  up	
  run6me	
  
void	
  dharma_runtime::init()	
  
{	
  
	
  msg_api_	
  	
  	
  =	
  new	
  message_api(…);	
  
	
  task_dht_	
  	
  =	
  new	
  dht(…);	
  
	
  mdata_dht_	
  =	
  new	
  metadata_dht(…);	
  

	
  data_dht_	
  	
  =	
  new	
  data_dht(…);	
  
	
  backup_	
  	
  	
  	
  =	
  new	
  nvram_backup(…);	
  
	
  
	
  int	
  max_steals	
  	
  =	
  5;	
  
	
  int	
  eager_tasks	
  =	
  100;	
  	
  	
  

	
  queue_	
  	
  =	
  new	
  task_queue(…,	
  max_steals,	
  eager_tasks);	
  
	
  
	
  msg_api_-­‐>init();	
  
}	
  
	
  



Code	
  example:	
  Crea6ng	
  tasks	
  
dharma_runtime*	
  rt	
  =	
  new	
  dharma_runtime;	
  
rt-­‐>init();	
  //initialize	
  the	
  runtime	
  
task_collection::ptr	
  coll	
  =	
  new	
  collection(rt,…,	
  new	
  generator(…));	
  
rt-­‐>register_collection(coll);	
  
……………………………………………… 
……………………………………………… 
void	
  generator::generate_tasks()	
  
{	
  
	
  for	
  (int	
  i=0;	
  i	
  <	
  overdecompose_;	
  ++i){	
  
	
  	
  	
  	
  task::ptr	
  t	
  =	
  new	
  task(…);	
  

	
  	
  	
  	
  t-­‐>dependencies.push_back(new	
  dependency(…));	
  //declare	
  task	
  deps	
  
	
  	
  	
  	
  append_task(t);	
  	
  //adds	
  the	
  task	
  to	
  the	
  collection	
  
	
  	
  }	
  
}	
  
	
  



Code	
  example:	
  Unrolling	
  DAG	
  
main	
  
{	
  
	
  dharma_runtime*	
  rt	
  =	
  new	
  dharma_runtime;	
  
	
  rt-­‐>init();	
  //initialize	
  the	
  runtime	
  
	
  cg_unroller	
  starter(0,…);	
  //start	
  iteration	
  0	
  

	
  starter.unroll(rt);	
  
   ……………………………………………… 
}	
  
	
  
void	
  cg_unroller::unroll(dharma_runtime	
  *rt)	
  

{	
  
	
  	
  task_collection::ptr	
  coll_Alpha_dp	
  =	
  new	
  allreduce_collection(rt,…);	
  
	
  	
  task_collection::ptr	
  coll_Alpha	
  =	
  new	
  collection(rt,…);	
  
	
  	
  ………………………………………………	
  
	
  



Code	
  example:	
  Unrolling	
  DAG	
  
(contd…)	
  
	
  	
  ………………………………………………	
  
	
  	
  task_collection::ptr	
  coll_p	
  =	
  new	
  collection(rt,…);	
  
	
  
	
  	
  if	
  (!end){	
  
	
  	
  	
  	
  coll_Beta-­‐>set_unroller(new	
  cg_unroller(iter_+1,config_));	
  

	
  	
  }	
  
	
  	
  else	
  {	
  
	
  	
  	
  	
  coll_p-­‐>set_final_collection();	
  
	
  	
  }	
  
	
  

	
  	
  rt-­‐>register_collection(coll_Alpha_dp);	
  
	
  	
  ………………………………………………	
  
	
  	
  rt-­‐>register_collection(coll_p);	
  
}	
  	
  //end	
  cg_unroller	
  
	
  



Work-­‐flow	
  diagram	
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Why	
  do	
  you	
  need	
  an	
  index	
  phase?	
  
§  Tasks	
  within	
  a	
  collec6on	
  are	
  

generated	
  locally.	
  
§  Every	
  worker	
  needs	
  to	
  agree	
  on	
  a	
  

unique	
  label	
  for	
  each	
  task	
  i.e.	
  tasks	
  
need	
  to	
  be	
  globally	
  indexed.	
  

§  The	
  unique	
  global	
  index	
  is	
  required	
  
for:	
  
§  scheduling	
  a	
  task	
  remotely.	
  
§  work	
  stealing.	
  
§  regenera6ng	
  incomplete	
  tasks	
  due	
  to	
  a	
  

failure.	
  
§  This	
  indexing	
  is	
  via	
  an	
  fault-­‐aware	
  

all_gather	
  collec6ve.	
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Why	
  do	
  you	
  need	
  a	
  schedule	
  phase?	
  

§  Each	
  task	
  needs	
  to	
  resolve	
  its	
  
dependencies.	
  

§  The	
  global	
  dependency	
  name	
  is	
  
mapped	
  to	
  an	
  actual	
  physical	
  
loca6on	
  and	
  address.	
  

§  The	
  op6mal	
  loca6on	
  to	
  run	
  the	
  task	
  
might	
  be	
  a	
  remote	
  node	
  depending	
  
on:	
  
§  data	
  affinity	
  (most	
  input	
  data	
  resides	
  

on	
  remote	
  node).	
  
§  load	
  balancing	
  (remote	
  node	
  has	
  data	
  

backup	
  copies	
  and	
  is	
  idle).	
  
§  These	
  decisions	
  are	
  made	
  during	
  

the	
  schedule	
  phase.	
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Why	
  do	
  you	
  need	
  a	
  finalize	
  phase?	
  

§  When	
  a	
  worker	
  exhausts	
  local	
  work:	
  
§  it	
  needs	
  to	
  determine	
  if	
  all	
  work	
  is	
  

depleted	
  (e.g.	
  successive	
  steal	
  a>empts	
  
fail).	
  

§  it	
  needs	
  to	
  agree	
  with	
  everyone	
  else	
  if	
  
all	
  work	
  is	
  depleted.	
  

§  it	
  needs	
  to	
  determine	
  if	
  any	
  work	
  was	
  
lost	
  (due	
  to	
  failure).	
  

§  If	
  any	
  tasks	
  remain	
  incomplete	
  due	
  
to	
  failure,	
  they	
  can	
  be	
  detected	
  and	
  
regenerated	
  only	
  in	
  this	
  phase.	
  

§  The	
  finalize	
  phase	
  ensures	
  that	
  a	
  
collec6on	
  is	
  exhausted	
  collec6vely	
  
by	
  all	
  par6cipa6ng	
  workers.	
  

Generate tasks Index

Vote = 0 
Failed = {...}

Vote = 1 
Failed = n/a

Done

Vote = 1 
Failed = n/a

Vote = 0 
Failed = {...}

Max failed 
steals

ScheduleRun

Finalize

Dependencies 
and tasks 
resolved

Restart

All failed  
tasks 

reissued



§  Every	
  node	
  keeps	
  task	
  status	
  array	
  (bits)	
  to	
  
confirm	
  the	
  global	
  status	
  of	
  individual	
  tasks.	
  

§  Naive	
  approach:	
  
§  each	
  worker	
  maintains/updates	
  a	
  copy	
  of	
  	
  task	
  

array.	
  
§  all_reduce	
  the	
  global	
  (large)	
  array.	
  
§  not	
  scalable	
  (later	
  results	
  show).	
  	
  

§  Alterna6ve	
  approach:	
  
§  distribute	
  the	
  task	
  status	
  array.	
  	
  
§  comple6on	
  of	
  each	
  task	
  reported	
  to	
  designated	
  

node	
  that	
  is	
  tracking	
  its	
  status.	
  
§  mul6ple	
  nodes	
  can	
  track	
  status	
  for	
  a	
  single	
  task	
  –	
  

redundancy.	
  	
  
§  when	
  your	
  por6on	
  of	
  task	
  array	
  shows	
  all	
  “done”	
  

vote	
  to	
  finalize.	
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done done - - - - 

done done done done done done 
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done - - - - done 

done - done - - done 

done done done done - done 

done done done done done done 

vote 

done done done done done done 

Finalize	
  phase	
  –	
  global	
  agreement	
  on	
  
task	
  status	
  array	
  	
  



Dynamic	
  data	
  lookup	
  with	
  DHT	
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Fault-­‐aware	
  collec6ves	
  

Round 0

Round 1

Round 2

1

Round 0

Round 1

Round 2

1

All-­‐reduce	
   All-­‐gather	
  

	
  =	
  Send	
  Message	
  +	
  Ping	
  

•  Round	
  partners	
  are	
  pinged	
  (either	
  6meout	
  or	
  
RDMA	
  NACK)	
  to	
  ensure	
  alive	
  	
  

•  If	
  failure	
  detected,	
  every	
  round	
  of	
  collec6ve	
  must	
  
s6ll	
  be	
  executed	
  (sending	
  0	
  byte	
  fake	
  messages)	
  

•  Only	
  fault-­‐aware	
  –	
  processes	
  can	
  exit	
  with	
  
different	
  error	
  status,	
  but	
  guaranteed	
  to	
  finish	
  and	
  
not	
  deadlock	
  wai6ng	
  on	
  dead	
  nodes	
  

Send/recv	
  Protocol	
  
1.  Source	
  sends	
  RDMA	
  header	
  
2.  Dest	
  recvs	
  RDMA	
  header,	
  executes	
  

RDMA	
  get	
  
3.  Comple6on	
  ack	
  delivered	
  to	
  sender/

receiver	
  
	
  
RDMA	
  get	
  assumed	
  resilient!	
  Requires	
  
network	
  layer	
  support	
  



Fault-­‐tolerant	
  collec6ves:	
  	
  Resilient	
  
vo6ng	
  algorithm	
  

0
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•  Basically	
  same	
  as	
  algorithms	
  from	
  Hursey	
  and	
  Graham	
  	
  
•  Votes	
  passed	
  up	
  tree	
  and	
  merged	
  on	
  root	
  
•  Much	
  simpler	
  to	
  assume	
  root	
  never	
  fails	
  –	
  ways	
  around	
  it	
  
•  A`er	
  failures	
  detected,	
  tree	
  reconnects	
  and	
  votes	
  reissued	
  
•  Can	
  be	
  used	
  immediately	
  a`er	
  any	
  fault-­‐aware	
  collec6ve	
  to	
  vote	
  on	
  

comple6on	
  –	
  makes	
  any	
  fault-­‐aware	
  collec6ve	
  fault-­‐tolerant	
  

	
  =	
  Send	
  Message	
  +	
  Ping	
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Heartbeat	
  connects	
  to	
  DHT	
  and	
  	
  task	
  
queue	
  to	
  respond	
  to	
  failures	
  
•  Collec6ves	
  are	
  self-­‐diagnosing;	
  DHT,	
  task	
  queue,	
  data	
  backup	
  
managers	
  need	
  something	
  to	
  provide	
  no6fica6ons	
  of	
  failures	
  

•  Fault-­‐tolerant	
  vo6ng	
  algorithm	
  serves	
  as	
  “heartbeat”	
  overlay	
  
network	
  for	
  detec6ng	
  failures	
  



Transparent	
  NVRAM	
  fault	
  tolerance	
  
with	
  DHT	
  

Recovery	
  opera6ons	
  occur	
  in	
  background,	
  no	
  applica6on	
  awareness	
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Why	
  develop	
  with	
  a	
  simulator?	
  	
  

§  Coarse-­‐grained	
  simula6on	
  explores	
  
system-­‐level	
  (load	
  balancing,	
  
effects	
  of	
  failures)	
  

§  Think	
  about	
  overall	
  structure	
  
without	
  implemen6ng	
  every	
  detail	
  

§  Rapidly	
  iterate	
  experiments	
  (don’t	
  
need	
  to	
  wait	
  in	
  queue)	
  

§  Co-­‐design	
  for	
  specula6ve	
  hardware	
  
§  Total	
  control	
  over	
  when/where	
  

failures	
  happen	
  Crude(

guess(

Rough(

idea(

Cause(and(

effect(

Very(good(

es5mates(

Exact(

hardware(model(

100(

101(

102(
103(
104(
105(
106(
107(

S
im

u
la
5
o
n
(s
co
p
e
/p
a
ra
ll
e
li
sm

(

Simula5on(fidelity(

Cons5tu5ve(

Models(

Coarse1Grain(

Simula5on(

Cycle1Accurate(

Simula5on( Emula5on(

Hardware(

Design(

So<ware(

Support(

Applica5on(

Evalua5on(



SST	
  Macroscale	
  stack	
  diagram	
  
§  SST	
  is	
  an	
  on-­‐line	
  simulator	
  
§  Compile	
  applica6ons	
  directly	
  into	
  

SST	
  libraries	
  to	
  simulate	
  MPI/
pthreads/etc	
  

§  SST	
  can	
  link	
  into	
  run6me	
  systems	
  at	
  
two	
  different	
  levels:	
  directly	
  or	
  
indirectly	
  as	
  GASNet	
  backend	
  

§  Illustrated	
  for	
  exis6ng	
  run6me	
  
systems	
  like	
  Legion	
  and	
  UPC	
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Compile-­‐and-­‐go	
  simula6on	
  	
  
Linkage	
  intercepts	
  main	
  and	
  
spawns	
  user-­‐space	
  thread	
  to	
  
simulate	
  process	
  	
  

Linkage	
  intercepts	
  BLAS	
  calls	
  and	
  es6mates	
  
compute	
  6me	
  without	
  actually	
  performing	
  
work	
  

Linkage	
  intercepts	
  MPI	
  
calls	
  and	
  simulates	
  
send/recv	
  6me	
  via	
  
conges6on	
  models	
  



What	
  are	
  you	
  giving	
  up	
  (or	
  not)	
  with	
  
simula6on?	
  
§  NOT	
  emula6on	
  –	
  coarse-­‐grained	
  simula6on	
  
§  No	
  real	
  computa6on,	
  tasks	
  just	
  simulate	
  6me	
  passing	
  
§  Coarse-­‐grained	
  network	
  models	
  (approximate	
  treatment	
  of	
  

conges6on)	
  
§  Full	
  run6me	
  is	
  execu6ng	
  –	
  tasks	
  are	
  not	
  actually	
  run,	
  but	
  all	
  

task/data	
  management	
  is	
  execu6ng	
  for	
  real	
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We	
  have	
  implemented	
  the	
  DHARMA	
  
run6me	
  system	
  in	
  SST	
  

§  Coarse-­‐grained	
  simula6on	
  allows	
  for	
  system-­‐level	
  explora6on	
  
§  Skeletonized	
  mini-­‐apps	
  of	
  explicit	
  and	
  implicit	
  solver	
  

§  Demonstra6on	
  of	
  full-­‐scale	
  implementa6on	
  of	
  run-­‐6me	
  and	
  
associated	
  mini-­‐apps	
  on	
  capability-­‐class	
  system	
  next	
  year	
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Run$me	
  studies	
   Algorithmic	
  studies	
  

Scalability	
  with	
  no	
  faults	
  
(strong	
  and	
  weak)	
  

Task-­‐granularity	
  and	
  
decomposi6on	
  

Performance	
  in	
  the	
  presence	
  
of	
  faults	
  

Classifica6on	
  of	
  performance	
  
according	
  to	
  compute/
communica6on	
  ra6os	
  

Node	
  degrada6on	
  tests	
   Algorithmic	
  tradeoffs	
  

Comparison	
  against	
  baseline	
  
MPI	
  skeleton	
  

Matrix	
  assembly	
  	
  variants	
  made	
  
possible	
  by	
  shi`	
  to	
  many-­‐task	
  

model	
  



Explicit	
  1D-­‐PDE	
  problem	
  

Interior points Right 
ghost 

Left 
ghost 

Left 
ghost 

Right 
ghost 

Chunk
n 

Chunkn+1 Chunkn-1 

timek 

Interior points Right 
ghost 

Left 
ghost timek+1 

§  Two	
  tasks	
  for	
  each	
  chunk:	
  one	
  for	
  interior	
  points,	
  another	
  for	
  
ghost	
  points.	
  

§  Compute	
  6mes	
  based	
  on	
  typical	
  S3D	
  cost.	
  



Baseline	
  –	
  no	
  failures	
  

Weak scaling 

§  Specs:	
  10	
  chunks	
  per	
  node,	
  nint	
  =	
  8000,	
  ngh	
  =	
  4,	
  #itns	
  =	
  2-­‐100	
  
§  SST	
  simula6on	
  shows	
  perfect	
  weak	
  scaling	
  of	
  the	
  problem	
  

with	
  dharma	
  run6me.	
  



Impact	
  of	
  1	
  failure	
  

§  Tests	
  with	
  just	
  1	
  node	
  failure	
  at	
  various	
  instants	
  (#nodes=400)	
  
§  The	
  6me	
  to	
  solu6on	
  non-­‐monotonic	
  with	
  failure	
  induc6on	
  6me.	
  
§  Early	
  fault	
  –	
  more	
  6me	
  to	
  absorb.	
  Late	
  fault	
  –	
  less	
  overhead.	
  



Impact	
  of	
  mul6ple	
  failures	
  

§  Tests	
  with	
  mul6ple	
  failures	
  (#nodes=400,	
  #itns=100).	
  
§  1st	
  failure	
  at	
  200s,	
  2nd	
  at	
  400s	
  and	
  3rd	
  at	
  700s.	
  
§  Overhead	
  not	
  propor6onal	
  to	
  number	
  of	
  failures.	
  



Summary	
  

§  DHARMA	
  aims	
  at	
  tackling	
  challenge	
  of	
  resilience	
  in	
  dynamic,	
  
adap6ve,	
  task-­‐DAG	
  world	
  

§  Distributed	
  consistency	
  problem	
  at	
  heart	
  of	
  run6me	
  
§  Many	
  places	
  to	
  op6mize	
  
§  Can	
  we	
  use	
  applica6on	
  knowledge	
  to	
  structure	
  run6me	
  and	
  

make	
  resilience	
  strategy	
  both	
  as	
  EFFICIENT	
  and	
  
TRANSPARENT	
  as	
  possible?	
  

§  What’s	
  the	
  burden	
  to	
  the	
  programmer?	
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