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Why is materials selection an issue for hydrogen

service?
« Hydrogen degrades fracture and fatigue resistance of materials
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Why should we care about hydrogen FCEVs?

Goal for California:

68 fueling stations by the end of 2015
* serving 5,000-15,000 vehicles (FCEVs)

Building a statewide network

Map of 68 Hydrogen Fueling Stations: Existing, In Development and Needed

End of 2012 in CA
» 13 fueling stations
« 312 FCEVs
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* Growing markets (worldwide estimates)
— 200-400 light duty vehicles (automobiles on the road)
— 100-150 heavy duty vehicles (buses, dump-trucks, yard-haulers, etc.)
— 3,000 industrial trucks (forklifts)
— >200 fueling stations for buses and automobiles
— >50 forklift indoor/outdoor fueling sites

e Onboard storage: high-pressure gas at pressure up to 700 bar (10,000 psi)
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==t
Cost is an potential barrier to widespread

I
deployment of hydrogen FCEVs =
Problem: ';}. % 7
- Balance of plant (BOP) onboard vehicles accounts for: " 1 mf'
— 30-57% of total fuel system cost J “"9

— 15-20% of total fuel system mass

« Structural materials for BOP typically include expensive materlals'
— Annealed type 316L austenitic stainless steel (Ni content >12 wt%)
— A286 precipitation-strengthened austenitic stainless steel (Ni ~30 wt%)

Opportunities:

* Identify alternatives to high-cost metals for high-pressure BOP
components

— Reduce cost by 35%
— Reduce weight by 50%
- Refine methodologies for performance-based qualification of materials for
BOP and for hydrogen service more broadly
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Technical basis for cost and weight reductions

* Relative component cost is estimated from the relative
weight of material and material cost
— Relative weight is determined from required |,__ PP ASME design
thickness of material 2SE+PY) _equation
— Relative material cost is conservatively informed from price of bar

material
material Rel?tive Yield strength Rel§tive c?r::;:i:eent
material cost (MPa) weight cost
316L 1.0 140 1.0 1.0
304L 0.84 140 1.0 0.84
CW 304L 1.7 345 0.46 0.78
XM-11 0.79 345 0.46 0.36
CW XM-11 1.6 620 0.17 0.27
CW XM-19 2.5 725 0.15 0.38

S , S
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Why are materials such as 304L and XM-11 not
considered for hydrogen service?
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Fracture data suggests other stainless alloys perform
similar to 316 alloys

* Fracture mechanics (and fracture properties) can be used
directly in the design of pressure components

Fracture resistance measured in hydrogen environments
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Fatigue life assessment suggests that life is not
limited by fatigue for BOP applications

« For moderate design life, the limiting fatigue stress is greater than the

yield strength
» Design stresses are typically < yield strength

» Result: very conservative designs

Stress

_ limiting fatigue stress

yield (annealed)

1 1.1 IIII 1 1 1 L1 IIII 1 1 L L1111
design life .
of 30.000 Cycles to Failure




: Ié F &Hydrogen and Fuel Cells Program

Effects of hydrogen on annealed austenitic stainless
steels may not limit fatigue life for BOP applications

yield strength

« For moderate design life, the limiting fatigue stress is greater than the

» Design stresses are typically < yield strength
» Result: very conservative designs
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How do we take advantage intrinsic performance?

« By increasing the strength, higher fatigue stresses can be

accommodated in design
— Higher stress = less material
— Less material = lower cost

Stress
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Preliminary results: high-strength austenitic
stainless steel
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- Hydrogen reduces total fatigue life

* High fatigue stress can be achieved with cycles to failure
greater than 10,000 cycles

- Broader evaluation of methodology requires testing under
combination of low temperature and high pressure
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Preliminary results: internal versus external H
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- Available data is incomplete (inconsistency of notch acuity and
environments)

* Initial results suggest some correlation between internal and external H
* Data at low temperature is needed




ﬂﬁr/a)g;;r -and Fuel Cells Program

Fatigue life methods can also be applied to steels for

other applications, such as pressure vessels
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* Initial results for pressure vessel steel follow anticipated trends

- Additional data is needed to demonstrate reproducibility and consistency, as well
as to coordinate with efforts in the international community

« Fatigue life methods to qualify materials for hydrogen service is receiving
attention in Japan and in Europe
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Summary

* Hydrogen FCEVs are coming to many neighborhoods in
California in 2015-16 (also in Germany and Japan)
— Hydrogen fuel will be stored on the vehicle at pressures up to 700 bar
(10,000psi)
« Cost of gas handling equipment is becoming a critical
bottleneck (also weight for mobile applications)
— Hydrogen safety is of critical concern
— Materials selection for hydrogen service is a challenge, currently
limited to a few select (expensive) alloys
+ Fatigue life assessment suggests that hydrogen fueling
applications may not be fatigue limited

— Higher-strength alloys/conditions may enable more efficient structural
designs

— We should qualify materials based on relevant quantities



