
Uncertainty Quantification for Next-
Generation Architectures

Eric Phipps (etphipp@sandia.gov),
H. Carter Edwards, Jonathan Hu

Sandia National Laboratories

Programming Models and Applications
Workshop

August 5-6, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2014-16397PE

mailto:etphipp@sandia.gov
mailto:etphipp@sandia.gov

Can Exascale Solve the UQ Challenge?

• UQ means many things
– Best estimate + uncertainty, model validation, model calibration, …

• A key to many UQ tasks is forward uncertainty propagation
– Given uncertainty model of input data (aleatory, epistemic, …)
– Propagate uncertainty to output quantities of interest

• There are many forward uncertainty propagation approaches
– Monte Carlo, stochastic collocation, polynomial chaos, stochastic Galerkin,

…

• Key challenge:
– Accurately quantifying rare events and localized behavior in high-

dimensional uncertain input spaces
– Can easily require O(104-106) expensive forward simulations
– Often can only afford O(102) on today’s petascale machines

Emerging Architectures Motivate New
Approaches to Predictive Simulation

• UQ approaches traditionally implemented as an outer loop:

– Aggregate UQ performance limited to that of underlying
deterministic simulation

– Will require very good strong scalability to very high thread-counts

• Achieving this is difficult for PDE assembly/solves for many
types of problems
– Random, uncoalesced memory access
– Inconsistent vectorization

http://dakota.sandia.gov

http://trilinos.sandia.gov

Expose new dimensions of fine-grained parallelism
through embedded approaches

• Uncertainty propagation is often a better structured
calculation than the original simulation
– Lots of reuse of data from simulation to simulation
– Many UQ methods rely on (local) smoothness, so data generated

by solution process is often similar across samples

• Take a holistic view of the entire UQ workflow
– Single-point forward simulation is no longer the end-point
– Codes are being rewritten for new architectures, why not treat

uncertainty propagation as the basic unit of calculation?

• Improve memory access patterns by inverting the outer
UQ/inner solver loop
– Stochastic Galerkin (3rd of 3-year LDRD)
– Embedded ensemble propagation (1st of 3-year ASCR)

Polynomial Chaos Expansions (PCE)

• Steady-state finite dimensional model problem:

• (Global) Polynomial Chaos approximation:

– Multivariate orthogonal polynomials
– Typically constructed as tensor products with total order at most N
– Can be adapted (anisotropic, local support)

• Non-intrusive polynomial chaos (NIPC, NISP):

– Sparse-grid quadrature methods for scalability to moderate stochastic dimensions

Simultaneous ensemble propagation

• PDE:

• Propagating m samples – block diagonal (nonlinear) system:

Simultaneous ensemble propagation

• Commute Kronecker products (just a reordering of DoFs):

• Each sample-dependent scalar replaced by length-m array
– Automatically reuse non-sample dependent data
– Sparse accesses amortized across ensemble
– Math on ensemble naturally maps to vector arithmetic

Potential Speed-up for PDE Assembly

• Halo exchange
– Amortize MPI latency across

ensemble

• Gather
– Reuse node-index map

(mesh)
– Replace sparse with

contiguous loads

• Local residual/Jacobian
– Vectorized math

• Scatter
– Reuse node-index map and

element graph (mesh)
– Replace sparse with

contiguous stores

Potential Speed-up for Sparse Solvers

• Sparse matrix-vector
products
– Amortize MPI latency in halo

exchange
– Reuse matrix graph
– Replace sparse with

contiguous loads
– Vector arithmetic

• Dot-products
– Amortize MPI latency

• Preconditioners
– Sparse mat-vecs
– Sparse

factorizations/triangular-
solves

– Smaller, more unstructured
matrices

• Ingredients to sparse linear
system solvers (CG,
GMRES, …)
– Sparse matrix-vector

products

– Dot-products
– Preconditioners

• Relaxation-based
(Jacobi, Gauss-Seidel, …)

• Incomplete factorizations
(ILU, IC, …)

• Polynomial (Chebyshev,
…)

• Multilevel
(Algebraic/Geometric
multigrid)

Application & Library Domain Layer

Kokkos: A Manycore Device Performance Portability Library for
C++ HPC Applications*

• Standard C++ library, not a language extension
– Core: multidimensional arrays, parallel execution, atomic operations
– Containers: Thread-scalable implementations of common data

structures (vector, map, CRS graph, …)
– LinAlg: Sparse matrix/vector linear algebra

• Relies heavily on C++ template meta-programming to introduce
abstraction without performance penalty

– Execution spaces (CPU, GPU, …)

– Memory spaces (Host memory, GPU memory, scratch-pad, texture
cache, …)

– Layout of multidimensional data in memory

– Scalar type

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

http://trilinos.sandia.gov

*H.C. Edwards, D. Sunderland, C. Trott (SNL)

http://trilinos.sandia.gov

Tpetra: Foundational Layer / Library for Sparse Linear
Algebra Solvers on Next-Generation Architectures*

• Tpetra: Sandia’s templated C++ library for
distributed memory (MPI) sparse linear algebra
– Builds distributed memory linear algebra on top of

Kokkos library
– Distributed memory vectors, multi-vectors, and sparse

matrices
– Data distribution maps and communication operations
– Fundamental computations: axpy, dot, norm, matrix-

vector multiply, ...
– Templated on “scalar” type: float, double, automatic

differentiation, polynomial chaos, ensembles, …

 Higher level solver libraries built on Tpetra
– Preconditioned iterative algorithms (Belos)
– Incomplete factorization preconditioners (Ifpack2,

ShyLU)
– Multigrid solvers (MueLu)
– All templated on the scalar type

http://trilinos.sandia.gov

*M. Heroux, M. Hoemmen, et al (SNL)

http://trilinos.sandia.gov

Stokhos: Trilinos Tools for Embedded
UQ Methods

• Provides “ensemble scalar type”
– C++ class containing an array with length fixed at compile-time
– Overloads all math operations by mapping operation across array

– Uses expression templates to fuse loops

• Enabled in simulation codes through template-based generic progamming
– Template C++ code on scalar type
– Instantiate template code on ensemble scalar type

• Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
– Specializes Kokkos data-structures, execution policies to map vectorization parallelism

across ensemble
– For CUDA, currently requires manual modification of parallel launch to use customized

execution policies

• Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
– Exploits templating on scalar type
– Optimized linear algebra kernels for ensemble scalar type
– Krylov solvers (Belos), Incomplete factorization preconditioners (Ifpack2), algebraic

multigrid preconditioners (MueLu)

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Techniques Prototyped in FENL Mini-App

• Simple nonlinear diffusion equation

– 3-D, linear FEM discretization
– 1x1x1 cube, unstructured mesh
– KL-like random field model for diffusion coefficient
– Trilinos-couplings Trilinos package

• Hybrid MPI+X parallelism
– Traditional MPI domain decomposition using threads within each domain

• Employs Kokkos for thread-scalable
– Graph construction
– PDE assembly

• Employs Tpetra for distributed linear algebra
– CG iterative solver (Belos package)
– Smoothed Aggregation AMG preconditioning (MueLu)

• Supports embedded ensemble propagation via Stokhos through entire assembly and
solve

– Samples generated via tensor product & Smolyak sparse grid quadrature

http://trilinos.sandia.gov

http://trilinos.sandia.gov

Ensemble Assembly Speed-Up

0

0.5

1

1.5

2

2.5

3

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 8 12 16 20 24 28 32En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

16 32 48 64En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

0.5

1

1.5

2

2.5

3

3.5

8 16 24 32 40 48En
se

m
b

le
A

ss
em

b
ly

Sp
ee

d
-U

p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64

Ensemble MPI Halo-Exchange Speed-Up

0

5

10

15

20

25

30

4 12 20 28

En
se

m
b

le
Sp

e
e

d
-U

p

Ensemble Size

Halo Exchange -- Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

0

5

10

15

20

25

4 12 20 28

En
se

m
b

le
Sp

e
e

d
-U

p

Ensemble Size

Halo Exchange -- BG/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

Ensemble Matrix-Vector Product Speed-Up

0

0.5

1

1.5

2

2.5

3

3.5

4

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Blue Gene/Q (64 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

4 8 12 16 20 24 28 32

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Sandy Bridge (16 threads)

16x16x16

32x32x32

64x64x64

0

0.5
1

1.5

2
2.5

3
3.5

4
4.5

16 32 48 64

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

NVIDIA K20X GPU

16x16x16

32x32x32

64x64x64

0

1

2

3

4

5

6

7

8

8 16 24 32 40 48

En
se

m
b

le
M

at
-V

ec
Sp

ee
d

-U
p

Ensemble Size

Intel Xeon Phi (224 Threads)

16x16x16

32x32x32

64x64x64

Ensemble CG Speed-Up

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank

(~ 48x48x48 Mesh/Node)

Ensemble = 16

Ensemble = 32

1.0

1.1

1.2

1.3

1.4

1.5

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 64 128

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

0.0

1.0

2.0

3.0

4.0

1 2 4 8 16

En
se

m
b

le
C

G
Sp

ee
d

-U
p

Nodes

NVIDIA K20X GPU
1 MPI Rank/Node

(~ 64x64x64 Mesh/Node)

Ensemble = 16

Ensemble = 32

Ensemble AMG-Preconditioned CG Speed-Up

Several ensemble AMG setup, solve
kernels have not yet been optimized for
GPU!

1.0

3.0

5.0

7.0

9.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Intel Xeon Phi
1 MPI Rank/Node, 224 Threads/Rank

(~ 48x48x48 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Sandy Bridge
1 MPI Rank/Node, 16 Threads/Rank

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

0.0

1.0

2.0

3.0

4.0

5.0

1 2 4 8 16

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

NVIDIA K20X GPU
1 MPI Rank/Node

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 4 8 16 32 64 128

En
se

m
b

le
Sp

ee
d

-U
p

Nodes

Blue Gene/Q
1 MPI Rank/Node, 64 Threads/Rank

(~ 64x64x64 Mesh/Node)

PCG Solve
Ensemble = 16

PCG Solve
Ensemble = 32

AMG Setup
Ensemble = 16

AMG Setup
Ensemble = 32

• Stochastic Galerkin method (Ghanem and many, many others…):

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive)

• Advantages:
– Many fewer stochastic degrees-of-freedom for comparable level of accuracy

• Challenges:
– Computing SG residual and Jacobian entries in large-scale, production simulation codes

– Solving resulting systems of equations efficiently, particularly for nonlinear problems

• Stokhos package provides tools for implementing SG methods for large-scale
systems

– Integrates with Kokkos, Tpetra for multicore, MPI parallelism

– Techniques demonstrated in FENL

Stochastic sparsity Spatial sparsity

Embedded Stochastic Galerkin UQ Methods

Structure of Galerkin Operator

• Operator traditionally organized with outer-stochastic, inner-spatial
structure
– Allows reuse of deterministic solver data structures and preconditioners
– Makes sense for sparse stochastic discretizations

• For nonlinear problems, makes sense to commute this layout to outer-
spatial, inner-stochastic
– Leverage emerging architectures to handle denser stochastic blocks

Commuted SG Matrix Multiply

• Two level algorithm

– Outer: sparse (CRS) matrix-vector multiply algorithm

– Inner: sparse stochastic Galerkin product

stochastic
basis

stochastic
basis

FEM
basis

FEM
basis

FEM
basis

stochastic
basis

triple
product

stochastic
bases sum

FEM bases
sum

Performance driven by C(i,j,k) tensor

• Precompute and store C

• Given l,m, load A(:,l,m), y(:,l),
x(:,m) into cache

• Iterate over non-zero C(i,j,k)
entries

• Sparse accesses of A, x, but in
fast cache

– Very fast for GPU

• Lots of reuse of A, x entries

• Can load A, x for multiple values
of l,m to reduce reads of C

Commuted SG Mat-Vec Speed-Up

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach over original algorithm

– Performance driven by reading Cijk tensor from memory

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

Challenges and Opportunities

• Significant effort to refactor simulation codes
– Codes will likely be refactored anyway for exascale
– Introduce abstraction at scalar level through template-based generic programming

• Solvers/preconditioners optimized for embedded uncertainty propagation
– Effective stochastic Galerkin preconditioners
– Reuse preconditioning/solver information across ensemble array

• Whole preconditioner
• Reuse multi-grid hierarchy/aggregrates
• Recycle Krylov bases

• Memory access patterns of SG Cijk tensor
– Partitioning, balancing, reordering for cache
– Generate it “on-the-fly” without reading from global memory for low-order PCE

discretizations
• Incorporate into h-adaptive UQ method

• Propagating samples together requires commonality in solution process
– Often need to refine UQ discretization near localized behavior/discontinuities/bifurcations
– How to group samples to exploit commonality when you have it, and separate samples when

you don’t?
– Ordering of samples and generating samples with low discrepancy

Auxiliary Slides

SG Linear Systems

• Stochastic Galerkin Jacobian:

• Stochastic Galerkin Newton linear systems:

• Solution methods:
– Form SG matrix directly (expensive)
– “Matrix-free” approach for iterative linear solvers:

• Sparsity determined by triple product tensor
• Only requires operator-apply for each operator PCE coefficient
• Organize algorithm to minimize operator-vector applies

• Each FEM row “owned” by a CPU thread
– 2 rows per core on Sandy Bridge

• Owning CPU thread computes
– (j,k) loop vectorized (auto-vectorization or intrinsics) for

SIMD parallelism
– Vector width = 4 (AVX) on Sandy Bridge

Multicore-CPU: One-level Concurrency

SIMD within a multicore-CPU thread
thread parallel

Intel Sandy Bridge CPU

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach over original algorithm

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

Sp
e

e
d

u
p

R
e

la
ve

to
M

a
tr

ix
-F

re
e

(O
ri

gi
n

a
l)

Stochas c Discre za on Size P

Intel Sandy Bridge CPU
(n=32k, 16 threads)

Commuted (N=3)

Commuted (N=5)

• Multiple levels of concurrency:
– Each FEM row owned by a thread-block
– Each warp within a thread-block owns an “i”
– Warps within a thread perform SG multiply in parallel, executing FEM

multiply loop serially

• Sparse tensor stored in GPU global memory
– Reduce sparse tensor reads by blocking FEM column loop (“m” loop)
– Heuristic to choose block size based on stochastic discretization size to

balance shared memory usage (reduces occupancy) and tensor reads
– Pack (i,j) indices into single 32-bit integer

Manycore-GPU: Two-level Concurrency

thread-block
parallel

thread-warp
parallel

thread
parallel

serial
within a
thread

thread-block
shared memory

thread-block
shared memory

GPU global
memory

NVIDIA K40 GPU

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach except for larger

stochastic discretizations
– Too much shared memory usage per CUDA block reduces occupancy

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 100 200 300 400 500

Sp
e

ed
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

NVIDIA Kepler K40 GPU
(n=32k)

Commuted (N=3)

Commuted (N=5)

• Map GPU to accelerator architecture:
– GPU thread -> vector lane
– Thread warp -> hyperthread
– Thread block -> core

• Use essentially same algorithm as for GPU, except
– Automatic caching of A, x entries instead of shared-memory loads
– Fixed block size for blocking of FEM column loop (“m” loop)
– No packing of (i,j) indices

Manycore-Accelerator: Two-level
Concurrency

core parallel

hyperthread
parallel

vector
parallel

serial
within a
thread

core L1 cache
memory

core L1 cache
memory

Accelerator
global memory

Intel Xeon Phi 7120P Accelerator

• Simple 3D linear FEM matrix (size n = 32x32x32)
• N = polynomial order (larger N, denser blocks)
• Significant speedup of polynomial approach except for larger

stochastic discretizations
– Calculation falls out of L1 cache

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

G
FL

O
P

/s

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

Original (N=3)

Original (N=5)

0

2

4

6

8

10

12

0 100 200 300 400 500

Sp
ee

d
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

0

2

4

6

8

10

12

0 100 200 300 400 500

Sp
ee

d
u

p
R

el
a

ve
to

M
at

ri
x-

Fr
ee

(O
ri

gi
n

al
)

Stochas c Discre za on Size P

Intel Xeon Phi 7120P Accelerator
(n=32k, 240 threads)

Commuted (N=3)

Commuted (N=5)

