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Motivation ) s,
= Optomechanics has been studied extensively with cavity-coupled resonant opto Laboratories
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= Non-resonant waveguide devices allow high-frequency, broadband transduction
for information processing devices.

—>non-resonant for optical mode allows
broadband transduction

—>Previously experimentally and theoretically studied device with CW laser sources.

- In this work, we us pulsed ps-laser sources to study pulsed opto-mechanical
transduction to evaluate potential use in information processing applications
with phonon pulses. 3




Traveling-Wave Phonon-Photon Device Concept (i) &

= Practical non-resonant devices require high optomechanical transduction to be viable.

=  Previously shown dramatic enhancement of optomechanical transduction do to coherent
combination of radiation pressure and electrostrication in nanoscale waveguides
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= Additionally we have shown ultra-broadband transduction bandwidth
with transversely oriented phonon modes
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Previous Device Design and Characterization with

CW laser sources in frequency domain
= Previously designed and characterized traveling-

wave phonon device w =313 nm

: h =194 nm
/Alr slot — t = 12 4 nm
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Si waveguide

Si waveguide
= Optomechanical transduction was characterized with a dual color CW heterodyne
setup = mechanical modes linewidths were measured by scanning frequency

- Structure supports
multiple modes

- Interrogation in
frequency domain
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Pulsed Optomechanical Transduction with
Asynchronous Optical Sampling (ASOPS)

= Transduction of laser pulses to phonon modes assess the viability of pulsed
phonon devices Probe A Pump
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" In ASOPS, the repetition rate of pulsed pump (f,,.,,) and probe (f . ,..) lasers are
detuned by an offset frequency (f ..;) such that the time delay between consecutive
pulses is ramped linearly
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Waveform periodic with T,,, and with N, e = T, ,/A

= 100 MHz laser sources with 10kHz f

pump

2 fopticar =1 THz without the need for
mechanical delay lines. 6
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Experimental Setup )

Laboratories
= Two ps-fiber laser sources (pump and probe) locked with an 80MHz repetition rate
and a 1kHz offset, allow 80,000 samples of 12.5ns.
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= The pump pulse generates a phonon-pulse via optical transduction which imparts a phase
shift on the signal pulse that is measured in an interferometer having shot-noise-limited
detection of a few p-rad phase.

= “Slot” waveguide devices with varying widths were measured
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Time-domain signals allow separation of

nonlinearities
=  Experimental data captures Kerr effect and free carrier background
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u Convergence after 100,000 averages
= In prior work, Kerr and free carrier response dramtically limited dynamic range
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=  Here we can use signal processing to separate fast phonon oscillation from

slow transients and the instantaneous Kerr effect 8
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Simulation of System ) i

= Simulated parametric pumping with side-wall reflections

Steady state Displacement Phase Shift Imparted onto
Amplitude Wavegmde
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= Parametric pumping do to limited measurement window
= Large side-wall reflections indicate that optical delay with dual
waveguide devices are feasible.
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Measurement of impulsive phonon response Vi) i
device width

"  Frequency domain (magnitude and phase) shows phonon spectrum.
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Summary and Conclusion ) i,

=  Developed an ASOPS system enabling rapid time domain acquisition over
long durations (ns-us) with high (ps) temporal resolution and p-radian
sensitivity.

=  Measured pulsed optical-phonon transduction in a traveling wave devices,
and have ample sensitivity to measured the influence of phonon
reflection from sidewalls.

=  The number of modes excited and the degree of broadening due to
phonon dispersion is sufficient for wide devices to allow for pulsed
transduction.




