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Motivation

Computational framework for simulating challenging problems in mechanics.

V = 4528 mis

Computational objectives

robustness
convergence
avoid instabilities

represent fracture

scalability

Ballistic impact of aluminum sandwich structures at
various impact velocities. Courtesy of Wadley, 2010.

Edge on impact of brittle materials (Umberger, Love 2011). @ Sandia
Laboratories




Existing approaches

Classical damage models: Adaptive remeshing: Particle methods:

Tupek 2011.

Hautefeuille, S: , Talamini and Tupek i
autefeuille eagraveszOIallamlnl and Tupel Mauch, et al. 2006. Ortiz 2011.

Can't represent discrete
cracks

Successful for ductile failure Not robust

Mesh dependency and

3 Difficult to parallelize
convergence issues

Instabilities are common

e s . Reduced accuracy
Difficulties with recontact

s




The peridynamic alternative (Silling 2000)
Integral formulation: V-o = fHI<£) —T'(-¢) d¢

“In peridynamics, cracks are part of the solution, not part of the problem”
- F. Bobaru

Convergence for 2D crack branching: Brittle and Ductile Failure in 3D:
(Ha, Bobaru 2010) (Parks 2012)

o4

(b)

(c)

Discontinuities (e.g. cracks) are automatically supported
Nonlocal theory includes length-scale, §
Naturally discretized as a particle method

Rooted in a rigorous theoretical framework

Implementation similar to molecular dynamics — scalable

Sandia
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Overview of peridynamic continuum theory

o Integral formulation of continuum mechanics originally proposed by
Stewart Silling in 2000.

@ Stress is replaced with long-range forces, T (£).

e Bond ¢ :=x' — x.

T(¢)
Bo

Classllcal control \iolume, normal fi and Peridynamic bond & and bond-force T (£).
traction vector ofi. -

=V .o pi= [ TO-T6 dE ()i
Laboratories




Peridynamic vector-states

The family of bonds at x is given by
H(x)={£€R’ | (£+x)€B, |£ <6}.

Bo By
Schematic representation of a body By and the family #(x) mapped by ¢.

A vector-state A[x] at a point x € B is a function

Alx] () H(x) = R

Deformation vector-state: |X[x] & =yx+¢& —ykx) | VE € H(x). @ Notora




Analogies between classical continuum mechanics and peridynamics

Classical Continuum Peridynamics
Deformation Measure F=Vy Y
Conjugate Force P(F) T(Y)
Angular Momentum PFT =FPT 0= fHI<£> x Y (&) dg
Elasticity P = Vi(F) T = 9(Y)
Kinematics det(F) > 0 Y (&) #£0, for |€]#0

Sandia
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Peridynamic material modeling: constitutive correspondence
Classical constitutive model: P(F) = Vi(F)

Silling, et al. 2007 proposed a nonlocal approximation to F':

F(Y) = ( / w(€) (Y(6) @ €) ds) K| K- / wlE) €€ de
H H

which is exact for affine deformations.

The corresponding constitutive model:
DY) = (F(Y)) .

Bond-force follows from work conjugacy as:

Influence function

Influence function: | w(&) > 0 10

Sandia
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Standard peridynamic particle discretization

@ Replace integrals by sums over particle volumes
o Degrees of freedom are particle displacements

o Effectively a nodally integrated particle method

For example (Foster et al. 2010):

N
B = Z Viw (x: = 1) (y; — v;) @ (xi — %)) K;

N
Z (i = 1) (i = %)) ® (xi — ;)
Semi-discrete equations of motion:

N
_ 1 —1
V= Vz’W(|Xj—Xi|){PiKi (xj — %) — PjK; (Xi—xj)}
i=1

C++ |mpIementat|on uses standard constitutive model library




Taylor impact benchmark: comparison to other discretization approaches

r=3.2mm

Vo
l=32.4 mm
Taylor impact of a copper bar with vg = 227 m/s:
7, fixed horizon to mesh size ratio

lf (mm) Tmaz (mm) Efuaz
FEM, Kamoulakos 1990 21.5 7.1 2.47-3.24
FEM, Zhu and Cescotto 1995 21.3 7.1 2.47-3.24
FEM, Camacho and Ortiz 1997 21.4 7.2 2.97-3.25
OTM, Li et al. 2010 21.4 6.8 3.0
Peridynamics: coarse (left) 215 7.1 2.69
Peridynamics: fine (middle) 21.4 75 2.88

Peridynamics: finest (right) 21.4 7.4 3.29 Sandia
National




Taylor impact revisited: instabilities

1111

Finite Element dxh am3h

Taylor impact: increasing horizon size Rigid sphere impact
(Tupek 2011) (Becker, Lucas 2011)

o Instabilities have previously been observed (Littlewood 2010,
Becker 2011) and can be addressed with numerical stabilization
approaches.

o Nodally integrated meshless methods have energy instabilities.

o Often solved by better integration to remove zero-energy modes.

@ |s this a numerical or theoretical issue?
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© Matter interpenetration of nonlinear bond-strain measures




Theoretical investigation of
constitutive correspondence:

([ wle(xie) o8 d¢) K
K= [ wle) £o¢ dt




A simple 1D example: zero-energy modes

For deformation: | u(z) = asin(bz)
y(z) = =+ u(z)

Zero energy mode

, I )
o= [t 3 il
=1 1) [ e eosthe) e I / /’\Vl\\/“\/“v’ VY
and therefore llglo F(z) = 7:; U VM s _s &

(éw(lfl)) d€ < oo

Assume a ‘smooth’ influence function:

d¢

o Fast oscillating unphysical
deformations are undetectable
@ Unphysical behavior is averaged
out by the integration
=,




Unphysical behavior of constitutive correspondence: material collapse

Sub-horizon material collapse: Consider a small volume of material G C By
collapsing to a single point z € B;. Then Y [x](£) =0 for x, x + £ € G.

Schematic showing a region G C By collapsing to a single point z € B;.

o det (F(x)) >0
o Violating the bond-level kinematic constraint does not imply the classical
continuum kinematic constraint is violated:

det (F) >0 = Y(€) #0 ()




Unphysical behavior of constitutive correspondence: matter interpenetration

Jump discontinuities: Another example, displacement field:

for ¢ < 0, may still have F>0
T forz <0

c+z forz>0
y(z) =

c>0 c=0 c<O0

Sandia
m POSitive contribution — == negative contribution @W
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Constitutive constraint for preventing matter interpenetration

The matter interpenetration condition

Y () #0 J

can be enforced almost everywhere if

Y(§) 50, ¥E€QCHE) = H(Y) =, J

where () is some measurable subset of H(x).
This is analogous to:

detF — 0 = ¢(F) — co. (e.g. Ball, 1977) J

Alternatively, the condition:

Y =0 = T(§) Y (£ — —oo. J

does not require an elastic potential and is analogous to

detF -0 = P — oo. J @m




Nonlinear bond-strain measures

We want a strain measure: € — —oo as |Y(£)| — 0.

Classical Seth-Hill strain measures:
C=F'F

1 m
€m) = 5 - [C" —1]

1
€0) =3 log (C)

For m < 0:
tr (s(m)) — —oo as det (F) — 0.




Nonlinear bond-strain measures!

We want a strain measure: € — —oo as |Y(£)| — 0.

Classical Seth-Hill strain measures: Nonlinear bond-strain measures:
Y(¢) - X( )
C=F"F b)) =—>—F""
e = —— [C™ —1] 1
M = om emlé) = m [c(€)™ — 1]
~Llie(C 1
€0) =3 0g (C) go)é) = 5 log(c(§))
For m < 0: For m <0:
tr (e(m)) — —o0 as det (F) — 0. E(m)(§) — —00 as [Y(§)[ — 0.

M. Tupek, R. Radovitkzy. An extended constitutive correspondence formulation of Sandia
peridynamics based on nonlinear bond-strain measures, submitted to JMPS. National




Nonlinear isotropic elastic peridynamic solids

Notation: tr,(a) = / w(&) a(&) dE. Normalize weight: tr,(1) = 3.
H
Use bond-strain measure € = E(myr for any m.
Elastic energy:  (e) = %Rtrw@z +Atro(gge,) = %Xtrw@)? + Atro(e?) J

Bond-force:  T(€) = [Atro(e) + 2/ £(€)] w(€) c(6)™ " €] X (£) |

Bond-based peridynamics (Silling 2000): A =0

Linear isotropic (Silling et al. 2007): m = 3

For uniform, small strains: |k =k, pg= g,u, A=X—pu

Property:  T(&) - Y (&) — —oo as [Y(&)| =0 for m <0 J

Sandia
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A fix to the issue of matter interpenetration

@ No zero-energy modes or material collapse allowed
@ Matter interpenetration is prevented for strain measures with m < —%

@ Crack-like opening jump discontinuities are still valid solutions!

@ |

a) opening b) interpenetrating

Sandia
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Peridynamic Riemann problem with matter interpenetration

Bond-strain measure with m = 1 (linear model)

—12 f
vI(x,t:()):{ 00 m/s orz >0

1200 m/s for z < 0

t =100 ps t =150 ps

2D peridynamic bar: length [ =2 height h =1, 6 =0.05m, @ m
A\ =10 GPa, ji = 10 GPa, p = 1180 kg/m?. Laboratories




Peridynamic Riemann problem without matter interpenetration

Bond-strain measure with m = 0 (logarithmic model)

- fi
ve(3, £ = ):{ 1200 m/s orz >0

1200 m/s for z < 0

t=0pus t =50 us

t =100 ps t =150 ps

2D peridynamic bar: length [ =2 height h =1, 6 =0.05m, @ m
A\ =10 GPa, ji = 10 GPa, p = 1180 kg/m?. Laboratories




Preventing instabilities: Summary

@ Numerical simulations of peridynamics exhibit instabilities:
zero-energy modes, matter interpenetration

@ Not just a numerical issue, but due to poor kinematic assumptions

@ Proposed formulating constitutive response in terms of nonlinear
bond-strain measures: £(&)

@ Introduced nonlinear isotropic elastic peridynamic solids

@ Numerical examples demonstrate that the new theory fixes previous
limitations




Probabilistic interpretation of ordinary peridynamics

Normalize weight: f?—t w(€) d€ =1.

Elastic energy:  t)(e) = gfe (/ w(€) e() d&) +3p / w(€) e7.,(&) d&
H H

Interpret integrals as first and second moments of a random variable ¢:

/g@m@wm=E@
H

and
/gwﬁaaaz/g@@@—%Wazww) J
H H
P(e) = kE[g]® + kaVar(e), |
Sandia
where ky = 24 and ks = 3. s




Relation between moments and invariants

In other words

and

Second central moment:

Var,(g) o J2(€)

Quiz: What is the third central moment of ¢ ?




Relation between moments and invariants

In other words

Eule] o i(e)

and

Second central moment:

Var,(g) « Ja(€)

Quiz: What is the third central moment of ¢ ?

skewness(g) o<




Invariants of a peridynamic scalar-state

For a generic peridynamic scalar-state a with

a(§) eR J

its invariants (I1, Jn) with respect to a normalized influence function w with

/Hg<§> dé = 1

can be defined as:

and for n > 1:
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Review of peridynamic failure modeling

Maximum bond-stretch criterion for the bond-based theory:

"
@ Bond-based peridynamics is the special case:
T () = £(e(€))
o e(6) = [X.(&)] - I¢]
@ Based on maximum bond stretch criteria:
T (€) = 0 when e > e.

@ Bond-based formulation restricts v = 0.25 Ce

Convergence for 2D crack branching Extension to the general theory are more
Ha, Bobaru 2010: recent, Parks 2012:

204 o0s




Brittle failure modeling in peridynamics

Bond-severing criterion works well for bond-based version of the theory.

2D crack branching: (Ha, Bobaru 2010)

Proposed extension of existing bond-failure criteria

o Based on G.: consistent with the Griffith criterion
o Extension of (Silling 2005) and (Foster 2011)

@ Bond failure function, s.(&), sets the maximum energy per
bond

Sandia
National
Laboratories




Brittle failure model for nonlinear peridynamic solids

Elastic free energy density: (x) = %5\ (tr“,(ﬁ))2 + @try (E2) J

Bond integrity: ¢ (€) = {1 for intact bonds, 0 for severed bonds} J

There are multiple ways to define the bond-energy:

Average bond-energy Instantaneous bond-energy

Save (€) 1= FAtru(g2) + i ge (&) Sinst (€) 1= Mru(de) + e (6)

Foster, et al. 2011 proposed the work done on the bond:

t
ﬁwork<£> (t) = / I<£> X<E> dt.
0

We use the instantaneous bond-energy: | s, (£) := v 4(&)

@ The instantaneous bond-energy is the energy dissipated when

severing a single bond (all other bonds held fixed).
Sandia

@ In general: s, ., # 5,00k National




Bond failure criterion for brittle fracture in state-based peridynamics

Energy dissipated by breaking bonds across a fracture surface:

5 prm 08 poosTH/0) 1
/ / / / 50(€) €2 sin(¢p) dep d€ dO dz = 5 a.
0 0 2 0

Silling et al. 2005: s.(¢) = aw(£) Foster et al. 2011: s.(&§) = s¢

Sub-region of #H(x) which
is across the fracture surface

Fracture surface

X

Schematic for the domain of integration (modified from Silling 2005).

Sandia
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Bond failure criterion

@ Assume the failure energy decreases for distant material points:

so(l€]) = Bu(€) |€7°

@ This choice tends to result in sharper crack features.

@ [ is calibrated to match the cohesive energy, G.




Brittle failure model for nonlinear peridynamic solids

Bond-force: T, (&) = ¢(€) [Mro(pe) +2/(8)] w(€) c (€)™ |£|_ZX<£>J

€

(&) =~ (3le] +8)(6 — €’

Bond failure criterion: e (€) tro(pe) + fig(€) e(€) >

This failure criterion satisfies the laws of thermodynamics.

Free-surface detection parameter: D(x)=1— % / w(&) ¢(&) d&. J
H(x)

Summary: key ingredients for this failure model are s, and s, .
Yy Yy g (E) Zinst <€> @ %l::ﬂ




Validation: Kalthoff test

@ Based on experiments by Kalthoff, Winkler 1987.
o p = 8000 kg/m? E =190 GPa, v = 0.3 and G. = 22,000 J/m”.
o Impact velocity: vp = 16 m/s.

o Experimental crack propagation angle of 70°. Sont
National
Laboratories




Kalthoff test simulation results

h=1.2mm h=1.0 mm
6 =>5.0mm 6 =>5.0mm
6—50mm

6—18mm




Validation: edge on impact of PMMA

T
@ Mode-| crack propagation for low ]
impact velocities
@ Crack branching at higher -
velocities on | f
o p=1180 kg/m?®, E = 3.5 GPa, -
J

Sk E A R
vo = 50.5 m/s v = 65.9 m/s
Coherent gradient sensing: experimental results of Umberger and Love, 2010.




Edge-on impact simulations: 61,600 particles, § = 0.0055, v = 15 m/s

Free-surface parameter Mean stress (MPa)

Mean Stress

iQ

g0
-2

4
-5

K< QI [>] ] [ =] +]
- 40/46




Sensitivity to particle density and evaluating the fracture energy

01 Energies vs. time Energies vs. time
—— Elastic — 9856

01 — Fracture || — 22176
— Kinetic oo0s|| — 39424
— Total — 61600

— 109104
— 109867

ure Energy [k]]

ki
& 0.008
v

Energy [K]]

T 0,004

—
==
§>
—
——
———
==
z =
—

ey

0.02]

0.002

88000 00002 oa00q 5000 00005 00010 %8000 60001 o000z 50605 00004 60005
Dissipated energy over time for varying particle densities, with vg = 15 m/s.

number of discrete particles crack length dissipated energy  cohesive energy

9,856 4 mm 25J 620 J/m?

22,176 12 mm 4.6 ) 400 J/m?

39,424 11 mm 4.4 420 J/m?

61,600 11 mm 44 410 J/m?
109,104 10 mm 42 420 J/m?
109,867 (unstructured) 10 mm 4.1 410 J/m?



Edge-on impact simulations: varying impact velocity
61,600 particles, 6 = 0.0055 at ¢t = 0.001

)
v =35 m/s vg =50 m/s Laboratories




Effect of changing horizon to § = 0.0015 m

v =15 m/s vo =25 m/s

Sandia
vo =35 m/s vp =50 m/s @m




Animation of crack propagation and branching: vy = 35 m/s, § = 0.0015 m

Free-surface parameter Mean stress (MPa)

Mean Stress

(I<] QI [> ][> [ =t +]
a4




Theory and discretization extends directly to 3D

vo =30 m/s vo =50 m/s

Nonlocal material damage at ¢ = 0.001 s for edge-on impact in 3D. A discretization
with 573,346 particles and § = 0.004 m is shown sliced through the thickness of the

plate.
I EEEE—



Summary of contributions

Extensions to the peridynamic theory

o ldentified a cause of instabilities and matter interpenetration.

@ Proposed a constitutive modeling framework based on new nonlinear
bond-strain measures.

@ Demonstrated that opening (crack-like) discontinuities are allowed, while
matter interpenetration is prevented.

Introduced a probabilistic interpretation of isotropic ordinary peridynamics

@ Showed that moments of strain-states are equivalent to strain invariants.

@ Proposed a peridynamic analog for invariants of a scalar-state.

y

State-based peridynamic failure modeling

@ Introduced a new bond-failure criterion for brittle fracture:

o Captures realistic crack patterns, including branching and coalescence.
o Dissipates a pre-specified fracture energy.
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