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Giant planets in the Solar system
Interior composed of the lightest elements H & He, hydrides NH,, OH,, :i j
CH, (ices) and small amounts of heavier elements (cores)
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H-He de-mixing appears to be precipitated )

at low T and P by metallization in hydrogen
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Recent predictions for LL-IMT in H e
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Proposed Experiment A
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Two-step pulse shape provides shock-ramp profile
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Coaxial experimental profiles o
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Coaxial experiment PT paths =
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Stripline experimental configuration
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Stripline experiment PT paths
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Processed VISAR signals
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Strlplme experimental profiles .
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SVS system provides data to infer reflectivity

Reflection from aluminum coating Reflection from deuterium
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SVS system provides data to infer reflectivity =
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Reflectivity and pressure vs. time from VISAR [@&x.
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Reflectivity signals mapped to pressure
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Deuterium reflectivity mapped to both ) &5,
pressure and temperature

Asymmetry observed in the reflectivity is
likely caused by time evolution of thermal
gradients at the deuterium/LiF interface
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There is a significant temperature difference
at the deuterium/LiF interface
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Thermal conduction at D2/LiF interface
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Possible location of the LL-IMT in deuterium
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H-He de-mixing appears to be precipitated
at low T and P by metallization in hydrogen
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Conclusions

= Shock-ramp technique enables experimental access to the
region of phase space where the liquid-liquid, insulator-metal
transition (LL-IMT) has been proposed for hydrogen
= Temperature of the adiabat controlled by magnitude of initial shock

= P(t) in the experiments determined from the LiF equation on state

= Experiments above ~250 GPa show clear evidence of
metallization of deuterium
= Very abrupt increase in reflectivity to ~50-60%
= Pressure state well above numerous first principles predictions

* |ndications suggest that the transition is first order

" |nterpretation of the experimental results is complicated

» Thermal conduction likely very important at the deuterium / LiF interface
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Future Directions

= Continued analysis of existing data

= Evaluate effects of thermal conduction using QMD estimates for
thermal conductivity of the molecular and atomic fluids

= Detailed QMD calculations in the vicinity of the transition to estimate
the temperature drop due to latent heat

= Compare measured reflectivity with QMD predictions for optical
properties of the atomic fluid

= Compare observed band gap closure with QMD predictions for various
functionals

" Attempt temperature measurements

= Plan to use a novel reflectivity based temperature measurement to
investigate the phase transition

= Method is not yet calibrated, but could provide sign of dT/dP

= Experiments on hydrogen

= Attempt to observe pressure difference for the transition due to zero-
point energy effects
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