
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

DHARMA:	
 Distributed	

asyncHronous	
 Adap6ve	
 Resilient	

Management	
 of	
 Applica6ons	

Janine	
 Benne>,	
 Robert	
 Clay,	
 John	
 Floren,	
 Ken	

Franko,	
 Saurabh	
 Hukerikar,	
 Samuel	
 Knight,	
 Hemanth	

Kolla,	
 Greg	
 Sjaardema,	
 Nicole	
 Sla>engren,	
 Keita	

Teranishi,	
 Jeremiah	
 Wilke	

	

	

	

	
 Programming	
 Models	
 and	
 Applica6ons	
 Workshop	

August	
 5,	
 2014	

	

SAND2014-16454PE

Mission	

§  Assess	
 &	
 address	
 fundamental	
 challenges	
 imposed	
 by	
 the	

need	
 for	
 performant,	
 portable,	
 scalable,	
 fault-­‐tolerant	

programming	
 models	
 at	
 extreme-­‐scale	

§  Two	
 focus	
 areas	

§  Programming	
 model	
 analysis	
 for	
 next	
 genera6on	
 plaUorms	

§  Demonstra6on	
 of	
 fault-­‐tolerant	
 programming	
 model	
 at	
 extreme-­‐scale	

	

	

	

2	

DHARMA	
 is	
 a	
 fundamental	
 Hindu	
 concept	
 referring	
 to	
 	

•  the	
 order	
 and	
 custom	
 which	
 make	
 life	
 and	
 a	
 universe	
 possible	

•  the	
 behaviors	
 appropriate	
 to	
 the	
 maintenance	
 of	
 that	
 order	

	

The	
 classical	
 Sanskrit	
 noun	
 DHARMA	
 derives	
 from	
 dhr	

•  meaning	
 to	
 hold,	
 maintain,	
 keep	

Programming	
 model	
 analysis	
 for	
 next	

genera6on	
 plaUorms	

§  Asynchronous	
 many-­‐task	
 programming	

models	
 are	
 a	
 leading	
 new	
 paradigm	

with	
 many	
 variants	

§  Goal:	
 Address	
 knowledge	
 gaps	
 	

§  Compara6ve	
 analysis	
 of	
 leading	

candidate	
 solu6ons	
 	

§  Quan6ta6ve	
 &	
 qualita6ve	
 tests	
 using	

ASC-­‐relevant	
 codes	

§  Outcome:	
 Guidance	
 to	
 code	

development	
 road	
 map	
 for	
 next	

genera6on	
 plaUorms	
 for	
 ASC/
Integrated	
 Codes	

3	

Run$mes	

Uintah	

Legion	

HPX	

Charm++	

STAPL	

StarPU	

Swi`/T	

Assess	

Scalability	

Performance	

Resilience	

Interoperability	
 	

with	
 MPI	

Demonstra6on	
 of	
 fault-­‐tolerant	

programming	
 model	
 at	
 extreme-­‐scale	

4	

§  Asynchronous	
 many-­‐task	

programming	
 models	

+  Show	
 promise	
 at	
 sustaining	
 performance	

+ Work	
 stealing	
 enables	
 load	
 balancing	

+  Failed	
 tasks	
 can	
 be	
 re-­‐executed	

	

§  Recovery	
 (beyond	
 checkpoint/restart)	

is	
 challenging	

-  Distributed	
 coherency	
 problem	

-  Care	
 is	
 required	
 to	
 iden6fy	
 lost	
 tasks	
 due	

to	
 work-­‐stealing	
 and	
 asynchrony	

Task	
 Graph	

Nodes	
 are	
 tasks	

Edges	
 are	
 data	

A	
 holis6c	
 solu6on	
 requires	
 a	
 number	
 of	

fault-­‐tolerant	
 components	

§  Distributed	
 Hash	
 Table	
 (DHT):	
 Store	
 task	
 descriptors/data	
 pointers	

§  Collec6on/task	
 queue:	
 Maintain	
 state	
 &	
 work	
 assignments	

§  Resilient	
 Transport	
 Layer	

§  Fault-­‐aware	
 collec6ves:	
 terminate	
 cleanly	
 with	
 no	
 result	
 	

§  Fault-­‐tolerant	
 collec6ves:	
 heartbeat	
 via	
 overlay	
 network	
 to	

rigorously	
 agree	
 on	
 which	
 nodes	
 are	
 alive	

	

5	

Node	
 0	

Task	

queue	

DHT	

Workers	
 	

Node	
 1	

Task	

queue	

Workers	
 	

Node	
 n	

Task	

queue	

Workers	
 	

Transport	
 Layer	

DHT	
 DHT	

Related	
 work	

6	

Node	
 0	

Task	

queue	

DHT	

Workers	
 	

Node	
 1	

Task	

queue	

Workers	
 	

Node	
 n	

Task	

queue	

Workers	
 	

Transport	
 Layer	

DHT	
 DHT	

§  Distributed	
 Hash	
 Table	
 (DHT):	
 Linda,	
 Intel	
 CnC,	
 FOX,	
 MATRIX	

§  Collec6on/task	
 queue:	
 Scioto,	
 DAGuE,	
 Legion,	
 Uintah,	
 Charm++	

§  Transport	
 Layer:	
 MPI-­‐ULFM,	
 FT-­‐MPI,	
 Hursey	
 et.	
 al	
 “A	
 log-­‐scaling	

fault	
 tolerant	
 agreement	
 algorithm	
 for	
 a	
 fault	
 tolerant	
 MPI”	

An	
 example	
 of	
 a	
 dense	
 Conjugate	

Gradient	
 (CG)	
 task-­‐graph	

§  Coarse-­‐grained	
 DAG	
 +	
 data	
 parallelism	

§  Squares	
 denote	
 data	
 (matrix/vector/scalar).	

§  Circles	
 denote	
 compute	
 kernels.	
 	

§  Data	
 parallelism	
 (matrix/vector)	
 =>	
 large	
 task	
 parallelism.	

§  Each	
 node	
 (circle)	
 in	
 the	
 coarse-­‐grained	
 DAG	
 becomes	
 a	
 task	
 collec6on.	

r0 *

* r1

**

b *

p0

*

*

*

p1

x0

x1

Ap0
A

r2
r2

�0

�0

Code	
 example:	
 Sejng	
 up	
 run6me	

void	
 dharma_runtime::init()	

{	

	
 msg_api_	
 	
 	
 =	
 new	
 message_api(…);	

	
 task_dht_	
 	
 =	
 new	
 dht(…);	

	
 mdata_dht_	
 =	
 new	
 metadata_dht(…);	

	
 data_dht_	
 	
 =	
 new	
 data_dht(…);	

	
 backup_	
 	
 	
 	
 =	
 new	
 nvram_backup(…);	

	

	
 int	
 max_steals	
 	
 =	
 5;	

	
 int	
 eager_tasks	
 =	
 100;	
 	
 	

	
 queue_	
 	
 =	
 new	
 task_queue(…,	
 max_steals,	
 eager_tasks);	

	

	
 msg_api_-­‐>init();	

}	

	

Code	
 example:	
 Crea6ng	
 tasks	

dharma_runtime*	
 rt	
 =	
 new	
 dharma_runtime;	

rt-­‐>init();	
 //initialize	
 the	
 runtime	

task_collection::ptr	
 coll	
 =	
 new	
 collection(rt,…,	
 new	
 generator(…));	

rt-­‐>register_collection(coll);	

………………………………………………
………………………………………………
void	
 generator::generate_tasks()	

{	

	
 for	
 (int	
 i=0;	
 i	
 <	
 overdecompose_;	
 ++i){	

	
 	
 	
 	
 task::ptr	
 t	
 =	
 new	
 task(…);	

	
 	
 	
 	
 t-­‐>dependencies.push_back(new	
 dependency(…));	
 //declare	
 task	
 deps	

	
 	
 	
 	
 append_task(t);	
 	
 //adds	
 the	
 task	
 to	
 the	
 collection	

	
 	
 }	

}	

	

Code	
 example:	
 Unrolling	
 DAG	

main	

{	

	
 dharma_runtime*	
 rt	
 =	
 new	
 dharma_runtime;	

	
 rt-­‐>init();	
 //initialize	
 the	
 runtime	

	
 cg_unroller	
 starter(0,…);	
 //start	
 iteration	
 0	

	
 starter.unroll(rt);	

 ………………………………………………
}	

	

void	
 cg_unroller::unroll(dharma_runtime	
 *rt)	

{	

	
 	
 task_collection::ptr	
 coll_Alpha_dp	
 =	
 new	
 allreduce_collection(rt,…);	

	
 	
 task_collection::ptr	
 coll_Alpha	
 =	
 new	
 collection(rt,…);	

	
 	
 ………………………………………………	

	

Code	
 example:	
 Unrolling	
 DAG	

(contd…)	

	
 	
 ………………………………………………	

	
 	
 task_collection::ptr	
 coll_p	
 =	
 new	
 collection(rt,…);	

	

	
 	
 if	
 (!end){	

	
 	
 	
 	
 coll_Beta-­‐>set_unroller(new	
 cg_unroller(iter_+1,config_));	

	
 	
 }	

	
 	
 else	
 {	

	
 	
 	
 	
 coll_p-­‐>set_final_collection();	

	
 	
 }	

	

	
 	
 rt-­‐>register_collection(coll_Alpha_dp);	

	
 	
 ………………………………………………	

	
 	
 rt-­‐>register_collection(coll_p);	

}	
 	
 //end	
 cg_unroller	

	

Work-­‐flow	
 diagram	

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

Why	
 do	
 you	
 need	
 an	
 index	
 phase?	

§  Tasks	
 within	
 a	
 collec6on	
 are	

generated	
 locally.	

§  Every	
 worker	
 needs	
 to	
 agree	
 on	
 a	

unique	
 label	
 for	
 each	
 task	
 i.e.	
 tasks	

need	
 to	
 be	
 globally	
 indexed.	

§  The	
 unique	
 global	
 index	
 is	
 required	

for:	

§  scheduling	
 a	
 task	
 remotely.	

§  work	
 stealing.	

§  regenera6ng	
 incomplete	
 tasks	
 due	
 to	
 a	

failure.	

§  This	
 indexing	
 is	
 via	
 an	
 fault-­‐aware	

all_gather	
 collec6ve.	

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

Why	
 do	
 you	
 need	
 a	
 schedule	
 phase?	

§  Each	
 task	
 needs	
 to	
 resolve	
 its	

dependencies.	

§  The	
 global	
 dependency	
 name	
 is	

mapped	
 to	
 an	
 actual	
 physical	

loca6on	
 and	
 address.	

§  The	
 op6mal	
 loca6on	
 to	
 run	
 the	
 task	

might	
 be	
 a	
 remote	
 node	
 depending	

on:	

§  data	
 affinity	
 (most	
 input	
 data	
 resides	

on	
 remote	
 node).	

§  load	
 balancing	
 (remote	
 node	
 has	
 data	

backup	
 copies	
 and	
 is	
 idle).	

§  These	
 decisions	
 are	
 made	
 during	

the	
 schedule	
 phase.	

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

Why	
 do	
 you	
 need	
 a	
 finalize	
 phase?	

§  When	
 a	
 worker	
 exhausts	
 local	
 work:	

§  it	
 needs	
 to	
 determine	
 if	
 all	
 work	
 is	

depleted	
 (e.g.	
 successive	
 steal	
 a>empts	

fail).	

§  it	
 needs	
 to	
 agree	
 with	
 everyone	
 else	
 if	

all	
 work	
 is	
 depleted.	

§  it	
 needs	
 to	
 determine	
 if	
 any	
 work	
 was	

lost	
 (due	
 to	
 failure).	

§  If	
 any	
 tasks	
 remain	
 incomplete	
 due	

to	
 failure,	
 they	
 can	
 be	
 detected	
 and	

regenerated	
 only	
 in	
 this	
 phase.	

§  The	
 finalize	
 phase	
 ensures	
 that	
 a	

collec6on	
 is	
 exhausted	
 collec6vely	

by	
 all	
 par6cipa6ng	
 workers.	

Generate tasks Index

Vote = 0
Failed = {...}

Vote = 1
Failed = n/a

Done

Vote = 1
Failed = n/a

Vote = 0
Failed = {...}

Max failed
steals

ScheduleRun

Finalize

Dependencies
and tasks
resolved

Restart

All failed
tasks

reissued

§  Every	
 node	
 keeps	
 task	
 status	
 array	
 (bits)	
 to	

confirm	
 the	
 global	
 status	
 of	
 individual	
 tasks.	

§  Naive	
 approach:	

§  each	
 worker	
 maintains/updates	
 a	
 copy	
 of	
 	
 task	

array.	

§  all_reduce	
 the	
 global	
 (large)	
 array.	

§  not	
 scalable	
 (later	
 results	
 show).	
 	

§  Alterna6ve	
 approach:	

§  distribute	
 the	
 task	
 status	
 array.	
 	

§  comple6on	
 of	
 each	
 task	
 reported	
 to	
 designated	

node	
 that	
 is	
 tracking	
 its	
 status.	

§  mul6ple	
 nodes	
 can	
 track	
 status	
 for	
 a	
 single	
 task	
 –	

redundancy.	
 	

§  when	
 your	
 por6on	
 of	
 task	
 array	
 shows	
 all	
 “done”	

vote	
 to	
 finalize.	
 	

- - - - done done

- - done done - -

done done - - - -

done done done done done done

all_reduce

done - - - - done

done - done - - done

done done done done - done

done done done done done done

vote

done done done done done done

Finalize	
 phase	
 –	
 global	
 agreement	
 on	

task	
 status	
 array	
 	

Dynamic	
 data	
 lookup	
 with	
 DHT	

DHT

A(0,0)
Node 0

0xABC0F0

A(0,1)
Does not exit

A(1,3)
Node 1

0x835A00

Task callback

Task
A(0,0) x A(0,1)

join_counter = 2 Get A(0,0)
metadata

A(0,0)
exists

Activate callback
join_counter = 1
Task not ready

Get A(0,1)
metadata

A(0,1)
does not

exist

Tasks	
 ac6vated	
 by	
 callbacks	
 when	
 dependencies	
 exist	

DHT

A(0,0)
Node 0

0xABC0F0

A(0,1)
Does not exit

A(1,3)
Node 1

0x835A00

Task callback

Task
A(0,0) x A(0,1)
join_counter=1

Task
Compute block A(0,1)

DHT

Transport
Layer

Put data on Node 1
A(0,1)

0xFAFAFA

Metadata put to
Node 0

Received metadata
A(0,1)

0xFAFAFA

Put

Activate callback
join_counter = 0

Task ready

Fault-­‐aware	
 collec6ves	

Round 0

Round 1

Round 2

1

Round 0

Round 1

Round 2

1

All-­‐reduce	
 All-­‐gather	

	
 =	
 Send	
 Message	
 +	
 Ping	

•  Round	
 partners	
 are	
 pinged	
 (either	
 6meout	
 or	

RDMA	
 NACK)	
 to	
 ensure	
 alive	
 	

•  If	
 failure	
 detected,	
 every	
 round	
 of	
 collec6ve	
 must	

s6ll	
 be	
 executed	
 (sending	
 0	
 byte	
 fake	
 messages)	

•  Only	
 fault-­‐aware	
 –	
 processes	
 can	
 exit	
 with	

different	
 error	
 status,	
 but	
 guaranteed	
 to	
 finish	
 and	

not	
 deadlock	
 wai6ng	
 on	
 dead	
 nodes	

Send/recv	
 Protocol	

1.  Source	
 sends	
 RDMA	
 header	

2.  Dest	
 recvs	
 RDMA	
 header,	
 executes	

RDMA	
 get	

3.  Comple6on	
 ack	
 delivered	
 to	
 sender/

receiver	

	

RDMA	
 get	
 assumed	
 resilient!	
 Requires	

network	
 layer	
 support	

Fault-­‐tolerant	
 collec6ves:	
 	
 Resilient	

vo6ng	
 algorithm	

0

1 2

3 4 5 6

0

1 2

3 4 5 6

0
1

2
3 4

5 6

•  Basically	
 same	
 as	
 algorithms	
 from	
 Hursey	
 and	
 Graham	
 	

•  Votes	
 passed	
 up	
 tree	
 and	
 merged	
 on	
 root	

•  Much	
 simpler	
 to	
 assume	
 root	
 never	
 fails	
 –	
 ways	
 around	
 it	

•  A`er	
 failures	
 detected,	
 tree	
 reconnects	
 and	
 votes	
 reissued	

•  Can	
 be	
 used	
 immediately	
 a`er	
 any	
 fault-­‐aware	
 collec6ve	
 to	
 vote	
 on	

comple6on	
 –	
 makes	
 any	
 fault-­‐aware	
 collec6ve	
 fault-­‐tolerant	

	
 =	
 Send	
 Message	
 +	
 Ping	

Run
heartbeat
collective

Fault
amelioration

No new
failures

Failures
detected

DHT

Notify proc
A failed Task Queue

Notify proc
A failed

Proc A Proc B
Replica for A

Get
requests X Reissue

requests

Proc A Proc B

Steals
requests X

Reissue
requests

Heartbeat	
 connects	
 to	
 DHT	
 and	
 	
 task	

queue	
 to	
 respond	
 to	
 failures	

•  Collec6ves	
 are	
 self-­‐diagnosing;	
 DHT,	
 task	
 queue,	
 data	
 backup	

managers	
 need	
 something	
 to	
 provide	
 no6fica6ons	
 of	
 failures	

•  Fault-­‐tolerant	
 vo6ng	
 algorithm	
 serves	
 as	
 “heartbeat”	
 overlay	

network	
 for	
 detec6ng	
 failures	

Transparent	
 NVRAM	
 fault	
 tolerance	

with	
 DHT	

Recovery	
 opera6ons	
 occur	
 in	
 background,	
 no	
 applica6on	
 awareness	

DHT

"A(0,0)"
Node 0

0xA34FA
"A(0,1)"
Node 1

0x5FEDA
"A(0,0) nvram"

Node 0
0xEEAEA

"A(0,1) nvram"
0x5079FA

NVRAM
Node 1

OK

X

Recovery
manager

NVRAM Get
0x5079FA

DHT

"A(0,0)"
Node 0

0xA34FA
"A(0,1)"
Node 0

0x1234A
"A(0,0) nvram"

Node 0
0xEEAEA

"A(0,1) nvram"
0x1234A

Recovery
manager

Put new
"A(0,1)"
0x4321F

Put new
"A(0,1) nvram"

0x1234A

Node 1
Failed

Why	
 develop	
 with	
 a	
 simulator?	
 	

§  Coarse-­‐grained	
 simula6on	
 explores	

system-­‐level	
 (load	
 balancing,	

effects	
 of	
 failures)	

§  Think	
 about	
 overall	
 structure	

without	
 implemen6ng	
 every	
 detail	

§  Rapidly	
 iterate	
 experiments	
 (don’t	

need	
 to	
 wait	
 in	
 queue)	

§  Co-­‐design	
 for	
 specula6ve	
 hardware	

§  Total	
 control	
 over	
 when/where	

failures	
 happen	
 Crude(

guess(

Rough(

idea(

Cause(and(

effect(

Very(good(

es5mates(

Exact(

hardware(model(

100(

101(

102(
103(
104(
105(
106(
107(

S
im

u
la
5
o
n
(s
co
p
e
/p
a
ra
ll
e
li
sm

(

Simula5on(fidelity(

Cons5tu5ve(

Models(

Coarse1Grain(

Simula5on(

Cycle1Accurate(

Simula5on(Emula5on(

Hardware(

Design(

So<ware(

Support(

Applica5on(

Evalua5on(

SST	
 Macroscale	
 stack	
 diagram	

§  SST	
 is	
 an	
 on-­‐line	
 simulator	

§  Compile	
 applica6ons	
 directly	
 into	

SST	
 libraries	
 to	
 simulate	
 MPI/
pthreads/etc	

§  SST	
 can	
 link	
 into	
 run6me	
 systems	
 at	

two	
 different	
 levels:	
 directly	
 or	

indirectly	
 as	
 GASNet	
 backend	

§  Illustrated	
 for	
 exis6ng	
 run6me	

systems	
 like	
 Legion	
 and	
 UPC	

Library APIs

Application

MPI SHMEM pThread

Library Implementations

MPI SHMEM pThread

SST OS

 Node Hardware

NIC Memory CPU

Network

Communication
Kernels

Memmove
Kernels

Compute
Kernels

Legion UPC

GASNet

PAMIuGNI

Cray
Hardware

IBM
Hardware

SST
MSG API

Transport Layer Wrapper

Legion UPC

GASNet

PAMIuGNI

Cray
Hardware

IBM
Hardware

SST
MSG API

Compile-­‐and-­‐go	
 simula6on	
 	

Linkage	
 intercepts	
 main	
 and	

spawns	
 user-­‐space	
 thread	
 to	

simulate	
 process	
 	

Linkage	
 intercepts	
 BLAS	
 calls	
 and	
 es6mates	

compute	
 6me	
 without	
 actually	
 performing	

work	

Linkage	
 intercepts	
 MPI	

calls	
 and	
 simulates	

send/recv	
 6me	
 via	

conges6on	
 models	

What	
 are	
 you	
 giving	
 up	
 (or	
 not)	
 with	

simula6on?	

§  NOT	
 emula6on	
 –	
 coarse-­‐grained	
 simula6on	

§  No	
 real	
 computa6on,	
 tasks	
 just	
 simulate	
 6me	
 passing	

§  Coarse-­‐grained	
 network	
 models	
 (approximate	
 treatment	
 of	

conges6on)	

§  Full	
 run6me	
 is	
 execu6ng	
 –	
 tasks	
 are	
 not	
 actually	
 run,	
 but	
 all	

task/data	
 management	
 is	
 execu6ng	
 for	
 real	
 	

Crude(

guess(

Rough(

idea(

Cause(and(

effect(

Very(good(

es5mates(

Exact(

hardware(model(

100(

101(

102(
103(
104(
105(
106(
107(

Si
m
u
la
5
o
n
(s
co
p
e
/p
ar
al
le
lis
m
(

Simula5on(fidelity(

Cons5tu5ve(

Models(

Coarse1Grain(

Simula5on(

Cycle1Accurate(

Simula5on(Emula5on(

Hardware(

Design(

So<ware(

Support(

Applica5on(

Evalua5on(

Library APIs

Application

MPI SHMEM pThread

Library Implementations

MPI SHMEM pThread

SST OS

 Node Hardware

NIC Memory CPU

Network

Communication
Kernels

Memmove
Kernels

Compute
Kernels

We	
 have	
 implemented	
 the	
 DHARMA	

run6me	
 system	
 in	
 SST	

§  Coarse-­‐grained	
 simula6on	
 allows	
 for	
 system-­‐level	
 explora6on	

§  Skeletonized	
 mini-­‐apps	
 of	
 explicit	
 and	
 implicit	
 solver	

§  Demonstra6on	
 of	
 full-­‐scale	
 implementa6on	
 of	
 run-­‐6me	
 and	

associated	
 mini-­‐apps	
 on	
 capability-­‐class	
 system	
 next	
 year	

27	

Run$me	
 studies	
 Algorithmic	
 studies	

Scalability	
 with	
 no	
 faults	

(strong	
 and	
 weak)	

Task-­‐granularity	
 and	

decomposi6on	

Performance	
 in	
 the	
 presence	

of	
 faults	

Classifica6on	
 of	
 performance	

according	
 to	
 compute/
communica6on	
 ra6os	

Node	
 degrada6on	
 tests	
 Algorithmic	
 tradeoffs	

Comparison	
 against	
 baseline	

MPI	
 skeleton	

Matrix	
 assembly	
 	
 variants	
 made	

possible	
 by	
 shi`	
 to	
 many-­‐task	

model	

Explicit	
 1D-­‐PDE	
 problem	

Interior points Right
ghost

Left
ghost

Left
ghost

Right
ghost

Chunk
n

Chunkn+1 Chunkn-1

timek

Interior points Right
ghost

Left
ghost timek+1

§  Two	
 tasks	
 for	
 each	
 chunk:	
 one	
 for	
 interior	
 points,	
 another	
 for	

ghost	
 points.	

§  Compute	
 6mes	
 based	
 on	
 typical	
 S3D	
 cost.	

Baseline	
 –	
 no	
 failures	

Weak scaling

§  Specs:	
 10	
 chunks	
 per	
 node,	
 nint	
 =	
 8000,	
 ngh	
 =	
 4,	
 #itns	
 =	
 2-­‐100	

§  SST	
 simula6on	
 shows	
 perfect	
 weak	
 scaling	
 of	
 the	
 problem	

with	
 dharma	
 run6me.	

Impact	
 of	
 1	
 failure	

§  Tests	
 with	
 just	
 1	
 node	
 failure	
 at	
 various	
 instants	
 (#nodes=400)	

§  The	
 6me	
 to	
 solu6on	
 non-­‐monotonic	
 with	
 failure	
 induc6on	
 6me.	

§  Early	
 fault	
 –	
 more	
 6me	
 to	
 absorb.	
 Late	
 fault	
 –	
 less	
 overhead.	

Impact	
 of	
 mul6ple	
 failures	

§  Tests	
 with	
 mul6ple	
 failures	
 (#nodes=400,	
 #itns=100).	

§  1st	
 failure	
 at	
 200s,	
 2nd	
 at	
 400s	
 and	
 3rd	
 at	
 700s.	

§  Overhead	
 not	
 propor6onal	
 to	
 number	
 of	
 failures.	

Summary	

§  DHARMA	
 aims	
 at	
 tackling	
 challenge	
 of	
 resilience	
 in	
 dynamic,	

adap6ve,	
 task-­‐DAG	
 world	

§  Distributed	
 consistency	
 problem	
 at	
 heart	
 of	
 run6me	

§  Many	
 places	
 to	
 op6mize	

§  Can	
 we	
 use	
 applica6on	
 knowledge	
 to	
 structure	
 run6me	
 and	

make	
 resilience	
 strategy	
 both	
 as	
 EFFICIENT	
 and	

TRANSPARENT	
 as	
 possible?	

§  What’s	
 the	
 burden	
 to	
 the	
 programmer?	

32	

