

Exceptional service in the national interest

SAND2014-15071PE

Ordinary peridynamic materials based on nonlinear bond-strain measures

Michael Tupek

17th U.S. National Congress on Theoretical and Applied Mechanics
Michigan State University, 15-20 June 2014

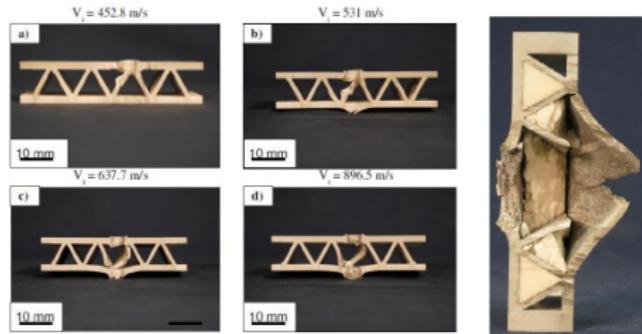
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

- 1 Motivation
- 2 Review of peridynamics
- 3 Matter interpenetration of nonlinear bond-strain measures
- 4 Probabilistic interpretation of ordinary peridynamics
- 5 Material failure modeling
- 6 Summary of contributions

Computational framework for simulating challenging problems in mechanics.

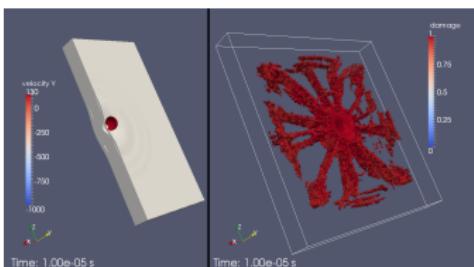
Computational objectives

- robustness
- convergence
- avoid instabilities
- represent fracture
- scalability



Ballistic impact of aluminum sandwich structures at various impact velocities. Courtesy of Wadley, 2010.

Classical damage models:



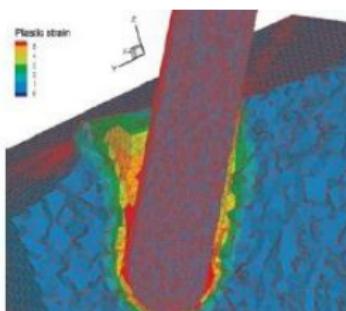
Hautefeuille, Seagraves, Talamini and Tupek 2011.

Successful for ductile failure

Mesh dependency and convergence issues

Difficulties with recontact

Adaptive remeshing:



Mauch, et al. 2006.

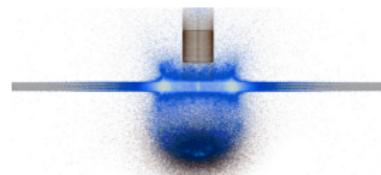
Not robust

Difficult to parallelize

Reduced accuracy

Particle methods:

Tupek 2011.



Ortiz 2011.

Can't represent discrete cracks

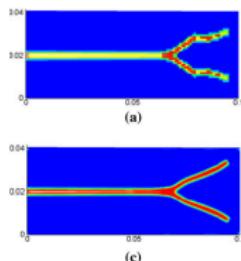
Instabilities are common

The peridynamic alternative (Silling 2000)

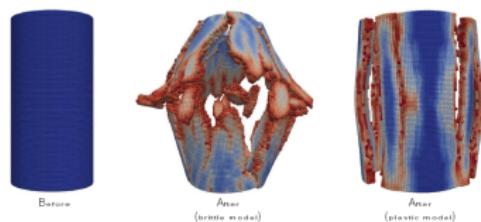
$$\text{Integral formulation: } \nabla \cdot \sigma \Rightarrow \int_{\mathcal{H}} \mathbf{T} \langle \xi \rangle - \mathbf{T}' \langle -\xi \rangle \, d\xi$$

“In peridynamics, cracks are part of the solution, not part of the problem”
- F. Bobaru

Convergence for 2D crack branching:
(Ha, Bobaru 2010)



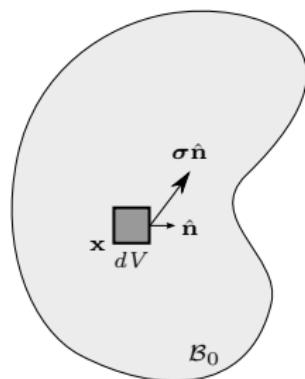
Brittle and Ductile Failure in 3D:
(Parks 2012)



- Discontinuities (e.g. cracks) are automatically supported
- Nonlocal theory includes length-scale, δ
- Naturally discretized as a particle method
- Rooted in a rigorous theoretical framework
- Implementation similar to molecular dynamics → scalable

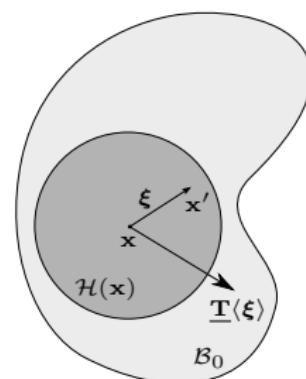
Overview of peridynamic continuum theory

- Integral formulation of continuum mechanics originally proposed by Stewart Silling in 2000.
- Stress is replaced with long-range forces, $\underline{\mathbf{T}}(\xi)$.
- Bond $\xi := \mathbf{x}' - \mathbf{x}$.



Classical control volume, normal $\hat{\mathbf{n}}$ and traction vector $\sigma \hat{\mathbf{n}}$.

$$\rho \ddot{\mathbf{u}} = \nabla \cdot \boldsymbol{\sigma}$$



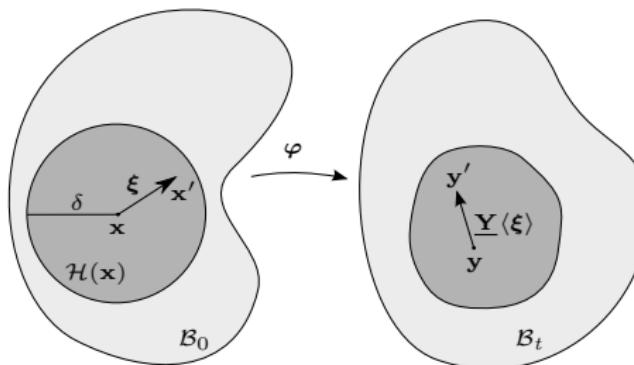
Peridynamic bond ξ and bond-force $\underline{\mathbf{T}}(\xi)$.

$$\rho \ddot{\mathbf{u}} = \int_{\mathcal{H}} \underline{\mathbf{T}}(\xi) - \underline{\mathbf{T}}'(-\xi) d\xi$$

Peridynamic vector-states

The *family* of bonds at \mathbf{x} is given by

$$\mathcal{H}(\mathbf{x}) = \left\{ \boldsymbol{\xi} \in \mathbb{R}^3 \mid (\boldsymbol{\xi} + \mathbf{x}) \in \mathcal{B}, |\boldsymbol{\xi}| < \delta \right\}.$$



Schematic representation of a body \mathcal{B}_0 and the family $\mathcal{H}(\mathbf{x})$ mapped by φ .

A vector-state $\underline{\mathbf{A}}[\mathbf{x}]$ at a point $\mathbf{x} \in \mathcal{B}$ is a function

$$\underline{\mathbf{A}}[\mathbf{x}] \langle \cdot \rangle : \mathcal{H}(\mathbf{x}) \rightarrow \mathbb{R}^3.$$

Deformation vector-state:
$$\underline{\mathbf{Y}}[\mathbf{x}] \langle \boldsymbol{\xi} \rangle = \mathbf{y}(\mathbf{x} + \boldsymbol{\xi}) - \mathbf{y}(\mathbf{x}) \quad \forall \boldsymbol{\xi} \in \mathcal{H}(\mathbf{x}).$$

Classical Continuum	Peridynamics
---------------------	--------------

Deformation Measure

$$\mathbf{F} = \nabla \mathbf{y}$$

$$\underline{\mathbf{Y}}$$

Conjugate Force

$$\mathbf{P}(\mathbf{F})$$

$$\underline{\mathbf{T}}(\underline{\mathbf{Y}})$$

Angular Momentum

$$\mathbf{P}\mathbf{F}^T = \mathbf{F}\mathbf{P}^T$$

$$\mathbf{0} = \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \xi \rangle \times \underline{\mathbf{Y}} \langle \xi \rangle \, d\xi$$

Elasticity

$$\mathbf{P} = \nabla \hat{\psi}(\mathbf{F})$$

$$\underline{\mathbf{T}} = \partial \bar{\psi}(\underline{\mathbf{Y}})$$

Kinematics

$$\det(\mathbf{F}) > 0$$

$$\underline{\mathbf{Y}} \langle \xi \rangle \neq \mathbf{0}, \text{ for } |\xi| \neq 0$$

Peridynamic material modeling: constitutive correspondence

Classical constitutive model: $\hat{\mathbf{P}}(\mathbf{F}) = \nabla \hat{\psi}(\mathbf{F})$

Silling, et al. 2007 proposed a nonlocal approximation to \mathbf{F} :

$$\bar{\mathbf{F}}(\underline{\mathbf{Y}}) = \left(\int_{\mathcal{H}} \underline{\omega}(\xi) (\underline{\mathbf{Y}}(\xi) \otimes \xi) d\xi \right) \bar{\mathbf{K}}^{-1} \quad \bar{\mathbf{K}} = \int_{\mathcal{H}} \underline{\omega}(\xi) \xi \otimes \xi d\xi$$

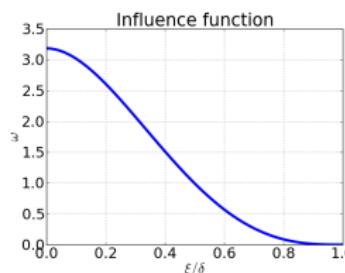
which is exact for affine deformations.

The *corresponding* constitutive model:

$$\bar{\psi}(\underline{\mathbf{Y}}) = \hat{\psi}(\bar{\mathbf{F}}(\underline{\mathbf{Y}})) .$$

Bond-force follows from work conjugacy as:

$$\underline{\mathbf{T}}(\xi) = \underline{\omega}(\xi) \hat{\mathbf{P}}(\bar{\mathbf{F}}) \bar{\mathbf{K}}^{-1}$$



Influence function: $\underline{\omega}(\xi) > 0$

Standard peridynamic particle discretization

- Replace integrals by sums over particle volumes
- Degrees of freedom are particle displacements
- Effectively a nodally integrated particle method

For example (Foster et al. 2010):

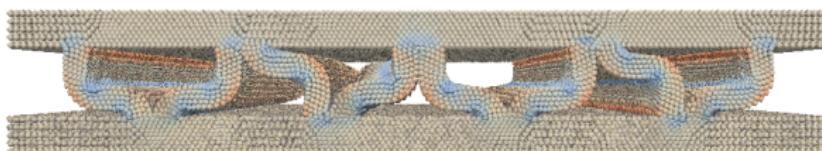
$$\bar{\mathbf{F}}_j = \sum_{i=1}^N V_i \omega(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{y}_i - \mathbf{y}_j) \otimes (\mathbf{x}_i - \mathbf{x}_j) \bar{\mathbf{K}}_j^{-1}$$

$$\bar{\mathbf{K}}_j = \sum_{i=1}^N V_i \omega(|\mathbf{x}_i - \mathbf{x}_j|) (\mathbf{x}_i - \mathbf{x}_j) \otimes (\mathbf{x}_i - \mathbf{x}_j)$$

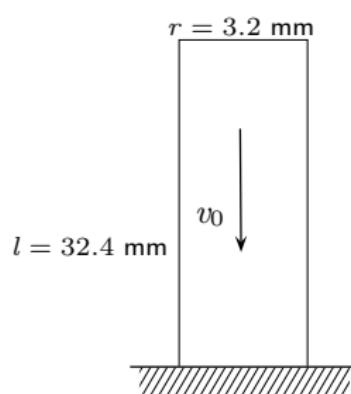
Semi-discrete equations of motion:

$$\rho \ddot{\mathbf{y}}_j = \sum_{i=1}^N V_i \omega(|\mathbf{x}_j - \mathbf{x}_i|) \left\{ \bar{\mathbf{P}}_i \bar{\mathbf{K}}_i^{-1} (\mathbf{x}_j - \mathbf{x}_i) - \bar{\mathbf{P}}_j \bar{\mathbf{K}}_j^{-1} (\mathbf{x}_i - \mathbf{x}_j) \right\}$$

C++ implementation uses standard constitutive model library



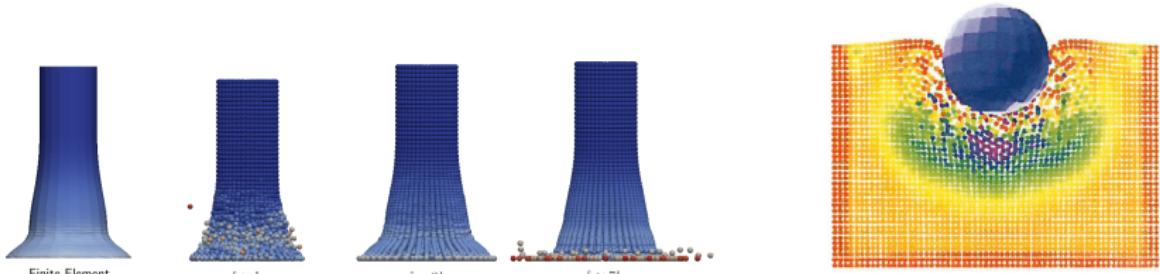
Taylor impact benchmark: comparison to other discretization approaches



Taylor impact of a copper bar with $v_0 = 227 \text{ m/s}$:
fixed horizon to mesh size ratio

	$l_f \text{ (mm)}$	$r_{max} \text{ (mm)}$	ϵ_{max}^p
FEM, Kamoulakos 1990	21.5	7.1	2.47-3.24
FEM, Zhu and Cescotto 1995	21.3	7.1	2.47-3.24
FEM, Camacho and Ortiz 1997	21.4	7.2	2.97-3.25
OTM, Li et al. 2010	21.4	6.8	3.0
Peridynamics: coarse (left)	21.5	7.1	2.69
Peridynamics: fine (middle)	21.4	7.5	2.88
Peridynamics: finest (right)	21.4	7.4	3.29

Taylor impact revisited: instabilities



Taylor impact: increasing horizon size
(Tupek 2011)

Rigid sphere impact
(Becker, Lucas 2011)

- Instabilities have previously been observed (Littlewood 2010, Becker 2011) and can be addressed with numerical stabilization approaches.
- Nodally integrated meshless methods have energy instabilities.
- Often solved by better integration to remove zero-energy modes.
- Is this a numerical or theoretical issue?

Outline for Section 3

- 1 Motivation
- 2 Review of peridynamics
- 3 Matter interpenetration of nonlinear bond-strain measures
- 4 Probabilistic interpretation of ordinary peridynamics
- 5 Material failure modeling
- 6 Summary of contributions

Theoretical investigation of constitutive correspondence:

$$\bar{\mathbf{F}} = \left(\int_{\mathcal{H}} \underline{\omega} \langle \xi \rangle (\underline{\mathbf{Y}} \langle \xi \rangle \otimes \xi) d\xi \right) \bar{\mathbf{K}}^{-1}$$
$$\bar{\mathbf{K}} = \int_{\mathcal{H}} \underline{\omega} \langle \xi \rangle \xi \otimes \xi d\xi$$

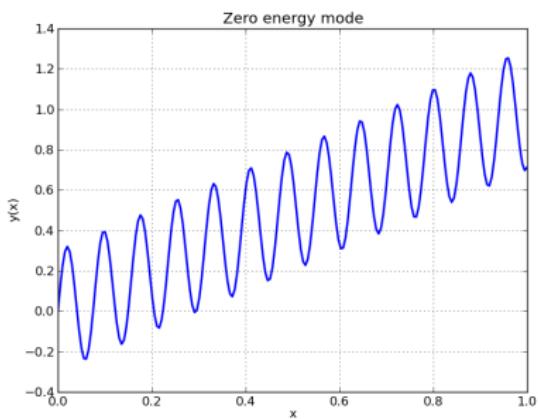
A simple 1D example: zero-energy modes

For deformation: $u(x) = a \sin(bx)$

$$y(x) = x + u(x)$$

$$\begin{aligned}\bar{F}(x) &:= \int_{\mathcal{H}} \omega(|\xi|) (y(x') - y(x)) (x' - x) \, dx' \\ &= 1 - \frac{a \cos(bx)}{b \bar{K}} \int_{\mathcal{H}} \frac{d}{d\xi} (\xi \omega(|\xi|)) \cos(b\xi) \, d\xi\end{aligned}$$

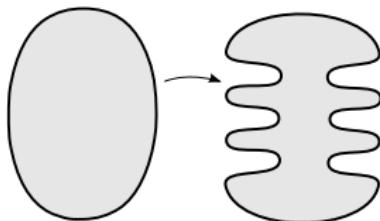
and therefore $\lim_{b \rightarrow \infty} \bar{F}(x) = 1$



Assume a 'smooth' influence function:

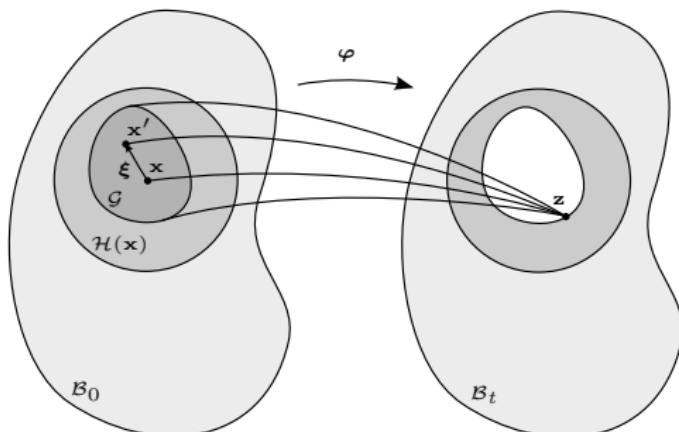
$$\int_{\mathcal{H}} \left| \frac{d}{d\xi} (\xi \omega(|\xi|)) \right| \, d\xi < \infty$$

- Fast oscillating **unphysical** deformations are undetectable
- Unphysical behavior is averaged out by the integration



Unphysical behavior of constitutive correspondence: material collapse

Sub-horizon material collapse: Consider a small volume of material $\mathcal{G} \subset \mathcal{B}_0$ collapsing to a single point $\mathbf{z} \in \mathcal{B}_t$. Then $\underline{\mathbf{Y}}[\mathbf{x}]\langle \boldsymbol{\xi} \rangle = \mathbf{0}$ for $\mathbf{x}, \mathbf{x} + \boldsymbol{\xi} \in \mathcal{G}$.



Schematic showing a region $\mathcal{G} \subset \mathcal{B}_0$ collapsing to a single point $\mathbf{z} \in \mathcal{B}_t$.

- $\det(\bar{\mathbf{F}}(\mathbf{x})) > 0$
- Violating the bond-level kinematic constraint does not imply the classical continuum kinematic constraint is violated:

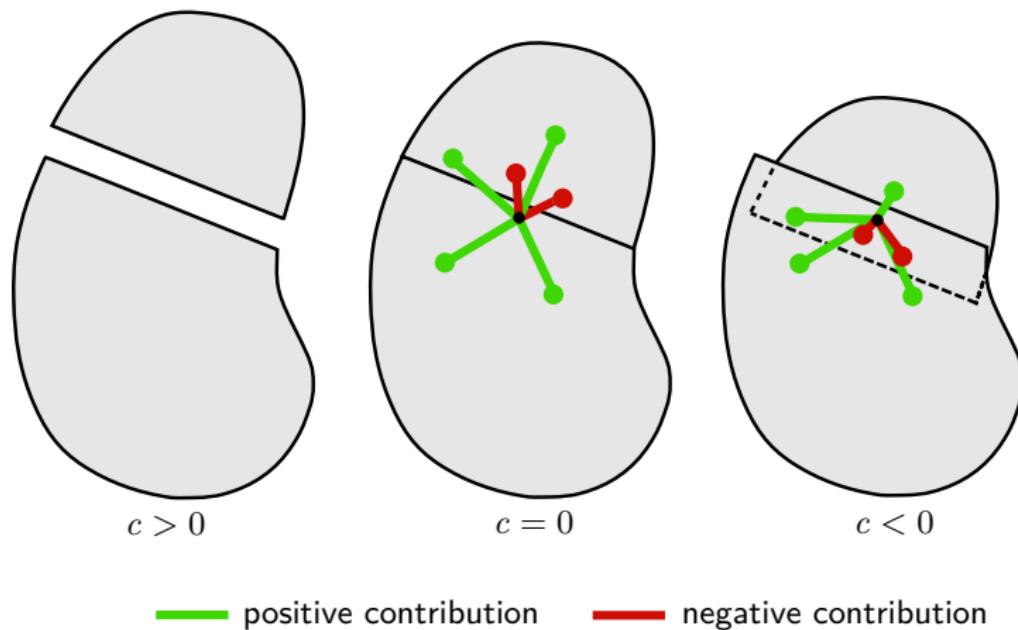
$$\det(\bar{\mathbf{F}}) > 0 \not\Rightarrow \underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle \neq \mathbf{0}$$

Unphysical behavior of constitutive correspondence: matter interpenetration

Jump discontinuities: Another example, displacement field:

$$y(x) = \begin{cases} c + x & \text{for } x > 0 \\ x & \text{for } x < 0 \end{cases}$$

for $c < 0$, may still have $\bar{F} > 0$



Constitutive constraint for preventing matter interpenetration

The matter interpenetration condition

$$\underline{\mathbf{Y}} \langle \xi \rangle \neq \mathbf{0}$$

can be enforced almost everywhere if

$$\underline{\mathbf{Y}} \langle \xi \rangle \rightarrow \mathbf{0}, \quad \forall \xi \in \Omega \subset \mathcal{H}(\mathbf{x}) \implies \psi(\underline{\mathbf{Y}}) \rightarrow \infty,$$

where Ω is some measurable subset of $\mathcal{H}(\mathbf{x})$.

This is analogous to:

$$\det \mathbf{F} \rightarrow 0 \implies \psi(\mathbf{F}) \rightarrow \infty. \quad (\text{e.g. Ball, 1977})$$

Alternatively, the condition:

$$\underline{\mathbf{Y}} \langle \xi \rangle \rightarrow \mathbf{0} \implies \underline{\mathbf{T}} \langle \xi \rangle \cdot \underline{\mathbf{Y}} \langle \xi \rangle \rightarrow -\infty.$$

does not require an elastic potential and is analogous to

$$\det \mathbf{F} \rightarrow 0 \implies P \rightarrow \infty.$$

We want a strain measure: $\varepsilon \rightarrow -\infty$ as $|\underline{\mathbf{Y}}\langle \xi \rangle| \rightarrow 0$.

Classical Seth-Hill strain measures:

$$\mathbf{C} = \mathbf{F}^T \mathbf{F}$$

$$\varepsilon_{(m)} = \frac{1}{2m} [\mathbf{C}^m - \mathbf{1}]$$

$$\varepsilon_{(0)} = \frac{1}{2} \log (\mathbf{C})$$

For $m \leq 0$:

$$\text{tr} (\varepsilon_{(m)}) \rightarrow -\infty \text{ as } \det (\mathbf{F}) \rightarrow 0.$$

We want a strain measure: $\varepsilon \rightarrow -\infty$ as $|\underline{\mathbf{Y}}\langle \xi \rangle| \rightarrow 0$.

Classical Seth-Hill strain measures:

$$\mathbf{C} = \mathbf{F}^T \mathbf{F}$$

$$\varepsilon_{(m)} = \frac{1}{2m} [\mathbf{C}^m - \mathbf{1}]$$

$$\varepsilon_{(0)} = \frac{1}{2} \log (\mathbf{C})$$

For $m \leq 0$:
 $\text{tr}(\varepsilon_{(m)}) \rightarrow -\infty$ as $\det(\mathbf{F}) \rightarrow 0$.

Nonlinear bond-strain measures:

$$\underline{c}\langle \xi \rangle = \frac{\underline{\mathbf{Y}}\langle \xi \rangle \cdot \underline{\mathbf{Y}}\langle \xi \rangle}{\xi \cdot \xi}$$

$$\underline{\varepsilon}_{(m)}\langle \xi \rangle = \frac{1}{2m} [\underline{c}\langle \xi \rangle^m - 1]$$

$$\underline{\varepsilon}_{(0)}\langle \xi \rangle = \frac{1}{2} \log(\underline{c}\langle \xi \rangle)$$

For $m \leq 0$:

$$\underline{\varepsilon}_{(m)}\langle \xi \rangle \rightarrow -\infty \text{ as } |\underline{\mathbf{Y}}\langle \xi \rangle| \rightarrow 0.$$

¹M. Tupek, R. Radovitzky. *An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures*, submitted to JMPS.

Nonlinear isotropic elastic peridynamic solids

Notation: $\text{tr}_{\omega}(\underline{a}) = \int_{\mathcal{H}} \underline{\omega} \langle \xi \rangle \underline{a} \langle \xi \rangle \, d\xi$. Normalize weight: $\text{tr}_{\omega}(\underline{1}) = 3$.

Use bond-strain measure $\underline{\varepsilon} = \underline{\varepsilon}_{(m)}$, for any m .

Elastic energy: $\bar{\psi}(\underline{\varepsilon}) = \frac{1}{2} \bar{\kappa} \text{tr}_{\omega}(\underline{\varepsilon})^2 + \bar{\mu} \text{tr}_{\omega}(\underline{\varepsilon}_{dev}^2) = \frac{1}{2} \bar{\lambda} \text{tr}_{\omega}(\underline{\varepsilon})^2 + \bar{\mu} \text{tr}_{\omega}(\underline{\varepsilon}^2)$

$$\underline{\varepsilon}_{dev} \langle \xi \rangle = \underline{\varepsilon} \langle \xi \rangle - \frac{1}{3} \text{tr}_{\omega}(\underline{\varepsilon})$$

Bond-force: $\underline{\mathbf{T}} \langle \xi \rangle = [\bar{\lambda} \text{tr}_{\omega}(\underline{\varepsilon}) + 2 \bar{\mu} \underline{\varepsilon} \langle \xi \rangle] \underline{\omega} \langle \xi \rangle \underline{c} \langle \xi \rangle^{m-1} |\xi|^{-2} \underline{\mathbf{Y}} \langle \xi \rangle$

Bond-based peridynamics (Silling 2000): $\bar{\lambda} = 0$

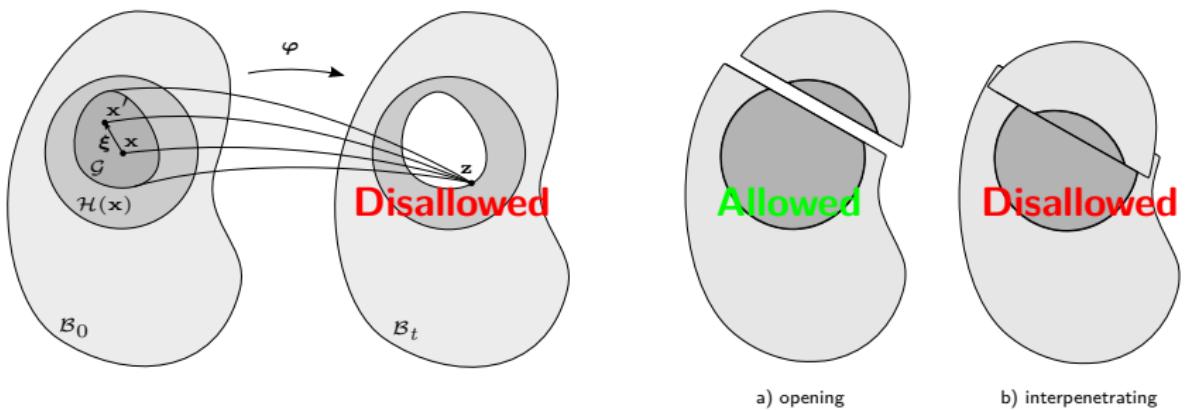
Linear isotropic (Silling et al. 2007): $m = \frac{1}{2}$

For uniform, small strains: $\bar{\kappa} = \kappa, \quad \bar{\mu} = \frac{5}{2} \mu, \quad \bar{\lambda} = \lambda - \mu$

Property: $\underline{\mathbf{T}} \langle \xi \rangle \cdot \underline{\mathbf{Y}} \langle \xi \rangle \rightarrow -\infty$ as $|\underline{\mathbf{Y}} \langle \xi \rangle| \rightarrow 0$ for $m \leq 0$

A fix to the issue of matter interpenetration

- No zero-energy modes or material collapse allowed
- Matter interpenetration is prevented for strain measures with $m < -\frac{1}{4}$
- Crack-like opening jump discontinuities are still valid solutions!

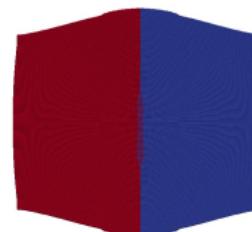


Peridynamic Riemann problem with matter interpenetration

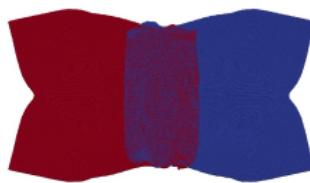
Bond-strain measure with $m = \frac{1}{2}$ (linear model)

$$v_x(\mathbf{x}, t = 0) = \begin{cases} -1200 \text{ m/s} & \text{for } x > 0 \\ 1200 \text{ m/s} & \text{for } x < 0 \end{cases}$$

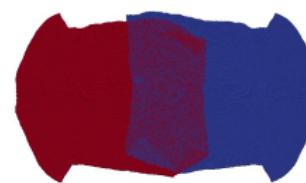
$t = 0 \mu s$



$t = 50 \mu s$



$t = 100 \mu s$



$t = 150 \mu s$

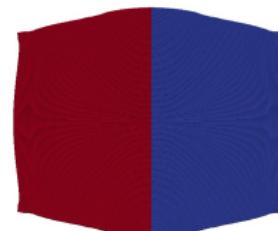
2D peridynamic bar: length $l = 2$ height $h = 1$, $\delta = 0.05 \text{ m}$,
 $\bar{\lambda} = 10 \text{ GPa}$, $\bar{\mu} = 10 \text{ GPa}$, $\rho = 1180 \text{ kg/m}^3$.

Peridynamic Riemann problem *without* matter interpenetration

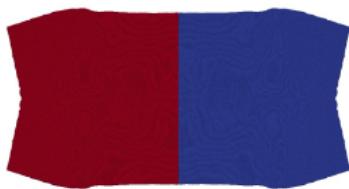
Bond-strain measure with $m = 0$ (logarithmic model)

$$v_x(\mathbf{x}, t = 0) = \begin{cases} -1200 \text{ m/s} & \text{for } x > 0 \\ 1200 \text{ m/s} & \text{for } x < 0 \end{cases}$$

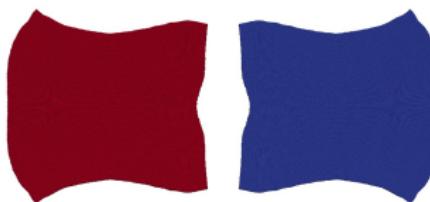
$t = 0 \mu s$



$t = 50 \mu s$



$t = 100 \mu s$



$t = 150 \mu s$

2D peridynamic bar: length $l = 2$ height $h = 1$, $\delta = 0.05 \text{ m}$,
 $\bar{\lambda} = 10 \text{ GPa}$, $\bar{\mu} = 10 \text{ GPa}$, $\rho = 1180 \text{ kg/m}^3$.

- Numerical simulations of peridynamics exhibit instabilities: zero-energy modes, matter interpenetration
- Not just a numerical issue, but due to poor kinematic assumptions
- Proposed formulating constitutive response in terms of nonlinear bond-strain measures: $\underline{\varepsilon}(\xi)$
- Introduced nonlinear isotropic elastic peridynamic solids
- Numerical examples demonstrate that the new theory fixes previous limitations

Probabilistic interpretation of ordinary peridynamics

Normalize weight: $\int_{\mathcal{H}} \underline{\omega}(\xi) d\xi = 1$.

Elastic energy: $\bar{\psi}(\underline{\varepsilon}) = \frac{9}{2} \bar{\kappa} \left(\int_{\mathcal{H}} \underline{\omega}(\xi) \underline{\varepsilon}(\xi) d\xi \right)^2 + 3\bar{\mu} \int_{\mathcal{H}} \underline{\omega}(\xi) \underline{\varepsilon}_{dev}^2(\xi) d\xi$

Interpret integrals as first and second moments of a random variable $\underline{\varepsilon}$:

$$\int_{\mathcal{H}} \underline{\omega}(\xi) \underline{\varepsilon}(\xi) d\xi = \mathbf{E}[\underline{\varepsilon}]$$

and

$$\int_{\mathcal{H}} \underline{\omega}(\xi) \underline{\varepsilon}_{dev}^2(\xi) d\xi = \int_{\mathcal{H}} \underline{\omega}(\xi) (\underline{\varepsilon}(\xi) - \mathbf{E}[\underline{\varepsilon}])^2 d\xi = \mathbf{Var}(\underline{\varepsilon})$$

so

$$\psi(\underline{\varepsilon}) = k_1 \mathbf{E}[\underline{\varepsilon}]^2 + k_2 \mathbf{Var}(\underline{\varepsilon}),$$

where $k_1 = \frac{9}{2} \hat{\kappa}$ and $k_2 = 3\hat{\mu}$.

Relation between moments and invariants

In other words

First moment:

$$E_{\omega}[\underline{\varepsilon}] \propto I_1(\varepsilon)$$

and

Second central moment:

$$\text{Var}_{\omega}(\underline{\varepsilon}) \propto J_2(\varepsilon)$$

Quiz: What is the third central moment of $\underline{\varepsilon}$?

Relation between moments and invariants

In other words

First moment:

$$E_\omega[\underline{\varepsilon}] \propto I_1(\varepsilon)$$

and

Second central moment:

$$\text{Var}_\omega(\underline{\varepsilon}) \propto J_2(\varepsilon)$$

Quiz: What is the third central moment of $\underline{\varepsilon}$?

$$\text{skewness}(\underline{\varepsilon}) \propto \frac{J_3(\varepsilon)}{\sqrt{J_2(\varepsilon)^3}}$$

Invariants of a peridynamic scalar-state

For a generic peridynamic scalar-state \underline{a} with

$$\underline{a}\langle \xi \rangle \in \mathbb{R}$$

its invariants (I_1, J_n) with respect to a normalized influence function $\underline{\omega}$ with

$$\int_{\mathcal{H}} \underline{\omega}\langle \xi \rangle \, d\xi = 1$$

can be defined as:

$$I_1 := \int_{\mathcal{H}} \underline{\omega}\langle \xi \rangle \underline{a}\langle \xi \rangle \, d\xi$$

and for $n > 1$:

$$J_n := \int_{\mathcal{H}} \underline{\omega}\langle \xi \rangle (\underline{a}\langle \xi \rangle - I_1)^n \, d\xi.$$

Outline for Section 5

- 1 Motivation
- 2 Review of peridynamics
- 3 Matter interpenetration of nonlinear bond-strain measures
- 4 Probabilistic interpretation of ordinary peridynamics
- 5 Material failure modeling
- 6 Summary of contributions

Maximum bond-stretch criterion for the *bond-based* theory:

Review:

- Bond-based peridynamics is the special case:

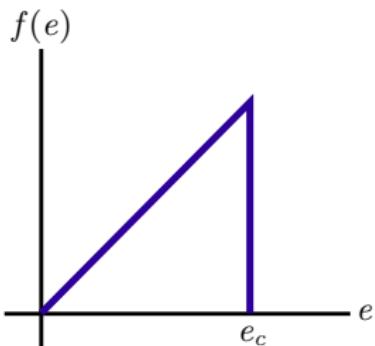
$$\underline{\mathbf{T}} \langle \xi \rangle = \mathbf{f} (e(\xi))$$

$$e(\xi) = |\underline{\mathbf{Y}} \langle \xi \rangle| - |\xi|$$

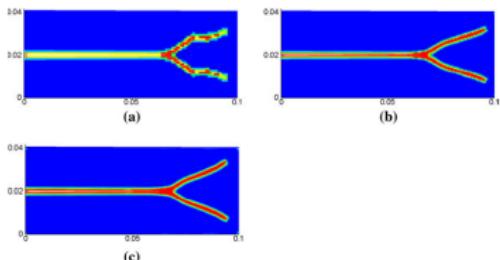
- Based on maximum bond stretch criteria:

$$\underline{\mathbf{T}} \langle \xi \rangle = \mathbf{0} \text{ when } e \geq e_c$$

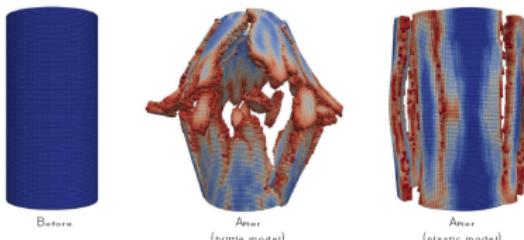
- Bond-based formulation restricts $\nu = 0.25$



Convergence for 2D crack branching
Ha, Bobaru 2010:



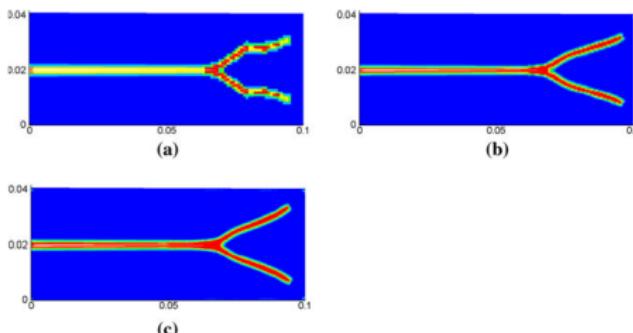
Extension to the general theory are more recent, Parks 2012:



Brittle failure modeling in peridynamics

Bond-severing criterion works well for bond-based version of the theory.

2D crack branching: (Ha, Bobaru 2010)



Proposed extension of existing bond-failure criteria

- Based on G_c : consistent with the Griffith criterion
- Extension of (Silling 2005) and (Foster 2011)
- Bond failure function, $s_c(\xi)$, sets the maximum energy per bond

Brittle failure model for nonlinear peridynamic solids

Elastic free energy density: $\psi(\mathbf{x}) = \frac{1}{2} \bar{\lambda} (\text{tr}_{\omega}(\underline{\phi} \underline{\varepsilon}))^2 + \bar{\mu} \text{tr}_{\omega}(\underline{\phi} \underline{\varepsilon}^2)$

Bond integrity: $\underline{\phi} \langle \xi \rangle = \{1 \text{ for intact bonds, } 0 \text{ for severed bonds}\}$

There are multiple ways to define the bond-energy:

Average bond-energy

$$\underline{s}_{ave} \langle \xi \rangle := \frac{1}{2} \bar{\lambda} \text{tr}_{\omega}(\underline{\phi} \underline{\varepsilon}) + \bar{\mu} \underline{\phi} \underline{\varepsilon} \langle \xi \rangle$$

Instantaneous bond-energy

$$\underline{s}_{inst} \langle \xi \rangle := \bar{\lambda} \text{tr}_{\omega}(\underline{\phi} \underline{\varepsilon}) + \bar{\mu} \underline{\phi} \underline{\varepsilon} \langle \xi \rangle$$

Foster, et al. 2011 proposed the work done on the bond:

$$\underline{s}_{work} \langle \xi \rangle (t) := \int_0^t \underline{\mathbf{T}} \langle \xi \rangle \cdot \dot{\underline{\mathbf{Y}}} \langle \xi \rangle \, dt.$$

We use the **instantaneous bond-energy**: $\underline{s}_{inst} \langle \xi \rangle := \psi, \underline{\phi} \langle \xi \rangle$

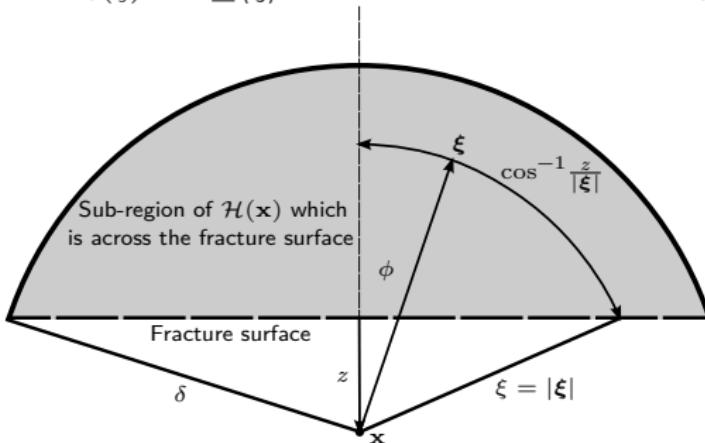
- The instantaneous bond-energy is the energy dissipated when severing a single bond (all other bonds held fixed).
- In general: $\underline{s}_{inst} \neq \underline{s}_{work}$.

Energy dissipated by breaking bonds across a fracture surface:

$$\int_0^\delta \int_0^{2\pi} \int_z^\delta \int_0^{\cos^{-1}(z/\xi)} s_c(\xi) \xi^2 \sin(\phi) d\phi d\xi d\theta dz = \frac{1}{2} G_c$$

Silling et al. 2005: $s_c(\xi) = \alpha \underline{\omega} \langle \xi \rangle$

Foster et al. 2011: $s_c(\xi) = s_c$



Schematic for the domain of integration (modified from Silling 2005).

- Assume the failure energy decreases for distant material points:

$$s_c(|\xi|) = \beta \underline{\omega} \langle \xi \rangle |\xi|^{-2}$$

- This choice tends to result in sharper crack features.
- β is calibrated to match the cohesive energy, G_c

Bond-force: $\underline{\mathbf{T}}_{(m)}\langle\xi\rangle = \underline{\phi}\langle\xi\rangle \left[\bar{\lambda} \operatorname{tr}_{\omega}(\underline{\phi}\varepsilon) + 2 \bar{\mu} \underline{\varepsilon}\langle\xi\rangle \right] \underline{\omega}\langle\xi\rangle \underline{c}\langle\xi\rangle^{m-1} |\xi|^{-2} \underline{\mathbf{Y}}\langle\xi\rangle$

$$\underline{\omega}\langle\xi\rangle = \frac{10}{\pi\delta^6} (3|\xi| + \delta)(\delta - |\xi|)^3$$

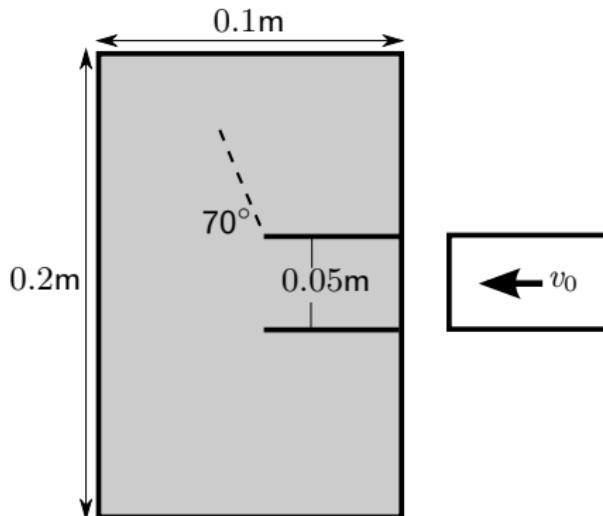
Bond failure criterion: $\bar{\lambda} \underline{\varepsilon}\langle\xi\rangle \operatorname{tr}_{\omega}(\underline{\phi}\varepsilon) + \bar{\mu} \underline{\varepsilon}\langle\xi\rangle \underline{\varepsilon}\langle\xi\rangle \geq \frac{\pi}{16} \frac{\delta G_c}{|\xi|^2}, \quad \underline{\varepsilon}\langle\xi\rangle \geq 0$

This failure criterion satisfies the laws of thermodynamics.

Free-surface detection parameter: $D(\mathbf{x}) = 1 - \frac{1}{3} \int_{\mathcal{H}(\mathbf{x})} \underline{\omega}\langle\xi\rangle \underline{\phi}\langle\xi\rangle d\xi.$

Summary: key ingredients for this failure model are $s_c(\xi)$ and $\underline{s}_{inst}\langle\xi\rangle$.

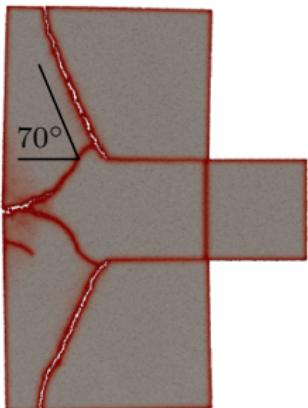
Validation: Kalthoff test



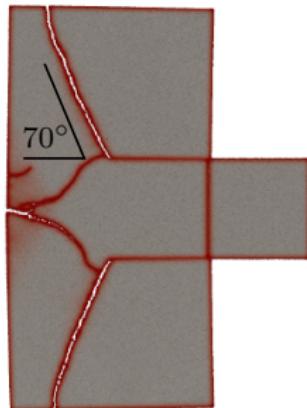
- Based on experiments by Kalthoff, Winkler 1987.
- $\rho = 8000 \text{ kg/m}^3$, $E = 190 \text{ GPa}$, $\nu = 0.3$ and $G_c = 22,000 \text{ J/m}^2$.
- Impact velocity: $v_0 = 16 \text{ m/s}$.
- Experimental crack propagation angle of 70° .

Kalthoff test simulation results

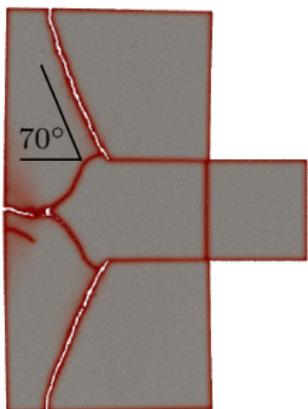
$h = 1.2 \text{ mm}$
 $\delta = 5.0 \text{ mm}$



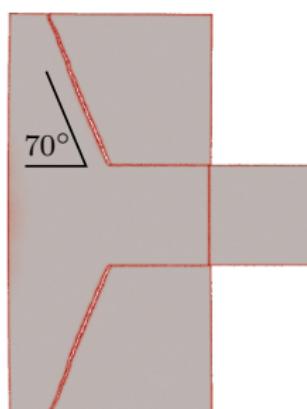
$h = 1.0 \text{ mm}$
 $\delta = 5.0 \text{ mm}$



$h = 0.8 \text{ mm}$
 $\delta = 5.0 \text{ mm}$

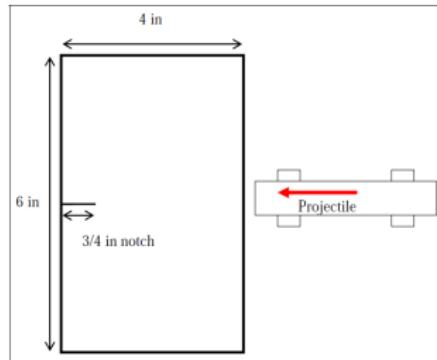


$h = 0.4 \text{ mm}$
 $\delta = 1.8 \text{ mm}$

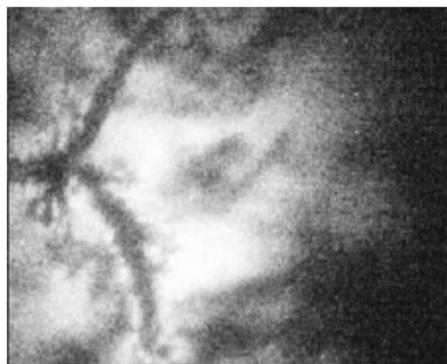


Validation: edge on impact of PMMA

- Mode-I crack propagation for low impact velocities
- Crack branching at higher velocities
- $\rho = 1180 \text{ kg/m}^3$, $E = 3.5 \text{ GPa}$,
 $\nu = 0.35$, $G_c = 400 \text{ J/m}^2$



$$v_0 = 50.5 \text{ m/s}$$



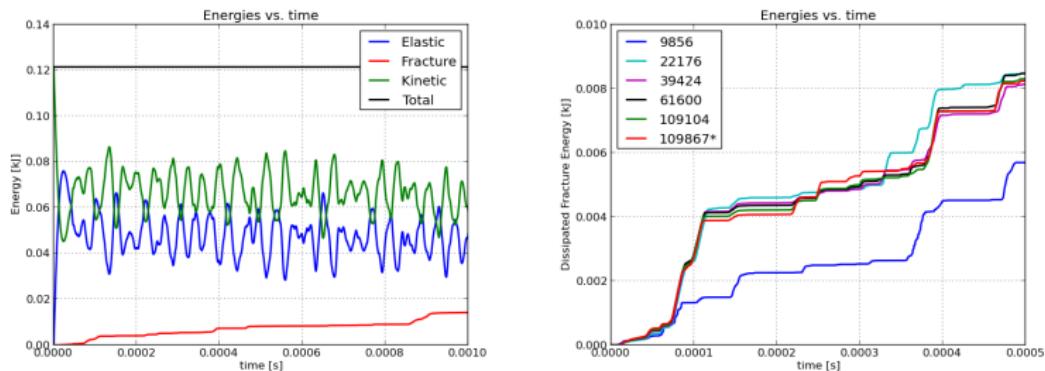
$$v_0 = 65.9 \text{ m/s}$$

Coherent gradient sensing: experimental results of Umberger and Love, 2010.

Free-surface parameter

Mean stress (MPa)

Sensitivity to particle density and evaluating the fracture energy

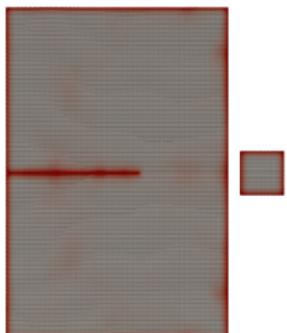


Dissipated energy over time for varying particle densities, with $v_0 = 15 \text{ m/s}$.

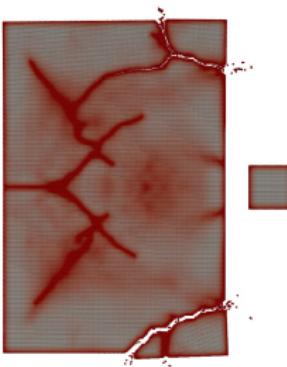
number of discrete particles	crack length	dissipated energy	cohesive energy
9,856	4 mm	2.5 J	620 J/m²
22,176	12 mm	4.6 J	400 J/m²
39,424	11 mm	4.4 J	420 J/m²
61,600	11 mm	4.4 J	410 J/m²
109,104	10 mm	4.2 J	420 J/m²
109,867 (unstructured)	10 mm	4.1 J	410 J/m²

Edge-on impact simulations: varying impact velocity

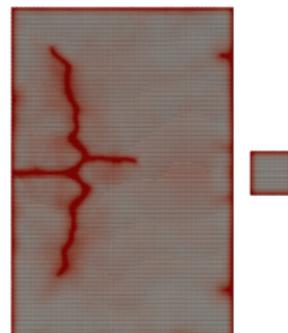
61,600 particles, $\delta = 0.0055$ at $t = 0.001$



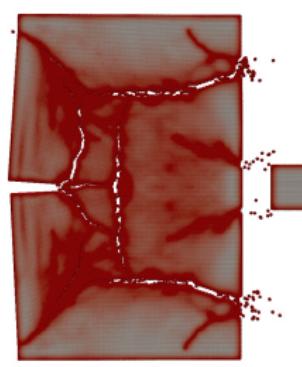
$v_0 = 18 \text{ m/s}$



$v_0 = 35 \text{ m/s}$

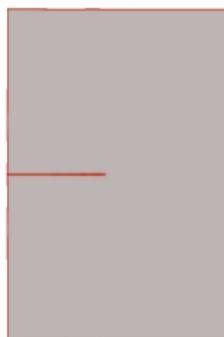


$v_0 = 25 \text{ m/s}$

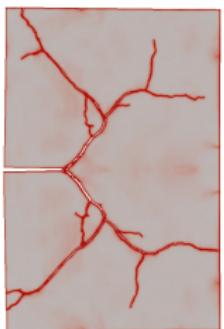


$v_0 = 50 \text{ m/s}$

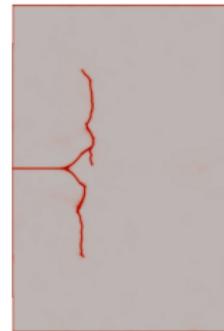
Effect of changing horizon to $\delta = 0.0015$ m



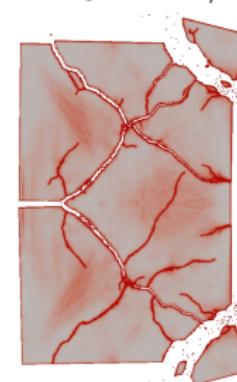
$v_0 = 15$ m/s



$v_0 = 35$ m/s



$v_0 = 25$ m/s

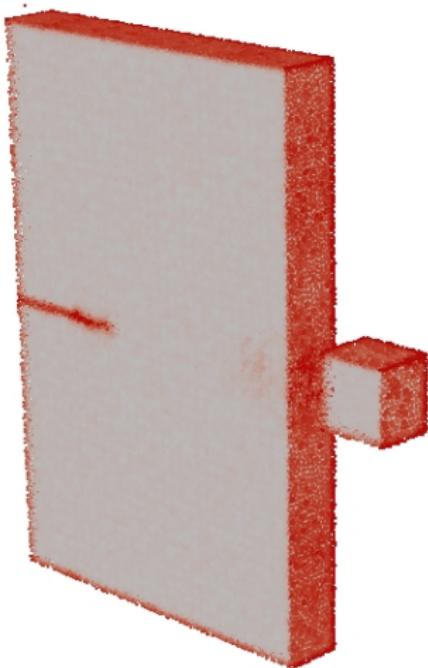


$v_0 = 50$ m/s

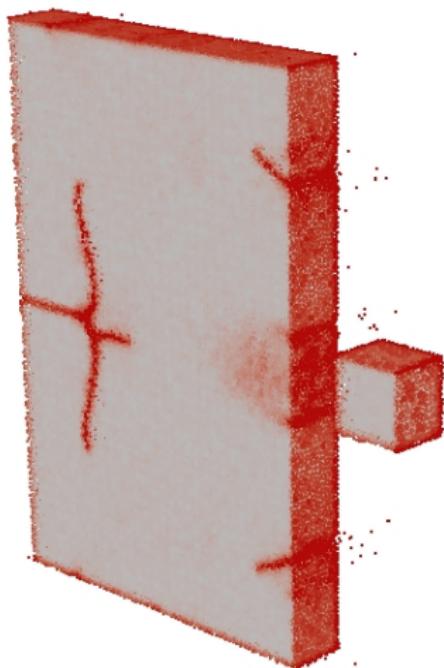
Animation of crack propagation and branching: $v_0 = 35 \text{ m/s}$, $\delta = 0.0015 \text{ m}$

Free-surface parameter

Mean stress (MPa)



$$v_0 = 30 \text{ m/s}$$



$$v_0 = 50 \text{ m/s}$$

Nonlocal material damage at $t = 0.001$ s for edge-on impact in 3D. A discretization with 573,346 particles and $\delta = 0.004$ m is shown sliced through the thickness of the plate.

Extensions to the peridynamic theory

- Identified a cause of instabilities and matter interpenetration.
- Proposed a constitutive modeling framework based on new nonlinear bond-strain measures.
- Demonstrated that opening (crack-like) discontinuities are allowed, while matter interpenetration is prevented.

Introduced a probabilistic interpretation of isotropic ordinary peridynamics

- Showed that moments of strain-states are equivalent to strain invariants.
- Proposed a peridynamic analog for invariants of a scalar-state.

State-based peridynamic failure modeling

- Introduced a new bond-failure criterion for brittle fracture:
 - Captures realistic crack patterns, including branching and coalescence.
 - Dissipates a pre-specified fracture energy.