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Research Goal

• Our goal is the automatic detection of small changes in wide 
area surveillance.

- We work primarily with low-resolution, staring, radiometric sensors, which 
are subject to significant jitter.

- Frame rates up to 75 Hz; algorithms must run causally in real time.

• We work directly with real-world data from deployed, operational, 
surveillance systems. 

- As well as video sequences from a range of unclassified sources.

• We are interested in detecting all physical change in the scene, 
no matter how small.

- While rejecting variation due to sensor-related artifact, including pointing 
drift, jitter, noise, pixel irregularities, and specularities.
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Background Subtraction

• The standard approach to change detection involves some form 
of subtraction:

- To detect new energy at time t, subtract from the frame taken at t an estimate 
of the “background” energy in the scene prior to this time.

- The background estimate may be a single prior frame or a more complex 
function evaluated over a window of recent frames.

• If the current frame is not properly registered to the background, 
large values in the difference frame may be caused by intensity 
gradients in the scene, rather than true (physical) change. 

• It follows that change detection in a high jitter environment is 
particularly challenging!
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Mis-Registration

Crop,
shift (r,c)+0.5,
add white noise
and 3x3 target

Crop and add
white noise

Frame 1 Frame 2Full Image

The difference between frames 
slightly out of alignment is 
dominated by scene gradients 
larger than the target change.

Interpolating the second frame 
into alignment with the first blurs 
the target signal.

The two difference frames are 
plotted in the same greyscale.

Frame 2 – Frame 1,
Unregistered

Frame 2 – Frame 1,
Registered

target

target signal, blurred
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Sensor Artifact

Bias Surface
Frame 2 + Bias,
Reduced Response

Frame 1 + Bias,
Reduced Response

When Frame 2 is translated to 
register with the scene of Frame 1, 
the defects move out of alignment, 
creating large apparent changes in 
the difference frame.

All such defects must be known 
and corrected for prior to scene 
registration.

Difference Frame,
Unregistered

Difference Frame,
Registered

Artifacts in pixel 
space challenge 
solutions based on 
scene registration!

A bias surface was 
added to the original 
frames, and reduced 
responsiveness was 
simulated in 5 pixels. 

target
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Algorithm Approach

• Frame registration cannot solve the jitter problem in real time:

- Registration to a small fraction of a pixel is required, but this precision is 
often not achievable at high frame rates for low-quality data.

- Even if jitter-induced offsets are known perfectly, all sensor artifacts (fixed pattern 
noise, self-emission, over- or under-responsive pixels) have to be corrected prior
to frame transformation. This may not be feasible for gradually varying artifacts.

• Our approach does not require registration, instead relying on two 
separate statistical models for variations in pixel intensity. 

- The temporal model handles pixels that are naturally variable due to sensor 
noise or moving scene elements, along with jitter displacements comparable to 
those observed in the recent past.

- The spatial model captures jitter-induced changes that may or may not have 
been observed previously. 
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Normalized Differences

• For each pixel (k, h) at time t, we test whether the observed 
intensity is consistent with the spatial and temporal models. The 
decision is based on simple normalized differences.

X = pixel (k,h)’s intensity at time t,

B = current background estimate,

S = current standard deviation estimate.  

• A large (absolute) value of Z(k, h; t) means the observed pixel 
intensity is outside the range anticipated under the current model.
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Decision Logic

• Normalized differences, ZSPATIAL and ZTEMPORAL are computed using 

the same background B, but different standard deviation estimates.

• If min { | ZSPATIAL|, | ZTEMPORAL| } exceeds a fixed threshold, the 

observed value of the pixel at time t is inconsistent with both 

models, and a candidate detection occurs.

- A one-sided test may be applied if, e.g., only positive deviations are of interest.

• Depending on the characteristics of the target changes sought, 
downstream logic may be employed to reduce the false alarm rate:

- Area filtering: Require detection in at least K connected pixels.

- Duration filtering: Require detection in at least M consecutive frames.
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Subspace Methods for Background Estimation

• Our background estimator models the manner in which pairs of 
pixels vary together.

- The goal is to capture the covariance structure of a sequence of frames in a 
low-dimensional, orthogonal subspace. 

- If jitter and/or pointing drift are major contributors to pixel intensity changes,  
we expect strong patterns of correlation between pixels.

• From a sequence of N-dimensional vectors, X(1), X(2), . . . X(t), we 
could (in theory) compute the NN sample covariance matrix, CXX(t).

- Then use eigen decomposition (or SVD) to estimate the principal subspace.

- Computational issues (run-time and storage) would be significant!

- For a 2K  2K image, N = 4,000,000.

• If the background varies over time, we require a mechanism to 
update the covariance matrix (and basis vectors) throughout the 
frame sequence.

- This need arises in many applications and has driven development in the very 
active field of adaptive subspace estimation.
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Adaptive Subspace Estimation

• Many authors have proposed methods of subspace tracking, 
beginning with Owsley (1978).

- Application to jitter suppression dates (at least) to Barry and Klop (1983).

• Many papers are published in adaptive subspace estimation:

- Frequently cited: Oja and Karhunen (1985); Sanger (1989); Yang (1995); 
Badeau et al. (2005).

- Literature reviews: Comon and Golub (1990); Doukopoulos and Moustakides (2008).

• Approaches differ in terms of computational complexity, desired 
output (principal or noise subspace), tunable parameters, and 
orthogonality.

- Can add a Gram-Schmidt step, with increased computational cost. 
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• Let R be the dimension of the subspace representing background 
energy in the scene of interest (for jitter, want R  3).

- W(t) is the NR matrix whose columns are the basis vector estimates at time t.

• Compute the scene background estimate at time t by projecting data 
vector X(t) onto the subspace spanned by the columns of W(t-1):

B(t) = W (t-1) W T(t-1) X(t)

• Changes that are consistent with those induced by jitter will lie in 
(close to) the subspace, while anomalous (target) events will not.

• Suppose that pixel A correlates highly with pixels B, C, D, E and F in 
frames 1 to t-1: When A increases or decreases, B – F do the same.

- At time t, if A suddenly increases but B – F do not, the change pattern will be 
inconsistent with the covariance structure captured in the basis vectors.

- Pixel A will show a large projection residual for frame t.

Subspace Background Estimates
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• Our approach uses the Fast Approximated Power Iteration (FAPI) 
algorithm for subspace estimation (Badeau et al., 2005).

- Has low computational cost, O(NR), and provides orthogonal basis vectors. 

• FAPI tracks the principal subspace of the data covariance, CXX(t), 
without ever computing, decomposing, or storing this high-
dimensional matrix.

- Approximates the principal subspace of a covariance matrix that is recursively 
updated using exponential weights:

CXX(t) =  CXX(t-1)  +  X(t) XT(t)

• To track gradual change (pointing drift, cloud motion) the subspace 
is updated after every frame (can perform less frequently).

- Parameter β  [0, 1] controls the rate at which new data are incorporated. 

Larger values of β give slower update rates.

- Can selectively slow the background update rate for pixels with large detections. 

FAPI Algorithm for Subspace Tracking
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Background Estimation: Example

jitter induced

jitter induced

dark vehicle

Expanded View Full Scene
The highlighted pixel lies 
along a road, and is subject to 
change due to both camera 
jitter and passing traffic. 

The FAPI background estimate 
tracks jitter closely, but gives 
large residuals when a dark 
vehicle moves through.

Pixel intensity
FAPI background

Time History, Pixel (256, 54)



16

Temporal Variances

• “Temporal” estimates of pixel variance are based on a recent time 
window of projection residuals.  They are computed as follows:

1. Initialize with the sample variance over the first n frames, V(k,h;n).

2. For subsequent frames, update using:

V(k,h;t) = (1 -  )[X(k,h;t) – B(k,h;t)]2 +  V(k,h;t-1)

• Forgetting factor γ  [0,1] determines how rapidly the filter 
responds to new energy. 

- As with the background estimate, the temporal variance estimate for any pixel 

showing a strong detection can be selectively updated at a slower rate.
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Spatial Estimation: Motivation

• As long as the jitter distribution is relatively stable, the temporal 
approach to variance estimation provides reasonable scale factors.

• For non-stationary jitter, temporal estimates are inadequate: when 
jitter increases, false alarms occur along scene gradients.

- Subspace projection alone does not solve this problem ! 

Key Observation: You do not need to observe line-of-sight 
jitter to predict which pixels will be influenced ! 

• We have developed a new mathematical concept for pixel variance 
estimation. Our “spatial” approach produces estimates that are 
robust to non-stationary jitter, based on a single frame.
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Bilinear Interpolation

• The method operates over a grid of conditional expectations in 
the vicinity of each pixel.

dr

dc

v1 v2

v4v3



k

k-1

k+1

hh-1 h+1

• At time t-1, define:  
v1 = value at pixel (k,h)
v2, v3, v4 = values at nearby pixels

• If we knew that jitter between times t-1 
and t was exactly dr rows and dc columns, 
we could use bilinear interpolation to 
estimate the background at pixel (k,h) 
at time t:

• If (dr, dc) is unknown, we can use its statistical distribution to estimate 
the mean and variance of each pixel at time t as a function of 
pixel values at time t-1 (or other previous frame).

E(k,h; t) = v1 + dr (v3-v1) + dc (v2-v1) + drdc (v1+v4-v2-v3) 
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Conditional Expectation

P(0,0)

P(-1,0)P(-1,-1)

P(0,-1)

P(1,-2) P(1,1)

P(-2,-2) P(-2,1)

• For each “cell” near (k,h), we use an 
assumed jitter distribution to 
compute:  

1) The probability of jittering into this cell 
at time t, and:

2)  The expected pixel value (and its square) 
at t, given jitter into this cell.

• After much algebra (see SAND 
report), we apply the Law of Total 
Probability to estimate the 
variance of each pixel at time t.

• Estimates computed in this manner are surprisingly robust to mis-
specification of the jitter distribution: They scale roughly linearly with the 
jitter standard deviation parameter (sigma).

- A good strategy is to set sigma conservatively (based on the worst jitter 
expected) and re-scale on a per-frame basis.
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Incorporating SSP and Spatial Variances

Frame 2 + Bias,
Reduced Response Raw SSP Residuals

The principal subspace was estimated 
from 100 simulated jittered, noise-added 
versions of Frame 1 (with bias surface 
and reduced responsiveness).

SSP residuals show less scene structure 
than the unregistered frame differences, 
and exhibit no sensor artifact. 

After division by spatial standard 
deviations, the nine target pixels have 
values between 1.51 and 4.55, larger than 
ALL non-target pixels.

Difference Frame,
Unregistered

Difference Frame,
Registered

target

Normalized
SSP ResidualsSpatial StDevs
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Example 1 – Kirtland AFB

30 Hz video showing various activities near Sandia’s robotic vehicle range.

Red dots show pixels with at least one detection in frames 2400 – 3800, using 
the dual-variance (spatial & temporal) model. 

dismount

vehiclevehicles

birds in flight

false alarms

false alarms
(scintillation)

Detection threshold = 6.0
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KAFB Example: Single-Model Detections

Detections, Spatial Variances Only

Detections, Temporal Variances Only

When only temporal estimates of 
pixel variance are available, false 
alarms occur at scene edges: 
bright clouds, roads, vegetation, 
and the horizon. 

When background differences are 
normalized with spatial standard 
deviation estimates only, sensor 
noise induces false alarms in 
relatively uniform parts of the 
scene.

Frames 2400 – 3800
Detection Threshold = 6.0
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KAFB Video with Detections

Red boxes indicate pixel detections; no tracker is applied.
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Detector Response

Pixel intensity
FAPI background

Time History, Pixel (256, 54)

Detector Response, Pixel (256, 54)

+ 6 limit

- 6 limit

While the decreased  
intensity due to 
jitter (pink arrow) is 
almost as low as the 
drop due to a dark 
vehicle passing 
through the pixel 
(blue arrow), the 
detector responds 
differently to jitter 
and signal.
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Detecting Birds in Flight
Frame 2891 Frame 2892

Frame 2894

Frame 2893

Frame 2895 Frame 2896 Frame 2897

Frame 2898 Frame 2899 Frame 2900

A bird in flight is 
detected in seven 
frames.

Detected Pixels, frames 2891 - 2900
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Example 2 - Border Camera Footage

• Video from a surveillance camera on the Texas/Mexico border.

- Downloaded from “Virtual Border Watch”, a live video streaming website 
operated by the Texas Border Sherriff’s Coalition and Bluservo.net.

- Network of pole-mounted surveillance cameras operating in the visible during 
daytime hours and infrared at night.
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Nighttime Scene Along River

10 Hz infrared video sample; nighttime scene.  

- In this example, jitter was artificially induced.

- Detector set to find only positive change: new heat sources.

Red dots show pixels with at least one detection in frames 500 – 1500, 
using the dual model (temporal & spatial) approach.

Texas Border Sherriff's coalition and www.blueservo.net

false alarms over water

Two dismounts emerge 
from the vegetation 
along the river, return to 
the riverside, re-emerge, 
and proceed down the 
track and out of the 
scene.

At times, they are lost in 
the near-saturated pixels 
to the right of the track.

dismount 
activity

Detection threshold = 6.0
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Single-Model Detections

Detections, Spatial Variances Only

Detections, Temporal Variances Only

When only temporal estimates of 
pixel variance are available, false 
alarms occur at scene edges: 
riverbanks and tree trunks.

With only spatial standard 
deviation estimates, scene and 
sensor noise induce false alarms 
in relatively uniform parts of the 
scene.

Frames 500 - 1500
Detection Threshold = 6.0
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Border Video with Detections

Red boxes indicate pixel detections; no tracker is applied.
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Example 3 – ZooCam

• 10 Hz video downloaded from the “Bear Cam” at the Woodland Park Zoo.

• Original video was in color – downgraded to greyscale for our analysis.

• Stable camera with no jitter; many moving scene elements (running water).

• Several birds visit the scene: both the birds and their shadows are detected.

moving water

small waterfall

time stamp 
cropped for 
analysis
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ZooCam Detections

Detections, Spatial Variances Only

Detections, Dual Model

Detections, Temporal Variances Only

bird enters 
scene

bird remains 
in position

departs

A small dark bird enters the 
scene in frame #3412 and 
departs in frame #3669. 

With no camera jitter, temporal 
standard deviation estimates 
suppress most false alarms. 
The spatial estimates fail to 
account for pixel variability on 
the moving water pixels.

Detections shown for frames 3380 – 3675, Threshold = 8.0
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Bird in Foreground

Frame #3691

In the last 25 frames of the video, a bird flies into the 
foreground of the camera. Both the bird and its 
shadow are detected.

Detection boxes shown for frame #3691, Dual Model, Threshold = 8.0
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ZooCam Video With Detection Boxes

Red boxes indicate pixel detections; no tracker is applied.

Frames 3380 – 3700, Threshold = 8.0
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Run-Time Performance

• Real-time implementations of the detection algorithm described 
here have been utilized for a variety of applications over the past 
several years. 

- The software has run on frames as large as 2k  2k, at frame rates up to 75 Hz.

• Scene background and temporal variance estimates are efficiently 
updated after every frame. 

- For large frames, adaptive subspace estimation (FAPI) processing runs on 
specialized GPU hardware.

• Spatial variance estimates are currently updated once per second. 

- Sufficient for slowly-changing background or gradual pointing drift.

- We are planning upgrades to a higher refresh rate, to enable robust change 
detection even in the presence of fast pointing drift.
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Summary

• The algorithm outlined here is designed to provide robust change 
detection, even in the presence of platform jitter, pointing drift, and 
significant sensor artifacts.

• The three key elements are:

1. Background modeling via adaptive subspace estimation;

2. Temporal variance estimates to track historical change;

3. Spatial variance estimates to model susceptibility to jitter and/or 
pointing drift.

• The approach has proven performance in real-world operations.

• Sandia was granted a U.S. Patent for the spatial variance estimation 
technique.

U.S. Patent No. 8,103,161, K.M. Simonson and T.J. Ma, “Estimating Pixel 
Variances in the Scenes of Staring Sensors,” 24-Jan-2012.
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BACKUP SLIDES
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Detection Parameters

DETECTOR PARAMETER: SETTINGS,
KAFB & Border

SETTINGS,
BearCam

FAPI Decay Rate 0.975 0.975

FAPI Decay Rate, Suppressed 0.99 0.99

Variance Decay Rate 0.99 0.99

Variance Decay Rate, Suppressed 1.0 1.0

Detection Threshold 6.0 8.0

Background Suppression Threshold 6.0 6.0

Variance Suppression Threshold 3.0 3.0

Jitter Standard Deviation 2.0 0.25

Connected Neighbors 3 5

The same parameter values were used for the KAFB and border videos. However, a 
one-sided (positive deviations only) threshold was used for the infrared border 
data, while a two-sided (absolute value) threshold was applied for the visible KAFB 
data. For the Bear Cam example, the detection threshold was increased and the 
jitter standard deviation was decreased.
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