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Motivation

Computational framework for simulating challenging problems in mechanics.

Computational objectives
robustness
convergence
avoid instabilities
represent fracture
scalability

Ballistic impact of aluminum sandwich structures at
various impact velocities. Courtesy of Wadley, 2010.

Edge on impact of brittle materials (Umberger, Love 2011).
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Existing approaches

Classical damage models:

Hautefeuille, Seagraves, Talamini and Tupek
2011.

Successful for ductile failure

Mesh dependency and
convergence issues

Difficulties with recontact

Adaptive remeshing:

Mauch, et al. 2006.

Not robust

Difficult to parallelize

Reduced accuracy

Particle methods:

Tupek 2011.

Ortiz 2011.

Can’t represent discrete
cracks

Instabilities are common
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The peridynamic alternative (Silling 2000)

Integral formulation: ∇ · σ ⇒
∫
HT 〈ξ〉 −T′〈−ξ〉 dξ

“In peridynamics, cracks are part of the solution, not part of the problem”
- F. Bobaru

Convergence for 2D crack branching:
(Ha, Bobaru 2010)

Brittle and Ductile Failure in 3D:
(Parks 2012)

Discontinuities (e.g. cracks) are automatically supported
Nonlocal theory includes length-scale, δ
Naturally discretized as a particle method
Rooted in a rigorous theoretical framework
Implementation similar to molecular dynamics → scalable
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Overview of peridynamic continuum theory

Integral formulation of continuum mechanics originally proposed by
Stewart Silling in 2000.
Stress is replaced with long-range forces, T 〈ξ〉.
Bond ξ := x′ − x.

B0

x

σn̂

dV
n̂

Classical control volume, normal n̂ and
traction vector σn̂.

ρü = ∇ · σ

B0

H(x)

x
x′ξ

T〈ξ〉

Peridynamic bond ξ and bond-force T 〈ξ〉.

ρü =
∫
HT 〈ξ〉 −T′〈−ξ〉 dξ
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Peridynamic vector-states

The family of bonds at x is given by

H(x) =
{
ξ ∈ R3 | (ξ + x) ∈ B, |ξ| < δ

}
.

B0

δ

Bt

y

Y〈ξ〉

y′
ϕ

H(x)

x
x′ξ

Schematic representation of a body B0 and the family H(x) mapped by ϕ.

A vector-state A[x] at a point x ∈ B is a function

A[x] 〈·〉 : H(x)→ R3.

Deformation vector-state: Y[x]〈ξ〉 = y(x + ξ)− y(x) ∀ξ ∈ H(x).
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Analogies between classical continuum mechanics and peridynamics

Classical Continuum Peridynamics

Deformation Measure F = ∇y Y

Conjugate Force P(F) T(Y)

Angular Momentum PFT = FPT 0 =
∫
HT 〈ξ〉 ×Y 〈ξ〉 dξ

Elasticity P = ∇ψ̂(F) T = ∂ψ̄(Y)

Kinematics det(F) > 0 Y 〈ξ〉 6= 0, for |ξ| 6= 0
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Peridynamic material modeling: constitutive correspondence

Classical constitutive model: P̂(F) = ∇ψ̂(F)

Silling, et al. 2007 proposed a nonlocal approximation to F:

F̄(Y) =
(∫
H
ω〈ξ〉 (Y〈ξ〉 ⊗ ξ) dξ

)
K̄−1 K̄ =

∫
H
ω〈ξ〉 ξ ⊗ ξ dξ

which is exact for affine deformations.

The corresponding constitutive model:
ψ̄(Y) = ψ̂

(
F̄(Y)

)
.

Bond-force follows from work conjugacy as:

T〈ξ〉 = ω〈ξ〉 P̂(F̄)K̄−1

Influence function: ω〈ξ〉 > 0
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Standard peridynamic particle discretization

Replace integrals by sums over particle volumes
Degrees of freedom are particle displacements
Effectively a nodally integrated particle method

For example (Foster et al. 2010):

F̄j =
N∑

i=1

Vi ω (|xi − xj |)
(
yi − yj

)
⊗ (xi − xj) K̄−1

j

K̄j =
N∑

i=1

Vi ω (|xi − xj |) (xi − xj)⊗ (xi − xj)

Semi-discrete equations of motion:

ρ ÿj =
N∑

i=1

Vi ω(|xj − xi |)
{

P̄iK̄
−1
i (xj − xi)− P̄jK̄

−1
j (xi − xj)

}
C++ implementation uses standard constitutive model library
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Taylor impact benchmark: comparison to other discretization approaches

Taylor impact of a copper bar with v0 = 227 m/s:
fixed horizon to mesh size ratio

lf (mm) rmax (mm) εp
max

FEM, Kamoulakos 1990 21.5 7.1 2.47-3.24
FEM, Zhu and Cescotto 1995 21.3 7.1 2.47-3.24
FEM, Camacho and Ortiz 1997 21.4 7.2 2.97-3.25
OTM, Li et al. 2010 21.4 6.8 3.0

Peridynamics: coarse (left) 21.5 7.1 2.69
Peridynamics: fine (middle) 21.4 7.5 2.88
Peridynamics: finest (right) 21.4 7.4 3.29
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Taylor impact revisited: instabilities

Taylor impact: increasing horizon size
(Tupek 2011)

Rigid sphere impact
(Becker, Lucas 2011)

Instabilities have previously been observed (Littlewood 2010,
Becker 2011) and can be addressed with numerical stabilization
approaches.

Nodally integrated meshless methods have energy instabilities.

Often solved by better integration to remove zero-energy modes.

Is this a numerical or theoretical issue?
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Theoretical investigation of
constitutive correspondence:

F̄ =
(∫
H
ω〈ξ〉 (Y〈ξ〉 ⊗ ξ) dξ

)
K̄−1

K̄ =
∫
H
ω〈ξ〉 ξ ⊗ ξ dξ
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A simple 1D example: zero-energy modes

For deformation: u(x) = a sin(bx)
y(x) = x + u(x)

F̄(x) :=
∫
H
ω(|ξ|)

(
y(x ′)− y(x)

) (
x ′ − x

)
dx ′

= 1− a cos(bx)
bK̄

∫
H

d
dξ (ξ ω(|ξ|)) cos(bξ) dξ

and therefore lim
b→∞

F̄(x) = 1

Assume a ‘smooth’ influence function:
∫
H

∣∣∣∣ d
dξ (ξ ω(|ξ|))

∣∣∣∣ dξ <∞

Fast oscillating unphysical
deformations are undetectable
Unphysical behavior is averaged
out by the integration
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Unphysical behavior of constitutive correspondence: material collapse

Sub-horizon material collapse: Consider a small volume of material G ⊂ B0
collapsing to a single point z ∈ Bt . Then Y [x]〈ξ〉 = 0 for x, x + ξ ∈ G.

B0

H(x)

G

x

x′

ϕ

z

Bt

ξ

Schematic showing a region G ⊂ B0 collapsing to a single point z ∈ Bt .

det (F̄(x)) > 0
Violating the bond-level kinematic constraint does not imply the classical
continuum kinematic constraint is violated:

det (F̄) > 0 6=⇒ Y〈ξ〉 6= 0
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Unphysical behavior of constitutive correspondence: matter interpenetration

Jump discontinuities: Another example, displacement field:

y(x) =
{

c + x for x > 0
x for x < 0

for c < 0, may still have F̄ > 0

c > 0 c = 0 c < 0

positive contribution negative contribution
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Constitutive constraint for preventing matter interpenetration

The matter interpenetration condition

Y 〈ξ〉 6= 0

can be enforced almost everywhere if

Y 〈ξ〉 → 0, ∀ξ ∈ Ω ⊂ H(x) =⇒ ψ(Y)→∞,

where Ω is some measurable subset of H(x).
This is analogous to:

det F→ 0 =⇒ ψ(F)→∞. (e.g. Ball, 1977)

Alternatively, the condition:

Y 〈ξ〉 → 0 =⇒ T 〈ξ〉 ·Y 〈ξ〉 → −∞.

does not require an elastic potential and is analogous to

det F→ 0 =⇒ P →∞.
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Nonlinear bond-strain measures

We want a strain measure: ε→ −∞ as |Y〈ξ〉| → 0.

Classical Seth-Hill strain measures:

C = FT F

ε(m) = 1
2m [Cm − 1]

ε(0) = 1
2 log (C)

For m ≤ 0:
tr
(
ε(m)

)
→ −∞ as det (F)→ 0.
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Nonlinear bond-strain measures1

We want a strain measure: ε→ −∞ as |Y〈ξ〉| → 0.

Classical Seth-Hill strain measures:

C = FT F

ε(m) = 1
2m [Cm − 1]

ε(0) = 1
2 log (C)

For m ≤ 0:
tr
(
ε(m)

)
→ −∞ as det (F)→ 0.

Nonlinear bond-strain measures:

c〈ξ〉 = Y〈ξ〉 ·Y〈ξ〉
ξ · ξ

ε(m)〈ξ〉 = 1
2m [c〈ξ〉m − 1]

ε(0)〈ξ〉 = 1
2 log(c〈ξ〉)

For m ≤ 0:
ε(m)〈ξ〉 → −∞ as |Y〈ξ〉| → 0.

1M. Tupek, R. Radovitkzy. An extended constitutive correspondence formulation of
peridynamics based on nonlinear bond-strain measures, submitted to JMPS.
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Nonlinear isotropic elastic peridynamic solids

Notation: trω(a) =
∫
H
ω〈ξ〉 a〈ξ〉 dξ. Normalize weight: trω(1) = 3.

Use bond-strain measure ε = ε(m), for any m.

Elastic energy: ψ̄(ε) = 1
2 κ̄ trω(ε)2 + µ̄ trω

(
ε2

dev

)
= 1

2 λ̄ trω(ε)2 + µ̄ trω
(
ε2)

εdev〈ξ〉 = ε〈ξ〉 − 1
3 trω(ε)

Bond-force: T〈ξ〉 =
[
λ̄ trω(ε) + 2 µ̄ ε〈ξ〉

]
ω〈ξ〉 c〈ξ〉m−1 |ξ|−2 Y〈ξ〉

Bond-based peridynamics (Silling 2000): λ̄ = 0
Linear isotropic (Silling et al. 2007): m = 1

2

For uniform, small strains: κ̄ = κ, µ̄ = 5
2µ, λ̄ = λ− µ

Property: T〈ξ〉 ·Y〈ξ〉 → −∞ as |Y〈ξ〉| → 0 for m ≤ 0
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A fix to the issue of matter interpenetration

No zero-energy modes or material collapse allowed
Matter interpenetration is prevented for strain measures with m < − 1

4

Crack-like opening jump discontinuities are still valid solutions!

B0

H(x)

G
x

x′

ϕ

z

Bt

ξ

a) opening b) interpenetrating
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Peridynamic Riemann problem with matter interpenetration
Bond-strain measure with m = 1

2 (linear model)

vx(x, t = 0) =
{
−1200 m/s for x > 0

1200 m/s for x < 0

t = 0 µs t = 50 µs

t = 100 µs t = 150 µs

2D peridynamic bar: length l = 2 height h = 1, δ = 0.05 m,
λ̄ = 10 GPa, µ̄ = 10 GPa, ρ = 1180 kg/m3.
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Peridynamic Riemann problem without matter interpenetration
Bond-strain measure with m = 0 (logarithmic model)

vx(x, t = 0) =
{
−1200 m/s for x > 0

1200 m/s for x < 0

t = 0 µs t = 50 µs

t = 100 µs t = 150 µs

2D peridynamic bar: length l = 2 height h = 1, δ = 0.05 m,
λ̄ = 10 GPa, µ̄ = 10 GPa, ρ = 1180 kg/m3.
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Preventing instabilities: Summary

Numerical simulations of peridynamics exhibit instabilities:
zero-energy modes, matter interpenetration

Not just a numerical issue, but due to poor kinematic assumptions

Proposed formulating constitutive response in terms of nonlinear
bond-strain measures: ε〈ξ〉

Introduced nonlinear isotropic elastic peridynamic solids

Numerical examples demonstrate that the new theory fixes previous
limitations
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Probabilistic interpretation of ordinary peridynamics

Normalize weight:
∫
H ω〈ξ〉 dξ = 1.

Elastic energy: ψ̄(ε) = 9
2 κ̄
(∫
H
ω〈ξ〉 ε〈ξ〉 dξ

)2

+ 3µ̄
∫
H
ω〈ξ〉 ε2

dev〈ξ〉 dξ

Interpret integrals as first and second moments of a random variable ε:∫
H
ω〈ξ〉 ε〈ξ〉 dξ = E[ε]

and ∫
H
ω〈ξ〉 ε2

dev〈ξ〉 dξ =
∫
H
ω〈ξ〉 (ε〈ξ〉 − E[ε])2 dξ = Var(ε)

so

ψ(ε) = k1E[ε]2 + k2Var(ε) ,

where k1 = 9
2 κ̂ and k2 = 3µ̂.
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Relation between moments and invariants

In other words

First moment:
Eω[ε] ∝ I1(ε)

and

Second central moment:
Varω(ε) ∝ J2(ε)

Quiz: What is the third central moment of ε ?
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Relation between moments and invariants

In other words

First moment:
Eω[ε] ∝ I1(ε)

and

Second central moment:
Varω(ε) ∝ J2(ε)

Quiz: What is the third central moment of ε ?

skewness(ε) ∝ J3(ε)√
J2(ε)3
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Invariants of a peridynamic scalar-state

For a generic peridynamic scalar-state a with

a 〈ξ〉 ∈ R

its invariants (I1, Jn) with respect to a normalized influence function ω with∫
H
ω〈ξ〉 dξ = 1

can be defined as:

I1 :=
∫
H
ω〈ξ〉 a 〈ξ〉 dξ

and for n > 1:

Jn :=
∫
H
ω〈ξ〉 (a 〈ξ〉 − I1)n dξ.
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Review of peridynamic failure modeling

Maximum bond-stretch criterion for the bond-based theory:

Review:
Bond-based peridynamics is the special case:

T 〈ξ〉 = f (e(ξ))
e(ξ) = |Y 〈ξ〉| − |ξ|
Based on maximum bond stretch criteria:

T 〈ξ〉 = 0 when e ≥ ec

Bond-based formulation restricts ν = 0.25

f (e)

eec

Convergence for 2D crack branching
Ha, Bobaru 2010:

Extension to the general theory are more
recent, Parks 2012:
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Brittle failure modeling in peridynamics
Bond-severing criterion works well for bond-based version of the theory.

2D crack branching: (Ha, Bobaru 2010)

Proposed extension of existing bond-failure criteria
Based on Gc: consistent with the Griffith criterion
Extension of (Silling 2005) and (Foster 2011)
Bond failure function, sc(ξ), sets the maximum energy per
bond
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Brittle failure model for nonlinear peridynamic solids

Elastic free energy density: ψ(x) =
1
2
λ̄
(
trω
(
φ ε
))2

+ µ̄ trω
(
φ ε2
)

Bond integrity: φ 〈ξ〉 = {1 for intact bonds, 0 for severed bonds}

There are multiple ways to define the bond-energy:

Average bond-energy
save 〈ξ〉 := 1

2 λ̄trω
(
φ ε
)

+ µ̄ φ ε 〈ξ〉
Instantaneous bond-energy

sinst 〈ξ〉 := λ̄trω
(
φ ε
)

+ µ̄ φ ε 〈ξ〉

Foster, et al. 2011 proposed the work done on the bond:

swork〈ξ〉 (t) :=
∫ t

0
T 〈ξ〉 · Ẏ 〈ξ〉 dt.

We use the instantaneous bond-energy: sinst〈ξ〉 := ψ,φ〈ξ〉

The instantaneous bond-energy is the energy dissipated when
severing a single bond (all other bonds held fixed).
In general: sinst 6= swork .
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Bond failure criterion for brittle fracture in state-based peridynamics

Energy dissipated by breaking bonds across a fracture surface:∫ δ

0

∫ 2π

0

∫ δ

z

∫ cos−1(z/ξ)

0
sc(ξ) ξ2 sin(φ) dφ dξ dθ dz = 1

2Gc

Silling et al. 2005: sc(ξ) = αω〈ξ〉 Foster et al. 2011: sc(ξ) = sc

z

ξ

φ

δ

cos−1 z
|ξ|

ξ = |ξ|

Fracture surface

x

Sub-region of H(x) which
is across the fracture surface

Schematic for the domain of integration (modified from Silling 2005).
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Bond failure criterion

Assume the failure energy decreases for distant material points:

sc(|ξ|) = β ω〈ξ〉 |ξ|−2

This choice tends to result in sharper crack features.
β is calibrated to match the cohesive energy, Gc
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Brittle failure model for nonlinear peridynamic solids

Bond-force: T(m)〈ξ〉 = φ〈ξ〉
[
λ̄ trω

(
φ ε
)

+ 2 µ̄ ε〈ξ〉
]
ω〈ξ〉 c 〈ξ〉m−1 |ξ|−2 Y〈ξ〉

ω〈ξ〉 = 10
πδ6 (3|ξ|+ δ)(δ − |ξ|)3

Bond failure criterion: λ̄ ε〈ξ〉 trω
(
φ ε
)

+ µ̄ ε〈ξ〉 ε〈ξ〉 ≥ π

16
δGc

|ξ|2 , ε〈ξ〉 ≥ 0

This failure criterion satisfies the laws of thermodynamics.

Free-surface detection parameter: D(x) = 1− 1
3

∫
H(x)

ω〈ξ〉 φ〈ξ〉 dξ.

Summary: key ingredients for this failure model are sc(ξ) and sinst 〈ξ〉.
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Validation: Kalthoff test

v0

0.1m

0.2m 0.05m
70◦

Based on experiments by Kalthoff, Winkler 1987.
ρ = 8000 kg/m3, E = 190 GPa, ν = 0.3 and Gc = 22, 000 J/m2.
Impact velocity: v0 = 16 m/s.
Experimental crack propagation angle of 70◦.
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Kalthoff test simulation results

h = 0.8 mm
δ = 5.0 mm

h = 0.4 mm
δ = 1.8 mm

h = 1.0 mm
δ = 5.0 mm

h = 1.2 mm
δ = 5.0 mm

70◦

70◦70◦

70◦
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Validation: edge on impact of PMMA

Mode-I crack propagation for low
impact velocities
Crack branching at higher
velocities
ρ = 1180 kg/m3, E = 3.5 GPa,
ν = 0.35, Gc = 400 J/m2

v0 = 50.5 m/s v0 = 65.9 m/s

Coherent gradient sensing: experimental results of Umberger and Love, 2010.
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Edge-on impact simulations: 61,600 particles, δ = 0.0055, v0 = 15 m/s

Free-surface parameter Mean stress (MPa)

40 / 46



Sensitivity to particle density and evaluating the fracture energy

Dissipated energy over time for varying particle densities, with v0 = 15 m/s.

number of discrete particles crack length dissipated energy cohesive energy
9,856 4 mm 2.5 J 620 J/m2

22,176 12 mm 4.6 J 400 J/m2

39,424 11 mm 4.4 J 420 J/m2

61,600 11 mm 4.4 J 410 J/m2

109,104 10 mm 4.2 J 420 J/m2

109,867 (unstructured) 10 mm 4.1 J 410 J/m2
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Edge-on impact simulations: varying impact velocity
61,600 particles, δ = 0.0055 at t = 0.001

v0 = 18 m/s v0 = 25 m/s

v0 = 35 m/s v0 = 50 m/s
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Effect of changing horizon to δ = 0.0015 m

v0 = 15 m/s v0 = 25 m/s

v0 = 35 m/s v0 = 50 m/s
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Animation of crack propagation and branching: v0 = 35 m/s, δ = 0.0015 m

Free-surface parameter Mean stress (MPa)
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Theory and discretization extends directly to 3D

v0 = 30 m/s v0 = 50 m/s

Nonlocal material damage at t = 0.001 s for edge-on impact in 3D. A discretization
with 573,346 particles and δ = 0.004 m is shown sliced through the thickness of the
plate.
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Summary of contributions

Extensions to the peridynamic theory
Identified a cause of instabilities and matter interpenetration.
Proposed a constitutive modeling framework based on new nonlinear
bond-strain measures.
Demonstrated that opening (crack-like) discontinuities are allowed, while
matter interpenetration is prevented.

Introduced a probabilistic interpretation of isotropic ordinary peridynamics
Showed that moments of strain-states are equivalent to strain invariants.
Proposed a peridynamic analog for invariants of a scalar-state.

State-based peridynamic failure modeling
Introduced a new bond-failure criterion for brittle fracture:

Captures realistic crack patterns, including branching and coalescence.
Dissipates a pre-specified fracture energy.
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