OI'lddVvV

DINNWNINO:
SHIDA LV UL

NOIL

SAND2014- 16454PE
Janine Bennett, Robert Clay, John Floren, Ken
FAULT TOLERANCE

8 FAULTSDEVELOPERS
SstEI;EXE%HCg%gIEIADIGM 1 1
5 end R ETEROGENEOUS DHARMA: Distributed
RoGravINGMODEL Aot Reelliont
HIGH PERFORMANCE COMPUTING dSyncHhronous dptive Resliien
ARCHITECTURES:))
RESILIENCE! Management of Applications
R Franko, Saurabh Hukerikar, Samuel Knight, Hemanth

SCALE>
TECHNOLOGY - Kolla, Greg Sjaardema, Nicole Slattengren, Keita

CHALI F NGE ALGORITHM
RUN TIME,

=
DISTRIBUTED}»
pcToN 7 Teranishi, Jeremiah Wilke

BREAKTHROUGH ™
REDUNDANCY

Sandia
@ Il\lational _

GARCEIT 25 Programming Models and Applications Workshop
Exceptional August 5, 2014

service

in the

A"D

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
interest Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

national

Sandia

Mission i) fat

= Assess & address fundamental challenges imposed by the
need for performant, portable, scalable, fault-tolerant
programming models at extreme-scale

= Two focus areas
= Programming model analysis for next generation platforms
= Demonstration of fault-tolerant programming model at extreme-scale

| [} DHARMA is a fundamental Hindu concept referring to
KEEP * the order and custom which make life and a universe possible
CALM * the behaviors appropriate to the maintenance of that order

AND

PUT
DHARMA The classical Sanskrit noun DHARMA derives from dhr

ON * meaning to hold, maintain, keep

Programming model analysis for next)

generation platforms

Laboratories

= Asynchronous many-task programming Uintah
models are a leading new paradigm -
with many variants HPX

= Goal: Address knowledge gaps Charm++
STAPL

= Comparative analysis of leading

. . StarPU
candidate solutions ar

L L : Swift/T
* Quantitative & qualitative tests using

ASC-relevant codes m

= Qutcome: Guidance to code Scalability
development road map for next Performance
generation platforms for ASC/ Resilience
Integrated Codes Interoperability

with MPI

Demonstration of fault-tolerant T
programming model at extreme-scale

= Asynchronous many-task
programming models Task Graph
+ Show promise at sustaining performance
+ Work stealing enables load balancing
+ Failed tasks can be re-executed

= Recovery (beyond checkpoint/restart)
is challenging

— Distributed coherency problem Nodes are tasks

— Care is required to identify lost tasks due Edges are data
to work-stealing and asynchrony

A holistic solution requires a number of

fault-tolerant components

h

Sandia
National _
Laboratories

= Distributed Hash Table (DHT): Store task descriptors/data pointers

= Collection/task queue: Maintain state & work assignments

= Resilient Transport Layer

= Fault-aware collectives: terminate cleanly with no result
= Fault-tolerant collectives: heartbeat via overlay network to

rigorously agree on which nodes are alive

Node O

Node n

- N X N N K N A A N
. N K N - N N N . N N N
orkers
I I TransEort Laxer I

Related work

Sandia
P Natonal
Laboratories

= Distributed Hash Table (DHT): Linda, Intel CnC, FOX, MATRIX
= Collection/task queue: Scioto, DAGUE, Legion, Uintah, Charm++
* Transport Layer: MPI-ULFM, FT-MPI, Hursey et. al “A log-scaling

fault tolerant agreement algorithm for a fault tolerant MP

Node O

Node 1

Node n

B 2 B - B R B B A B
B R N - N R B B N B
orkers
I I TransEortLaxer I

I”

An example of a dense Conjugate =,
Gradient (CG) task-graph

Laboratories

X0

P1

= Coarse-grained DAG + data parallelism

= Squares denote data (matrix/ /scalar).

= (Circles denote compute kernels.

= Data parallelism (matrix/) => large task parallelism.

= Each node (circle) in the coarse-grained DAG becomes a task collection.

Code example: Setting up runtime @i

void dharma_runtime::init()

{

msg_api_ = new message_api(..);
task_dht_ = new dht(..);
mdata_dht_ = new metadata_dht(..);
data_dht_ = new data_dht(..);
backup_ = new nvram_backup(..);
int max_steals = 5;

int eager_tasks = 100;

queue_ = new task_queue(.., max_steals, eager_tasks);

msg_api_->init();

)
-]

Sandia
’11 National
Laboratories

Code example: Creating tasks

dharma_runtime* rt = new dharma_runtime;
rt->init(); //initialize the runtime
task_collection::ptr coll = new collection(rt,.., new generator(..));

rt->register_collection(coll);

void generator::generate_tasks()
{
for (int i=0; i < overdecompose_; ++i){
task::ptr t = new task(..);
t->dependencies.push_back(new dependency(..)); //declare task deps
append_task(t); //adds the task to the collection

Code example: Unrolling DAG)

main

{

dharma_runtime* rt = new dharma_runtime;
rt->init(); //initialize the runtime
cg_unroller starter(0,..); //start iteration ©

starter.unroll(rt);

void cg unroller::unroll(dharma_runtime *rt)

{

repeat

Y I
Iklk

P APy
Xg+1 = Xg + Pk

Tpt1 = T — APy,

O 1 —

if 7141 is sufficiently small then exit loop)

T

r I
. k+1tk+1
.~3k = +

Ty
Pr+1 = Trt1 + FePr
re— m ==l

end repeat

task_collection::ptr coll Alpha_dp = new allreduce_collection(rt,..);

task_collection::ptr coll Alpha = new collection(rt,..);

Code example: Unrolling DAG =
(contd...)

Laboratories

task_collection::ptr coll p = new collection(rt,..);

if (!end){
coll Beta->set_unroller(new cg unroller(iter_+1,config));

}

else {
coll_p->set_final_collection();

}

rt->register_collection(coll Alpha_dp);

rt->register_collection(coll_p);
} //end cg _unroller

Work-flow diagram

Vote =0
Failed ={...}

Generate tasks

Dependencies

and tasks
resolved

Max failed
steals

Finalize

Vote = 1
Failed = n/a

Schedule

Vote =0
Failed ={...}

Restart

Vote = 1
Failed = n/a

All failed
tasks
reissued

Sandia
National
Laboratories

National

Why do you need an index phase? @&=.

Tasks within a collection are
generated locally.

Every worker needs to agree on a

unique label for each task i.e. tasks

need to be globally indexed. Vote = 1

Dependencies Failed = n/a
The unique global index is required

and tasks
resolved
for:
= scheduling a task remotely.

Vote =0
Failed = {...}

A 4

Schedule

All failed
tasks

. . Mas)g;lliéed Vote =0 reissued
work stealing. Failed = {...}
" regenerating incomplete tasks due to a
failure.
This indexing is via an fault-aware Mot

all_gather collective.

Why do you need a schedule phase?

Each task needs to resolve its
dependencies.

The global dependency name is
mapped to an actual physical
location and address.

The optimal location to run the task
might be a remote node depending
on:

= data affinity (most input data resides
on remote node).

= |oad balancing (remote node has data
backup copies and is idle).

= These decisions are made during
the schedule phase.

Sandia
’11 National
Laboratories

Vote =0
Failed = {...}

Generate tasks

Dependencies
and tasks
resolved

Vote =1
Failed = n/a

A 4

Schedule

All failed
tasks
reissued

Max failed
Vote =0

steals /
Failed = {...}

Vote = 1
Failed = n/a

National

Why do you need a finalize phase? M.

= \When a worker exhausts local work:

Vote =0

" it needs to determine if all work is Failed = {..}
depleted (e.g. successive steal attempts
fa | |) . Generate tasks
" it needs to agree with everyone else if Vote = 1

Dependencies Failed = n/a
and tasks
resolved

all work is depleted.
" it needs to determine if any work was
lost (due to failure).
= |f any tasks remain incomplete due Max failed) _
to failure, they can be detected and = Faild -),

regenerated only in this phase.

= The finalize phase ensures that a Vote =
collection is exhausted collectively B
by all participating workers.

A 4

Schedule

All failed
tasks

Finalize phase — global agreementon @

task status array

Every node keeps task status array (bits) to
confirm the global status of individual tasks.

Naive approach:

= each worker maintains/updates a copy of task
array.

= all_reduce the global (large) array.

Laboratories

| done | done | - | - | - | -

| - | s | done| done | - | - |

| 5 | - | & | = | done| done

i all_reduce

| done | done | done | done | done | done |

= not scalable (later results show). |

Alternative approach: |

= distribute the task status array. |

= completion of each task reported to designated

| done | | - | - | | done | z |
| done | | done | s | | done | s |
| done | | done| done | | done| done

| done |done | | done| done | | done| done|

node that is tracking its status.

= multiple nodes can track status for a single task —
redundancy.

i vote

= when your portion of task array shows all “done” Ldone | done | [done | done | [done | done |

vote to finalize.

Dynamic data lookup with DHT

Tasks activated by callbacks when dependencies exist

Sandia
National _
Laboratories

Activate callback

A(0,0) x A(0,1)
join_counter = 2

Get A(0,0)
metadata

join_counter = 1
Task Task not ready

Task callback

A(0,0) A(0,0)
exists Node O
Get A(0,1) OxABCOFO
metadata A(0,1)
Does not exit[
A(0,1)
does not A(1,3)
exist Node 1

0x835A00

Task
A(0,0) x A(0,1)
join_counter=1

Received metadata
A(0,1)
OxFAFAFA

Task
Compute block A(0,1)

Transport
Layer

Put data on Node 1
A(0,1)
OxFAFAFA

Activate callback
join_counter =0
Task ready

Sandia
| Ntonal
Laboratories

A(0,0)
Node 0
OxABCOFO

A(0,1)
Does not exit

Task callback

A(1,3)
Node 1
0x835A00

Metadata put to

Node 0

National

Fault-aware collectives) e,

All-reduce All-gather

Round 0 ’b C)::C) C}:?C) C}:?C) Round 0 Q’b’b’b%fbfbfb’w
Round 1 &/ @ Round 1 OW

Round 2 Q@ Round2 O O O O

———— = Send Message + Ping

Send/recv Protocol
1. Source sends RDMA header

* Round partners are pinged (either timeout or

RDMA NACK) to ensure alive 2. Dest recvs RDMA header, executes
* If failure detected, every round of collective must RDMA ggt _
still be executed (sending 0 byte fake messages) 3. Com.pletlon ack delivered to sender/
receiver

* Only fault-aware — processes can exit with
different error status, but guaranteed to finish and

not deadlock waiting on dead nodes RDMA get assumed resilient! Requires

network layer support
I ——

Fault-tolerant collectives: Resilient) e,
voting algorithm

= Send Message + Ping

* Basically same as algorithms from Hursey and Graham

* Votes passed up tree and merged on root

* Much simpler to assume root never fails — ways around it

o After failures detected, tree reconnects and votes reissued

 (Can be used immediately after any fault-aware collective to vote on
completion — makes any fault-aware collective fault-tolerant

Heartbeat connects to DHT and task e,
gueue to respond to failures

* Collectives are self-diagnosing; DHT, task queue, data backup
managers need something to provide notifications of failures

* Fault-tolerant voting algorithm serves as “heartbeat” overlay
network for detecting failures

No new
failures

Run '
heartbeat

collective

Failures
detected

Notify proc Notify proc
A failed : _ A failed Task Queue
\ amelioration /
Reissue Steals Reissue

requests

requests

Transparent NVRAM fault tolerance 5
with DHT

Sandia
National _
Laboratories

Recovery operations occur in background, no application awareness

Node 1
Failed

Recovery
manager

NVRA
0x5079FA
NVRAM
Node 1

IIA(O’O)“
Node 0
OxA34FA

IIA(0,1)Il
Node 1
Ox5FEDA

"A(0,0) nvram"
Node 0
OXEEAEA

OK

"A(0,1) nvram"
0x5079FA

Put new Put new
"A(0,1) nvram" | "A(0,1)"
Ox1234A 0x4321F

Recovery
manager

"A(0,0)ll
Node 0
OxA34FA

IIA(O, 1)II
Node 0
0x1234A

"A(0,0) nvram"
Node 0
OXEEAEA

"A(0,1) nvram"
0x1234A

e/parallelism

Simulation scop

Why develop with a simulator?

T T T T T [

Models Cycle-Accurate
Simulation

Application
’ o

- —

Hardware Software
Design - . Support

-

Coarse-Grain
Simulation

Constitutive

Emulation

| | | | >

Crude
guess

Rough Cause and Very good Exact
idea effect estimates hardware model

padi i,

Sandia
m National
Laboratories

Coarse-grained simulation explores
system-level (load balancing,
effects of failures)

Think about overall structure
without implementing every detail

Rapidly iterate experiments (don’t
need to wait in queue)

Co-design for speculative hardware

Total control over when/where
failures happen

Sandia
m National
Laboratories

SST Macroscale stack diagram

(geeletel) = SSTis an on-line simulator
% = Compile applications directly into
Cibrary Implementations SST libraries to simulate MPI/

— pthreads/etc

= SST can link into runtime systems at
two different levels: directly or
indirectly as GASNet backend

“ = |llustrated for existing runtime
Network systems like Legion and UPC
Legion \X UPC 3 (Legion X UPC >
Transport Layer Wrapper >
GASNet
SST
MSG API >
SST
MSG API

uGNI

Cray IBM
Cray IBM Hardware Hardware
Hardware Hardware

Sandia
m National
Laboratories

Compile-and-go simulation

spawns user-space thread to

int USER_MAIN(int argc, char sxargv)

{ simulate process

MPI_Init(&argc, &argv);

for (int iter=0; iter < niter; ++iter){
MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,
row_send_partner, row_tag, MPI_COMM_WORLD, &reqs[0]);
MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,
col_send_partner, col_tag, MPI_COMM_WORLD, &reqs([1]);
MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE,
row_recv_partner, row_tag, MPI_COMM_WORLD, &reqs([2]);

Linkage intercepts MPI
calls and simulates
send/recv time via
congestion models

MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &reqs[3]);

do_dgemm('T', 'T', nrows, ncols, nlink, 1.0, left_block, nrows,

right_block, ncols, @, product_block, nrows);
) *

}
work

Linkage intercepts BLAS calls and estimates
MPI_Finalize(); compute time without actually performing

What are you giving up (or not) with e

Laboratories

simulation?

NOT emulation — coarse-grained simulation
No real computation, tasks just simulate time passing

Coarse-grained network models (approximate treatment of
congestion)

Full runtime is executing — tasks are not actually run, but all
task/data management is executing for real

Application
Application : A
Library APIs = =
Hardware Software
Design F " Support
Library Implementations s 1

Coarse-Grain
Simulation

107
106
1051

e/parallelism

We have implemented the DHARMA
runtime system in SST

Sandia
"1 National

Laboratories

= Coarse-grained simulation allows for system-level exploration
= Skeletonized mini-apps of explicit and implicit solver

Runtime studies Algorithmic studies

Scalability with no faults Task-granularity and
(strong and weak) decomposition
Performance in the presence Classification of performance
of faults according to compute/
communication ratios
Node degradation tests Algorithmic tradeoffs
Comparison against baseline Matrix assembly variants made
MPI skeleton possible by shift to many-task
model

= Demonstration of full-scale implementation of run-time and
associated mini-apps on capability-class system next year

27

Explicit 1D-PDE problem 1) .

Chunk,,_, Chunk

time, - - Interior points
time,,, - Interior points -

= Two tasks for each chunk: one for interior points, another for
ghost points.

= Compute times based on typical S3D cost.

Sandia
| Ntonal
Laboratories

Baseline — no failures

10

9.5 | _
Weak scaling
9 -

8.5 T
8 T K K X

X

75 T

time per itn (s)

7 -
6.5 T

1 10 100 1000

#nodes

= Specs: 10 chunks per node, n;, = 8000, n,, = 4, #itns = 2-100

= SST simulation shows perfect weak scaling of the problem
with dharma runtime.

Sandia
P Natonal
Laboratories

Impact of 1 failure

1000

950 |

900 [
o MM\\

800

750 |

solution time (s)

700 T
650 |

600 ' ' | ' ' ' '
O 100 200 300 400 500 600 700 800

time of failure (s)

= Tests with just 1 node failure at various instants (#nodes=400)
= The time to solution non-monotonic with failure induction time.
= Early fault — more time to absorb. Late fault — less overhead.

Sandia
| Ntonal
Laboratories

Impact of multiple failures

1200

1100 t

X

1000

900

solution time (s)

800

700

600 ' ‘ '
0 1 2 3 4
#failures

= Tests with multiple failures (#nodes=400, #itns=100).
= 1stfajlure at 200s, 2" at 400s and 3" at 700s.
= Qverhead not proportional to number of failures.

Sandia
’11 National
Laboratories

Summary

DHARMA aims at tackling challenge of resilience in dynamic,
adaptive, task-DAG world

Distributed consistency problem at heart of runtime

Many places to optimize

Can we use application knowledge to structure runtime and
make resilience strategy both as EFFICIENT and
TRANSPARENT as possible?

What’s the burden to the programmer?

32

