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Things | want to say about initiation

Ryan R. Wixom, Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’ s National Nuclear Security Administration under contract DE-AC04-94AL85000.
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One of these things is...
very much like the others.

The fundamental principles are the same
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What the h ith initiation?

-



Impact, mostly magic, DETONATION.

S DT Exploding Folil Initiator-chip slapper

Homogeneous v. Heterogeneous

Entirely different physics and chemistry

HUH?
DDT

Thermal, burning, faster burning, magic, Detonation
Exploding Bridge Wire
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P at 0.00e+00 s
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P at 0.00e+00 s
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Grain-scale simulation of EBW

T at 0.00e+00 s RXN at 0.00e+00 s




T at 0.00e+00 s RXN at 0.00e+00 s
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That’s right... a shock wave isn’t a pressure wave.
A shock is a propagating change of thermodynamic state.

22 GPa
2.6 g/cm?
714 K
-6.314 eV/atom

Rayleigh line connects two thermodynamic states
Volume, Pressure, Temperature, Internal Energy



A shock is also a thermal pulse
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Question: Do EBWs function by SDT or DDT?

Answer: Frankly, ... | don’t really care.
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Predictive Simulation of Initiation
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on Beam Techniques for X-Sectioning Explosives

Cross Section Milling

FIB milling

Image slice
direction

Fiducial
marks




HNS, PETN, HMX, PBX, TAIB, C

L-20, Pyro, Propellant...
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Frist Principles Predicted Equation of State

poD — p1 (D — U1)
P1= poDuj
E— Eo= -VZ(P + Po)(Vo—V)
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Gobs of Un/partially Published EOS
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Validation of the DET-MD Isotherm (HNS)

Why am | not right?

It must be the experiment!

DFT-MD e
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Gump DAC

- degradation of the sample
- not hydrostatic

- polycrystalline

- defects
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Solvent! DMF
Samples are 99.6% HNS

EQUATIONS OF STATE OF HEXANITROSTILBENE
(HNS)

e

Jared C. Gump, Chad A. Stoltz, Brian P. Mason and Emily M. Heim'

Naval Surface Warfare Center, Indian Head Division, Indian Head, MD 20640
‘Naval Research Enterprise Intern Program




When we account for the solvent, we the calculation
matches very well with experiment.

HNS Crystal

5
S
:
%
-

DFT-MD »
RX-MD

0.5 % DMF
2.35 % DMF
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Can we capture emission from evolving intermediates/products?
Streak Spectroscopy: Experimental Configuration

Unigue samples, dense
explosive films onto
optical windows

Monochromator
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18-150um 4 2
LiF Window
Flyer HNS film

20kV CDU



Streak Spectroscopy: Preliminary Results

Actual Experiment

«—  lasts <60ns
Velocity Map
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Large-scale Reactive NEMD Simulations

Can we use these to inform material models and chemical models?

Thermal Field H-O Formation
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Shock wave in PETN localized at a void.
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Simulation of successful initiation
HNS, 3100 m/s, Parylene-C flyer

P, T, & Rxn at 0.000000e+00




Simulation of successful initiation
HNS, 3200 m/s, Parylene-C flyer

P, T, & Rxn at 0.000000e+00
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Stimmacy

Microscale

Atomic scale
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Rankine - Hugoniot Relations

Co + S;up+S,u? ... Polynomial Fit
(P - Po) )
(e -ep)
Assume solid and porous material have the same refernce, Po = Pg = Oandeg = e;
r r

P = — (e - e) (Solid) P* = — (e" - ey) (Porous”)
v v

'=v Gruneisan Parameter

P-P" = (e-e") The two pressures can be related at any shock state, v

P-P" =

r

v
r
v

1 1
(— P(vo-v) - —P" (vy-V) by substituting [3] into [7]
2 2

Where Gamma can be constant or dependent on density T

by solving [1] for particle velocity

by substituting [10] into [2]

This does not depend on microstructure, only depends on initial density (... and purity)
















