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Problem Schematic
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• Determine threshold velocity
• Observe failure mode



A Brief Review…

4

Borvik et al, Norwegian University of Science and Technology, late1990’s to 
present). Experimental and numerical FE simulation, work includes 7075-T651 
plates, and use of the Johnson-Cook and other constitutive and failure models.

Backman and Goldsmith, US Naval Weapons Center, 1978.  Review article. 
Attribute first studies on ballistic penetration to Euler and Robbins in the 1700’s.

Corbett, Reid and Johnson, Univ. of Aberdeen, UMIST, 1996.  Review article post 
1978.  Section on numerical modeling.

Jones, Univ. of Liverpool, 2012.  Comments on numerical predictions requiring a 
extensive companion experimental program.

Wilkins, Lawrence Livermore Laboratory, 1978.  Excellent, concise description of 
penetration and perforation concepts.

Teng, Wierzbicki, MIT, 2006. Evaluated fracture models for perforation problem.   
Bao-Wierzbicki and Johnson-Cook models gave reasonable predictions.



Experimental Set-up
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Instrumentation:
• 2000g carriage accelerometer
• Laser carriage position sensor
• Phantom video camera

(7000 frames/sec)
• Data acquisition system

• 16 bit
• 2.5 MHz sampling rate
• Low pass filter to 500Hz

• Uncertainties
• Impact velocity +/- 0.15 ft/s
• Peak acceleration +/- 1.6g



Experimental Results
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Threshold velocity: [9.7,10.5] ft/s 



Levels of Damage
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Levels of Damage
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Puncture Video Record
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8.2 ft/s Impact Speed
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10.5 ft/s, No Failure
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Microstructure of Plug Formation
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Microstructure of Plug Formation
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Finite Element Model
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Johnson-Cook Material Characterization

• Note anisotropy in yield and strain to failure
• Predictions at temperature partially good
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Johnson-Cook Material Characterization
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Numerical Simulation Results
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Evolution of Johnson-Cook Damage
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Just Prior to Plug Ejection…
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Damage Equivalent Plastic Strain Triaxiality

Temperature Equivalent Plastic Strain Rate 



Carriage Velocity and Acceleration

20



Carriage Velocity and Acceleration
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• Under the test conditions, the plates failed by plugging 
through a combination of fracturing and shear banding

• Reasonable predictions with adiabatic FE model
• Full fits of the Johnson-Cook strength and failure models 

based on experimental data were necessary
• Predictions mildly mesh dependent
• Most sensitive to 

• Triaxiality dependence of equivalent plastic strain to 
failure

• Strain rate dependence of equivalent plastic strain to 
failure

• Mildly sensitive to 
• Adiabatic heating
• Coefficient of friction
• Hourglass stiffness

Conclusions
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• Material model cannot account for all observed behavior
• Some material behavior not observed
• Had to extrapolate equivalent strain to failure data from 

high triaxiality data to low triaxiality regime
• Finite element model element size is large compared to 

shear band

Doubts
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• Material model cannot account for all observed behavior
• Some material behavior not observed
• Had to extrapolate equivalent strain to failure data from 

high triaxiality data to low triaxiality regime
• Finite element model element size is large compared to 

shear band

Doubts

Were we lucky?

What if we tried a punch with different mass and/or different shape? What if 
the impact was not normal? 





Puncture Event Sequence
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Failure Dependence on Triaxiality
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Material Model Property Values
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Effect of Triaxiality Fit
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Effect of Adiabatic Heating
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Effect of Strain Rate Dependence
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Effect of Stress Decay
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Other Effects
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Friction:
• No effect on threshold velocity with  = 0.2, 0.4, 0.6

Hourglass Stiffness:
• Minimum effect for recommended range: 10.1 to 10.2 ft/s for hourglass 0.2 of 

recommended value and 10.4-10.5 for 3 times the recommended value.



J-C Damage and Equiv. Plastic Strain
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Triaxiality and Temperature

44



Equivalent Plastic Strain Rate
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