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Outline:

1.

Motivation: QD single photon sources

2. InGaN QD fabrication

o

- Quantum size controlled PEC etching
AFM/TEM analysis of InGaN QDs

Optical characterization of QDs
- Photoluminescence, TRPL

Deterministic placement of InGaN QDs
- Emission from single InGaN QDs
- Photonic crystal based single photon source

Calculated g2 for multi-dot systems
- Studying the transition from classical to quantum

Summary/Conclusions
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Single Photon Source: Photon Statistics
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source: J.S. Lundeen

Classical light sources: g(2)(t=0)=1

- Bunched or random photons (Laser, LED, thermal source)
Quantum light source: ¢(2)(t=0) <1

- Anti-bunched photons (Quantum optics theoretical treatment)

Applications:
- Quantum key distribution

- Attenuated laser can be used
- SPS is the gold standard for QKD
- Future QKD involving quantum repeaters

- Quantum metrology
- Quantum computing with photons
- True random number generation
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Single Photon Source based on Quantum Dots

AFM image of InAs QDs
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QD Single Photon Source:

*|solate emission from a singe quantum dot
*Only one photon can be emitted
» Absorption of one photon saturates transition
» Can be excited using many photons

* Deterministic Source: on demand 7 » 9
- Triggered emission within radiative lifetime Sandia 2D photonic Crystal Cavity
« Short emitter lifetime ( ~ 1 ns) - Fast rep. rate

 Path to electrical-injection/chip-scale integration
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InGaN Quantum Dot SPS Development

111 oaN
U T QD
* Our approach RS

= Develop a lll-nitride QD capability at Sandia o
= MOCVD-grown InGaN QWs - PEC etched InGaN QDs InGaN QD Single Photon Source
= Design a PhC cavity for InGaN QD SPSs

= Goal: Room temperature, electrically-injected,
chip-scale single photon source

Green InGaN LEDs

= Advantages to this approach
= |nGaN QDs can operate at high temperatures
= Deterministic placement of InGaN QDs
= Leverage previous work in lllI-nitride optoelectronics
= Leverage SNL PhC design, fabrication expertise

InGaN photonic crystal LEDs

180 nm diameter

610 nm deep
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Introduction to InGaN PEC Etching

Photoelectrochemical (PEC) Etching:
* Very few wet etches work for lll-nitrides
* Band gap selective (Etch InGaN over GaN)
* Dopant selective, light intensity dependent, etch current can be monitored
* Laser or lamp excitation (Xe arc lamp, tunable ps Ti:S)
* KOH (~0.1M) typically used as electrolyte

®—||l| PEC etched InGaN/GaN QWS
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Fabrication of InGaN QDs via PEC etching

[ Quantum Size Control: Use size quantization to control QD size ]

Self-limiting PEC etch process
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PEC etching

*For QDs, band gap depends on size

* As etch proceeds,
* QD size gets smaller, band gap goes up
* Etch terminated for E; > E , ;,,, pump

- Self-terminating etch process
* QD size depends on PEC wavelength
* Monodisperse QD distributions ??
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G. Pellegrini, et al., Journal of Applied
Physics 97, 073706 (2005).
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MOCVD-grown InGaN samples

U d si InGaN QW
heapped singe Insa « Grown by MOCVD on sapphire substrates

* 5-20 nm thick InGaN layer
* No InGaN underlayer is used in this sample
» Uncapped single QW sample (14% In):
« Amenable to surface characterization of QDs
« TEM, AFM characterization
* Luminescence weaker than capped sample

Sapphire

Capped singe InGaN QW

« Grown by MOCVD on sapphire substrates
* 3nm InGaN QW, 10 nm GaN cap

* InGaN underlayer (~2% In) used in this sample
» Capped single QW sample (14% In):

» AFM is not useful for capped samples

* Luminescence brighter than uncapped samples
Sapphire  Etch is thought to proceed via pits, dislocations

Sandia
National
Laboratories

InGaN underlayer
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Atomic Force Microscope (AFM) Measurements

Uncapped InGaN QW

* Samples etched for two hours at 420 nm and 445 nm
- * Laser power density: ~ 3 m\W/cm?
* High dot density: 10"/cm?

» Some big dots (10-20 nm) remain: due to dislocations?
* QD size depends on PEC etch wavelength

Sapphire

200, /a=445nm
A =420 nm / \
100 - . /J\- / \
'i/ \. ./ .\
\ \
\ \
0 : L TN R Y a0
o 2 4 6 8 10 12

Maximum grain height (nm)
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Transmission Electron Microscope (TEM) Images

Uncapped InGaN QW - High-angle annular dark-field (HAADF) TEM images
- » Samples etched at 420 nm and 445 nm
* Energy dispersive x-ray mapping
Sapphire * QDs on surface are InGaN
* Red = indium, green=gallium

*InGaN QDs are epitaxial to the underlying GaN
*No underlayer, no cap = PL is not very bright

445 nm PEC etch
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Transmission Electron Microscope Images

Capped InGaN QW

_ » High-angle annular dark-field (HAADF) TEM images

InGaN underlayer *Sample etched at 420 nm
_ - EDX mapping shows that dots are InGaN
*InGaN QDs are epitaxial to the underlying GaN
* 2% InGaN underlayer + GaN cap = PL is much brighter
* GaN cap provides partial passivation

Sapphire

InGaN QD

after PEC etch

before PEC etch

etch

.......

after PEC
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Photoluminescence from fabricated InGaN QDs

Capped InGaN QW

_ As narrow as 6 nm FWHM is consistent with

InGaN underlayer a narrowing of the QD size distribution

Sapphire

—— 410nm PEC etch |_|
420nm PEC etch
——430nm PEC etch | |
440nm PEC etch
Unetched

1.0

0.8

Photoluminescence (PL) data:

* 375 nm pump (ps pulsed)

* 10K PL data

* PL wavelength determined by
PEC etch wavelength

* PL linewidth: 24 nm - 6 nm

« Quantum size-controlled PEC
etching works!
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InGaN QD internal quantum efficiency

Capped InGaN QW

InGaN underlayer

Sapphire

QD PL Efficiency

* Compare 10K and RT PL efficiency

* Assumes 10K PL is 100% efficient

* PL Intensity drops by >100X after QD etching
*IQE goes up by almost 10X after QD etching
*QDs are expected to have better IQE

Internal Quantum Efficiency
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Time-resolved PL data from InGaN QDs

Capped InGaN QW

InGaN underlayer

TRPL data:
* 405 nm pump (~ 2 ps, pulsed)

Sapphire

* Resonant pumping into InGaN

-—
TTTT]

 Room temperature TRPL data
« Hamamatsu streak camera data

°
-

» 17X change in PL lifetime

- Lifetime is expected to be much
shorter for QDs

« Shows that we have
fundamentally changed the
InGaN material

« QW - QDs
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Emission from single InGaN QDs

Capped InGaN QW « Posts (150 — 200 nm) patterned with e-beam lithography

_ *Narrow PL emission (<1 nm FWHM) observed
'”ﬁ - Fabricate InGaN QDs at deterministic locations
- *InGaN QD single photon source
apphire
0.6 T=5K
Fabrication of single InGaN QDs
0.6.- <1nmFWHM
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PL from InGaN QDs (newer data)

Capped InGaN QW

InGaN underlayer

Sapphire

Fabrication of single InGaN QDs

PEC
etch
/ >
InGaN _
Qw Single
InGaN

QD

-
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* Posts (150 — 200 nm) patterned with e-beam lithography
* Thicker GaN capping layer (~ 30 nm)

*Narrow PL emission (<1 nm FWHM) observed

» Better ratio of single QD mission to background

* Limited by motion of closed-cycle cryostat
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Single Photon Measurement: HBT experiment
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* Non-polarizing beamsplitter to split intensity between detectors

* Single photon counting required
* Use PMTs or avalanche photodiodes
* Single photon counting modules

* Measure correlation between detected photons
* Detectors: low QE, speed, and dark counts
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Deterministically Positioned InGaN QDs

Standard lll-nitride 2.) Fabrication of device plus PhC etch
device fabrication

1.) Epitaxial layer structure

p-type ring
hole contact
Single InGaN array
quantum well (8%) Transparent
/ contact
SiO, current
— aperture

5 InGaN quantum

wells (16%) n-type contact

_—

sapphire

side

view
*Specially design epitaxial *Standard LED fabrication
structure for PEC etching *Etch PhC triangular array
*InGaN QWs with 8% and -defect cavity at the center
16% indium *Requires current aperture

*Use transparent contact

' ationa
- ﬁ . Laboratories
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Deterministically Positioned InGaN QDs

PEC etch of 4.) Second photoelectrochemical etch
InGaN QWs

3.) First photoelectrochemical etch

[ =

L]
2000000
200000

(X X X X J

Single InGaN QD

I..'I/ Optimally located
1]

side
view

PhC slab
a/2 ~100 nm

*Use 450 nm laser for PEC etch

*Area under contacts will not etch

*8% InGaN QW will not etch Use 405 nm laser for PEC etch

+Self limiting PEC etch

*Size quantization in QD will raise
energy level above 405 nm
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FDTD Photonic Crystal Modeling

000000.0000
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* Calculations done using Lumerical

*Need resonance with anti-node at center (res1)

* Calculated cavity Q is 941 for this design (no substrate)
* Design is not fully optimized (higher Qs are possible)
*Need lattice constant in the range from 170 — 200 nm
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FDTD Modeling: Spacer Layer Thickness

a=170nm
d.., =0.95a d=0.7a
d’ =0.45a
, T t=0.5a
A=421.35nm
Q =866
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* High-angle annular dark-field (HAADF) TEM
*Sample etched at 420 nm

* EDX mapping shows that dots are InGaN
*InGaN QDs are epitaxial to the underlying

* 2% InGaN underlayer + GaN cap - PL is

d.,, =0.6a

A =420.765 nm
Q=237
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Calculated g'?(0) for systems with multiple QDs

2.0

10 QDs

15 oo

g(0)

1.0 -

05 }-

102 101 1
Output (102 photons-s)

10

Study the transition region
between classical and quantum
light sources

Calculate g2 using many body
theory for a cavity - QD system

Calculated for InAs QD system,
but should be generally applicable

Vary cavity Q at a constant pump
rate

Shows that we can get non-
classical light for multi-QD
systems

Trade-off between low g2 and
higher photon output rate.

Details on theory: Chow, Jahnke, Gies. To appear in Light: Science and Applications
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Summary/Conclusions

= Demonstrated InGaN QDs using PEC etching
= TEM EDX mapping shows we have InGaN QDs
= Quantum size-controlled etching of InGaN QDs
= QD size and emission A determined by PEC wavelength
= 40% IQE for InGaN dots emitting at 435 nm
= Demonstrated emission from single InGaN QDs
= Design for PhC single photon source
= Deterministic placement of InGaN QDs
= FTDT modeling of cavity resonances
= Calculated g2 for multi-QD systems
= Non-classical light from multi-QD systems

Single
(] InGaN
s Qb

side
view

sapphire

InGaN QD Single Photon Source
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Single Emitters Inside and Optical Cavity

Why do we need an optical cavity? )Jf'
» Improve photon collection efficiency ng‘“t”m
 Restrict emission to specific spatial modes "\/\,&
» Limit spectral content-> indistinguishable photons
» Generate photons with a specific polarization
* Increase radiative rate, efficiency via Purcell effect ( < . > 1"\’\’\)
* Theoretically study QD strong coupling physics
» Coherent and incoherent interaction with phonon bath Directional emission

Sandia llI-Nitride Nanostructure Fabrication

Sandia
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Single Photon Sources in the Literature

Faint Laser
- Not a quantum light source

- g@(0) =1
On-Demand Single Photon Sources:
- Single atoms/ions/molecules
- g?(0) = 0.015, cryogenic temperatures
- Color centers (nitrogen vacancy)
- g@(0) = 0.07, 300K
- InAs quantum dots
- g2(0) = 0.02, 5K, electrically injected
- CdSe/ZnS quantum dots
- g‘@(0) = 0.004, 300K, 5% extraction
- GaN-based SPSs
- g?(0) = 0.16, 10K, electrically-injected
- g@(0) = 0.4, 200K
Heralded Single Photon Sources:
- Parametric down conversion
- g?(0) < 0.01, 300K, pulsed laser
- FWM in optical fibers
- g@(0) ~ 0.01, 300K, pulsed laser

*M.D. Eisaman, et al. Rev. Sci. Instrum. 82, 071101 (2011)
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Ideal Single Photon Source:

» Triggered (on-demand)

» 100% probability of emitting
one photon

» 0% probability of emitting
multiple photons

> g@(0)=0

» Indistinguishable photons

» High repetition rate

» Room temperature

» Electrically injected
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Single Photons for Weak absorption Measurements

* Perfectly coherent light source has shot noise
* Poissonian photon statistics (random)
* Single photon source can beat the photon shot limit
* Sub-Poissonian photon statistics (anti-bunched)
* Regular emission of single photons is very low noise
* Single photon sources deliver amplitude squeezed light
* Uncertainly relationship between amplitude and phase
* Field amplitude if precisely known, but phase is unknown
* Low noise source allows very precise absorption measurement
* For large transmissions and good detectors

I(t)/\ St.Dev(Coherent) = VxMT
Photon bunches St. Dev(Single photon) = /xMT(1 — xT)

M = number of incident photons
T = transmission coefficient
x = detector QE

Var T (SP)
Fewer photons Var T (C) 1+T
> 1
Analysis from B. Lounis et al., “Single Photon
Adapted from “Quantum Optics: An Introduction” by Mark Fox Sources,” Rep. Prog. Phys. 68, 1129 (2005).
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Motivation for InGaN Quantum Dot (QD) Emitters

* Long wavelength visible emitters:

* Nanostructure (NWs, QDs) can incorporate more indium

* High efficiency yellow, orange, and red emission

 RGB and RYGB emitters require high efficiency yellow to red emitters
* Visible QD diode lasers:

 Lasers for lighting is gaining momentum

* Low threshold, high efficiency, better temperature performance
« Monodisperse QDs

Monodisperse QD Distributions

Impact on device performance |

InGaN QD laser:
« University of Michigan :,f;c:;'l“m?f'zfm“"th a
- Electrically injected A yocyp  distribution AN
*630 Nnm S grown

8 ———————————— or MBE QDs have
*T,= 236K 7t a very large size Gain or PL

g :: distribution \ / Spectrum\

3t 4
Frost et al., IEEE JQE, % ,f k]
49, 923 (2013). ik CWeias ] »

% 2 4 6 8 1w

Current Density (kA/cm®)
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Calculated g2 for a single QD
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Calculated g2 for 50 QDs

LE+17 - 20
1 50QDs 50 QDs
18
1.E+15
- 1.6 -
-~ ;
€ .
. s
1 =
S 1E+13 - = 14
3 : < sm——camc=1ell/s
g = m—amic=4e11/s
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3 — pamic=1e11/s
w— gamic=4e11/s 1.0
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Calculated g2 for 5 QDs
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