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Credible Prediction in Science and Engineering rih) e

Predictions

Laboratories

=  Computational science now provides the
“third pillar” of scientific discovery

= Predictive computational models, enabled by
theory and experiment, can help:

Predict and analyze scenarios, including in
untestable regimes

Explore operational ranges to assess risk and
suitability

Design through virtual prototyping

Test theories for complex scenarios

Guide physical experiments

= Answer what-if? when experiments infeasible...

To make simulation credible for scientific, engineering, & policy decisions, we must:

= Ask critical questions of theory, experiments, simulation

= Use V&V and model management processes to ensure quality and rigor

= Manage uncertainties and use tools for UQ, calibration, optimization




Uncertainty in Complex Systems ) .

X

= Uncertainty in some features of X, S, and/or A
= Sources include: inherent variability (aleatory) and ignorance (epistemic)
= Present in: model predictions and experimental observations

= Probabilistic models are one way to quantify the effects of
uncertainty on output properties
= Based on data, theory, and/or expert opinion

= Calibration / validation of probabilistic models is possible (and necessary)
= Probabilistic representation for input and/or system description
implies probabilistic representation for output
> predictions of system performance with quantified uncertainties




Uncertainties in Simulation and Validation ()&

A few uncertainties affecting computational model output/results:

= statistical variation,
inherent randomness

Final Temperature Values

= model form / accuracy e
4 L
= material properties ST
. . 5
= physics/science parameters £2 1
* manufacturing quality 0.5
O -
u operating environment Temperature [deg C]

= failure thresholds

= jnitial, boundary conditions; forcing

= geometry / structure / connectivity

= experimental error (measurement error, measurement bias)

= numerical accuracy (discretizations, solvers); approximation error

= human reliability, subjective judgment, linguistic imprecision

The effect of these on model outputs should be integral to an
analyst’s deliverable: best estimate PLUS uncertainty!




Example of Unit-to-Unit Variability

Wind turbine blade
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Probability Basics
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Random Variables: Definitions

* Let X be a random variable

MATLAB code

— Cumulative distribution function F(x)

(CDF)

Flz)=Pr(X <z), — o<z <

— Probability density function
(PDF)

fa) = S Fa)

e The 3 CDFs/PDFs of X shown
here have zero mean and unit
variance

0.5¢

/ Exponential
D 1 1

o

Gaussian
Uniform

-2 0 2
i
1 .
j?(aj) xx=linspace(-3,3,200);

0.5¢

a=sqrt(12)/2;
FU=unifcdf (xx,-a,a);
plot (xx,FU,’r’);

. \L
0 b=

2

S ot

fU=unifpdf (xx,-a,a);
plot(xx,fU,’r’);
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% Some Properties of Random

Variables: Statistical Moments

* Absolute moments of X

©. @)

B = [ af fla)de, p 1

e Central moments of X

B = [ = ) () da

» Comments

— For applications, we often only know some of the moments

(statistics) of X

— X 1s only partially defined by its moments (a complete definition

requires the PDF or CDF)
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Random Variables:
Sample Generation

n independent samples of Gaussian random variable X
with u =0 and o = 1 by Monte Carlo simulation

x=randn(500,1) ;
plot([1:500],x);

0.5

Normalized histogram

—0.146 <p < 0.0202
0.892 <o < 1.009

f(z)

0 4
xXr

hist(x,25);hold
xx=linspace(-4,4,250) ;

f=normpdf (xx,0,1);
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Some Commonly Used PDFs

0.4 Normal (Gaussian) ’ Exponential 3 Beta
Example: design Exan;lple: bounded
life of a light bulb 2 phenomend
0.2 1 05
1
0 : ' ; 0 0 '
-2 0 2 0 5 0 0.5 1
Poisson Geometric Discrete uniform
0.4 — 0.3 | 0.2
Example: l e o
vehicle and 0.2 Example: Coin toss T T T T
0.2 internet traffic . 0.1 Example: roll of a
' [ { 0.1 { ' single die
ol T e . T e ol ;
0 5 10 1 2 3 4 5 6 1 2 3 45 6
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Mandom Variables: Modeling

Techniques

20 independent samples of X

— X1y Xgy «ees Xy
« Statistical considerations

— Method of moments

— Method of maximum likelithood
 Physical considerations

— Is X continuous or discrete?

— Is X bounded? Semi-bounded?

— Is PDF of X symmetric about x = 0?
 Other considerations

— Conservatism / ease of use

— What are the consequences / tradeoffs
between the different models?

Normalized histogram
0.8 ;
[ |Data
lg =0.65 ] —— Gaussian
[y = 0.05 —— Uniform
[B —0.3 3 — Beta
~
0.4 /”“k -
| |
N
O—4 0 4
x

[thN1,thN2]=normfit (x);
1G=prod (normpdf (x,thN1,thN2)) ;

Tools: Matlab, Minitab,
Excel, JMP Sandia
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%‘IH!WO or More Random Variables:

Random Vectors

Gaussian CDF
* Let X = (X, X,) be a random vector

— Joint CDF

£ 117
1”0 o,
7
ittty

F(l’l,l‘g) = PI’(Xl S I M XQ S xg)

— Joint PDF

02 fx,.x,(z1,22) 'Gaussian PDF

le,Xz (:Ulax2) — m F(xl,a:Q) ol ,

0.1

— Special case: X, and X, are independent
(this 1s a very strong condition) 0l

05 o
FHAEAKESS

le,Xz (wlaxQ) — le (35'1) ‘ fX2 (332) -4 -4 1

Pr(X; < 1/40 X5 < 3) = Pr(X; < 1/4) - Pr(Xs < 3 @ Moo

Laboratories



‘ Random Vectors:
Correlation / Covariance

e Correlation of X = (Xla Xz) Ix,.%x, (x1,%2) | w=randn(2,100);

02 | r=[1 .25;.25 1];
. | x=chol(r)*w;
COI‘I‘(Xl, XQ) = E[Xl XQ] GauSSlaI_l PDF /@ plot(x(1,:),x(2,:),%0’)

0.1+

* Covariance of X = (X}, X,)

Cov(X1, Xo) = E[(X1 — 1) (X2 — p2)]

o COV(Xl, XQ)
v/Cov(X1, X1) - Cov(Xa, X»)

P

* Special case: X and X, are
uncorrelated

T 4 7 4 | Sandia
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UQ Methods




Current DOE Mission Areas: UQ R&D and Deployment (i) i

Energy (ASCR, EERE, NE CASL)
Stockpile Stewardship (NNSA ASC) Wind turbines, nuclear reactors

Safety in abnormal environments

Climate (SciDAC, CSSEF)
Ice sheet modeling, CISM, CESM, ISSM

Reference height temperature

accumulation, temperature surface topography

surface velocity

calving la /

flow law

shelf geometry

melt/freeze distribution % ‘ - % bed topography

geothermal flux

Figure 1: Schematic of observations, boundary conditions, and processes affecting ice sheet initialization.




Emphasis on Scalable Methods for High-fidelity UQ on HPC  (rlh) dotm

Laboratories

Key Challenges:
« Severe simulation budget constraints (e.g., a handful of HF runs) _ ==
* Moderate to high-dimensional in random variables: O(10") to O(102) [post KLE]

» Compounding effects: ﬂ ¢
* Mixed aleatory-epistemic uncertainties (= nested iteration) "y ¢
« Requirement to evaluate probability of rare events (e.g., safety criteria) 02 AL
* Nonsmooth responses (= difficulty with fast converging spectral methods) 044

Core UQ Capabilities: T I

« Sampling methods: LHS, MC, QMC, incremental B rs R

+  Reliability methods: local (MV, AMV+, FORM, ...), global (EGRA, GPAIS, POFDarts) * [EH.~—....

« Stochastic expansion methods: polynomial chaos, stochastic collocation -§.

» Epistemic methods: interval estimation, Dempster-Shafer evidence - ! !

0'?].0 0.z 0.4 0.6 0.8 1.0

Research Thrusts:
+ Compute dominant uncertainty effects despite key challenges above
+ Scalable UQ foundation

« Adaptive refinement, Adjoint enhancement, Sparsity detection
« Leverage his foundation within component-based meta-iteration

* Mixed UQ incl. model form, Multifidelity UQ, Bayesian methods

r = Nhi/Nlo = 6

©— CS multi
—&A— CS single
—6— SG multi
—8— SG single
—B—Mc

—
(=]

©
0
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N
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N
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i
d

N
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-
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Relative Error in Std Dev

10° 10' 107 10° 10*
Equivalent Number of High-Fidelity Model Evaluations




Uncertainty Quantification Algorithms in DAKOTA:
New methods bridge robustness/efficiency gap
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Latin Hypercube, | Incremental Adaptive Bootstrap, FSU
Monte Carlo Importance Jackknife
Local: Mean Value,| Global reliability GPAIS, POFDarts, Recursive Local:
1st- & 2nd-order methods (EGRA) [ GPs with gradient- | emulation, Notre Dame,
reliability (AMV+, enhancement TGP Global:
FORM, SORM) Research: Scalability, Robustness, Goal-orientation Vanderbilt
Polynomial chao Dimension-adapfive | Local adapt | Stanford,
stoch collocatio p-/h-refinement, refinement, Utah
(rearession, grad-enhancement, | adjoint EE,
Adv. Deployment sparsity detection discrete vars
Interval-valued/ : Opt-based interval Discrete Arizona St
2nd-order prob. Fills Gaps est, Dempster-Shafer, GPs, Imprec.
w/nested sampling discrete model forms| ,obability
Emulator based model LANL,
MCMC with QUESO, | selection, UT Austin
GPMSA multifidelity
Efficient subspace | Rand fields / | NCSU, Utah,
method, Morris- stoch proc, Cornell,
Smale topology Moment meth| Maryland




Sa m p | i ng '11 Eﬁrﬁ%ﬂes

Starting from distributions on the uncertain input values, draw observations from each
distribution, pair samples, and execute the model for each pairing
- ensemble of results yields distributions of the outputs

= Monte Carlo: basic random sampling
= Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)
= Quasi Monte Carlo: Halton, Hammersley, Sobol sequences
= Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling
Sampling is not the most efficient UQ method, but is easy to implement, robust, & transparent.

Input Distributions Output Distributions * sample mean and variance
N samples of X ‘\ N N
N realizations of Y — 1 1
T=27)|1, = Y [rw)-T ]
o NS =
Output 1 « full PDF and CDF

PN

Output 2




Latin Hypercube Sampling
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= LHS s stratified random sampling among equal probability bins for all 1-D projections of an

n-dimensional set of samples.
= Early work by McKay and Conover

= Restricted pairing by Iman = enforce prescribed input correlations

A possible LHS for n=2, N=5 with X1 = normal and X2 = uniform

G
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1
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0.8
0.8
0.6
0.4 0.6
0.2 2
0.4 +
0
—o0 A B C D 0
0.2
Intervals Used with a LHS of Size N =5 in Terms of the
PDF and CDF for a Normal Random Variable

@
H
[ ]
1
J
@
K
@
L
—0 C D o0
samples = 5 1 samples = 10
S 08 A
IS N
A
N
06 B
A X - +
0.4
"
A
Al N
0.2
i) 4 A
+ A A+




Simple Monte Carlo Example )

Laboratories

Ratio of area of an inscribed circle to the area of a square

n =100 n = 1000 n = 10000
0.792 <I < 0.928 0.766 <I < 0.816 0.783 <I < 0.799

o'n

=1 1

1 T
I:—2 V2 —x?dx
™ Jo
T
= — ~0.785
4




UQ Methods: Reliability




UQ with Reliability Methods:
Mean Value Method

Linear approximation for first two moments:

g = 9(px)
= E 3oty
(].lz

Projection of moments for reliability 1ndlces.

1y, — Z
ﬁcdf = ac]
_ ¥ — Z
zZ = pf o P8z
Heedf —
Tg

Normality assumption:

{ plg<z) = ®(—Fear)
plg>z) = ®(—PBeear)

i) =

dg

F (14x)

Lg

= pg — 04 Beas
= Hg + Ty Iﬁcr_'df

Sandia
m National
Laboratories

Rough
statistics




UQ with Reliability Methods: ) i
Most Probable Point (MPP) Search Methods

Performance Measure
Failure Approach (PMA)

Reliability Index
Approach (RIA)

minimize u’u w u* - MPP minimize +G(u)
' T

subject to G(u) =72 subject to u’'u = /32

FORM

v

Find min dist to G level curve SORM  Find min G at S radius

Used for fwd map z = p/ NI Used for inv map p/B > z
%o.sf B Natan 9 u: <I)('z?) - F(T?) %o.sf
Sost < f z = Lu

Response Value




Reliability Algorithm Variations: e
National
eliability Algorithm Variations: i)
Sample Algorithm Performance: short column test
* 43 Z levels = 43 p levels
RIA SQP Function  NIP Function CDF p Target z PMA SQP Function NIP Function CDF z Target p
Approach Evaluations  Evaluations  Error Norm Offset Norm  Approach Evaluations  Evaluations  Error Norm Offset Norm
MVFOSM 1 1 0.1548 0.0 MVFOSM 1 1 7.454 0.0
MVSOSM 1 1 0.1127 0.0 MVSOSM 1 1 6.823 0.0
X-space AMV 45 45 0.009275 18.28 x-space AMV 45 45 0.9420 0.0
u-space AMV 45 45 0.006408 18.81 u-space AMV 45 45 0.5828 0.0
x-space AMV? 45 45 0.002063 2.482 x-space AMV? 45 45 2.730 0.0
u-space AMV? 45 45 0.001410 2.031 u-space AMV? 45 45 2.828 0.0
x-space AMV+ 192 192 0.0 0.0 x-space AMV+ 171 179 0.0 0.0
u-space AMV+ 207 207 0.0 0.0 u-space AMV+ 205 205 0.0 0.0
x-space AMV?2+ 125 131 0.0 0.0 x-space AMV2+ 135 142 0.0 0.0
u-space AMVZ2+ 122 130 0.0 0.0 u-space AMV2+ 132 139 0.0 0.0
x-space TANA 245 246 0.0 0.0 x-space TANA 293> 272 0.04259 1.598e-4
u-space TANA 296* 278% 6.982e-5 0.08014 u-space TANA 325* 311* 2.208 5.600e-4
FORM 626 176 0.0 0.0 FORM 720 192 0.0 0.0
SORM 669 219 0.0 0.0 SORM 535 191* 2410 6.522e-4

Note: 2"-order PMA with prescribed p level requires B(p) inversion



Solution-Verified Reliability Analysis and Design of MEMS h lﬁgﬁd,:t‘

=  Problem: MEMS subject to substantial variabilities
= Material properties, manufactured geometry, residual stresses
= Partyields can be low or have poor durability
= Data can be obtained = aleatory UQ = probabilistic methods

" Goal: account for both uncertainties and errors in design

switch

= Integrate UQ/OUU (DAKOTA), ZZ/QOlI error estimation (Encore), T
adaptivity (SIERRA), nonlin mech (Aria) = MESA application N\
= Perform soln verification in automated, parameter-adaptive way - E\/
E, :
= Generate fully converged UQ/OUU results at lower cost T S
F_(AW,S )
e AMVZ+ and FORM converge to different MPPs 72'
(+ and o, respectively) 25 Parameter study over
e Issue: high nonlinearity leading to multiple s < 3o uncertain variable
legitimate MPP solns. i il =5 range for fixed
] L 14 1 1 *,
e Challenge: design optimization may tend to & dDes1§n dv;:;lal?lﬁs Ay
seek out regions encircled by the failure L i s te e z;e
domain. 1t-order and even 2"-order B el N enotes g(x) = Fiu(x)
e . . 2 s =-=3.0.
probability integrations can experience < '
difficulty with this degree of nonlinearity. *
Optimizers can/will exploit this model Y s
weakness. ore

-0.2
width bias AW (um)




Efficient Global Reliability Analysis (EGRA) rh) i

Laboratories

e Address known failure modes of local reliability methods:
— Nonsmooth: fail to converge to an MPP
— Multimodal: only locate one of several MPPs
— Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
e Based on EGO (surrogate-based global opt.), which exploits special features of GPs
— Mean & variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
— Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

124
101 GP surrogate -
8-: " ---------- *
67
4_'
] True fn
27
0- .
0 2 4 6 8 10 12
121 0.06
] Expected
101 0.05
] Improvement
8 H0.04
> H0.03
4{\ H0.02
2 40.01
04 0

o 2 4 6 8 10 12
From Jones, Schonlau, Welch, 1998
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iability Analysis

exploit

explore

» —

10

0 —
10
- — Reliability method Function evaluations First-order p (% error) Second-order p (% error) Sampling p, (% error, avg. error)
" Noapproximation 70 0.11797 (277.0%) 0.02516 (—19.6%)
= —— x space AMV2+ 26 0.11797 (277.0%) 0.02516 (—19.6%) _—
L uspace AMV+ 26 0.11777 (277.0%) 0.02516 (—19.6%) —
» — u space TANA 131 0.11797 (277.0%) 0.02516 (—19.6%)
& LHS solution 10k — — 0.03117 (0.385%, 2.847%)
% LHS solution 100 k e S 0.03126 (0.085%. 1.397%)
P03 LHS solution 1M _— —_— 0.03129 (truth, 0.339%)
o |xspace EGRA 35.1 —_ _— 0.03134 (0.155%, 0.433%)
o —|u space EGRA 35.2 = _ 0.03133 (0.136%, 0.296%)




UQ Methods: Stochastic Expansions




Non-Intrusive Stochastic Expansions: A i,
Laboratories
Polynomial Chaos and Stochastic Collocation

Polynomlal chaos: spectral prOJectlon using orthogonal polynomial basis fns

Up(&) = Lo(‘fl) Wo(&z) = 1 Distribution ~ Density function Polynomial Weight function ~ Support range
R Ui(8) = (&) dol&) = & Normal ﬁe; Hermite Hep(z) e [—o00, 50]
E o - Wa(€) = uo(el)m(&z) = & e —SEene als) 1)
iV3(8)] using |16 - T e I s
Wy(&) = (&) (&) = L& Gamma ;Jrn GeneralizedLaguerreL,(:’)(a:) 2% [0, o0]
Us5(&) = '40(51)“2(&2) = &-1
* Estimate ¢; using regression or numerical integration: (R, / -
. . s = — Q
sampling, tensor quadrature, sparse grids, or cubature | * ‘1’2 ‘1'2 !
Stochastic collocation: instead of estimating coefficients for N,
known basis functions, form interpolants for known coefficients R(&) = E :rj L;(¢)
» Global: Lagrange (values) or Hermite (values+derivatives) =1
* Local: linear (values) or cubic (values+gradients) splines
¢ — 5 =
L; = H ':> Z Z r 31,.. n) (L“ TN 1/sqrt(N) for LHS
k Ji=l  ga=l N —
#J Sparse interpolants formed using 2 of tensor interpc% ' \\\
* Tailor expansion form: -
— p-refinement: anisotropic tensor/sparse, generalized sparse )
— h-refinement: local bases with dimension & local refinement
. ) super-algebraic for num.
« Method selection: fault tolerance, decay, sparsity, error est. | integration & regression




Approaches for forming PCE/SC Expansions
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mh

Random sampling: PCE
Expectation (sampling):
— Sample w/i distribution of &

— Compute expected value of
product of R and each ¥;

Least squares regression:
— Sample w/i distribution of &

— Solves least squares data fit

for all coefficients at once:
Compressive sensing

— Underdetermined systems: sparse

basis pursuit for with L1 regularization

Tensor-product quadrature: PCE/SC

2O =Y F(E)w!
=

AIO) = (@ @) (NE) =3 - D FG ) (wfi @ @ul)

IR |
Every combination of 1-D rules iririiiiiianiiiiae

Scales as m"

1-D Gaussian rule of order m
- integrands to order 2m - 1

R

s s 00
. .e

Assuming R'P; of order 2p,
selectm=p +1

iiiiiiiiiiiiiiiiiiiii

o (w,n) =

Sparse Grid: PCE/SC

> ("o o)

li|<w+n

o (w,n) =

Z (—1)w+nlil ( n—1

wH1<[i[<w-n w+n — il

).(02/751(@...@52/1")

Pascal’s triangle (2D example):

xty

Cubature: PCE

Stroud and extensions (Xiu, Cools)

- Low order PCE Iy
~ global SA, anisotropy detection f -RJ

Gaussiani=2-> p=1

2rk 2rk
Xk 2r—1 = V2 cos i rt'! Xk2r = 258In i
n-+1 n+4+1
Arbitrary PDF | ;) _ I (k)
=—|Jycx" —é
et -]




Adaptive Collocation Methods: Generalized Sparse Grids () i

Polynomial order (p-) refinement approaches:

» Uniform: isotropic tensor/sparse grids

Laboratories

» Increment grid: increase order/level, ensure change (restricted growth in nested rules)
« Assess convergence: L? change in response covariance

+ Dimension-adaptive: anisotropic tensor/sparse grids

wy <i-y<wy+|yl

« PCE/SC: variance-based decomp. - total Sobol’ indices - anisotropy
« PCE: spectral coefficient decay rates = anisotropy
» Goal-oriented dimension-adaptive: generalized sparse grids
« PCE/SC: change in QOI induced by trial index sets on active front

1. Initialization: Starting from reference grid
(often w = 0 grid), define active index sets using
admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set,
evaluate tensor grid, form tensor expansion,
update combinatorial coefficients, and combine
with reference expansion. Perform necessary
bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that
induces largest change in statistical QOI.

4. Update sets: If largest change > tolerance, then
promote selected trial set from active to old and
compute new admissible active sets; return to 2.

If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets
to old set, update combinatorial coefficients, and
perform final combination of tensor expansions to
arrive at final result for statistical QOI.

Smolyak sparse grid

e 410 eV

5 e
©
iF e
i e
A 2 e
1 e e
2 0f © o e e e
=

L L L L 1 1 L
0 1 2 3 4 5 6

(Gerstner, 2003)

Fine-grained control:
frontier not limited by
prescribed shape of
o index set constraint

B E E K E E E K 0 05 1 5 2
xt xi



Application Deployment (CASL)

Application: Nuclear reactor cores experience localized boiling, which leads to CRUD
(Chalk River Unidentified Deposit). These deposits result in undesirable power shifts
(CIPS) within the core. Statistics of mass evaporation (ME) rate are of interest.

Methodology: PCE/SC with uniform/adaptive refinement compared to LHS

Plant A (n=4, smooth, mild anisotropy) Plant B (n=10, discontinuous, high anisotropy)
' | ——= s I ' [ ins
—=— PCE uniform o —&— PCE uniform
—=&— SC uniform 10 F SN —F&— SC uniform  [7
1oL ~— PCE adapfive i N =— PCE adaptive|]
—&— SC adaptive —+&— SC adaptive |1
o, ]
o ¥
E 107k §
= a‘“mh < o'k
8 S~ 8
E HH“‘*& E
] ©
S 02| o
107F \
D )
107
E— 10' 10° 10° 10* 10° - 10° 10° 10* 10°

Evaluations Evaluations




Torque

0.095

ASCR: VAWT with Uncertain Gust Loading

T T T
—4A— gusttime
—— gustX0

—— gustamp

Parameter step

Blade normal force

—4&— gusttime

—— gustX0

—bH— gustamp
i T

20
-100

-80

T
-20 0 20 40 60 80
Parameter step

PDF from 10k LHS Samples
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—+— Orig model
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; ; : i ) i i i :
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: PDF from 10k LHS Samples
10 t r : : N T
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CCDF from 10k LHS Samgies

Sandia
National
Laboratories

e
fr)

e
@

e
Y

o
w

Complementary cumutative prebabiity
o
o

o
[

0.1

r x L L L L L
006 0085 007 0075 0.08 0085 000 0.005

0.055 0.1
w©ique
3 CCODF from 10k LHS Samples
T T
—=&— PCE Askey basis
08 ~—&— PCE NumGen basie
0.8 .
i
'g 0.7 B
§ 0.6] 1
Sos 4
e
g 0.4 -
§ 0.3 E
0.2 4
= —
0.1 E
0 1 1
15 20 25 30 35 40
biade normal force




Local Error Estimation with Hierarchical Surpluses (i) i

1 From X. Ma, 2010
1 a a a a; a :

Hierarchical basis: ) " A

* Improved precision in Qol increments ;

» Surpluses provide error estimates for R 0 AN
local refinement using local/global oo ’” .
hierarchical interpolants o A7 |

* New error indicators under
development that leverage both i
value and gradient surpluses v r v v r_

o o
o oo
N o~ o o

“ & '
0.2 . - 05
_T - 0.0

0.0 05

0’%,0 02 04 06 08 1.0

O = N W = Ut

=) L 3 1.0 e
d . . d * o comm o o .
OOOCIIERCOOS ¢ L] L] L]
0.8l @ ceam o o . 4
. [} . o 0 . L eecccee
o .I ° o
0.6 LN N N ) L ]
: e o
. . . . . . . . ° . . . . ° o L J . . L] L] SRR
° .
0.4 se e
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° ° . . . . L ese
3 |
° ® hd * * L = Y eSe

From J. Jakeman, July 2010 i—ex=1(2,1) 09002 04 06 08 Lo




Extend Scalability: (Adjoint) Derivative-Enhancement () i
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P E: r ) . i 7] .
PCE: - 1y oy )
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* Local: cubic Hermite splines
* Global: Hermite interpolating polynomials
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Stochastic Expansions on Unstructured Grids:
Compressive Sensing

(a) CS methodology (/1 objective) (b) Pseudo-inverse (¢2 objective)

BP
c =argmin ||c|,s+ suchthat dc=y

BPDN and OMP
¢c =argmin ||c|[, suchthat |®c -y, <c¢

LASSO and LARS
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or in matrix notation
b =Ax+¢
and find the minimum norm solution
mxin |Ax — b||2
or ( more recently ) find a sparse solution
mxin |x|[y suchthat |Ax—Db|,<¢

Structured or unstructured grids
Value-based or gradient-enhanced

5D Gerstner without gradients and wsing sub-sampled tensor grid
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Adaptive Basis Selection:

Compressed Sensing in High Dimensions
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In high dimensions, we may only be able to consider a 2nd or 3rd degree total-order basis

p 3 4

5

A% 12,341

135, 751

1,221,759

What if the function is anisotropic and important coefficients correspond to p > 37

We seek algorithms that can adaptively determine an effective basis = expanding front
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UQ Methods: Epistemic




Categorization of Uncertainty ) e,

Uncertainty can be categorized to be one of two different types:

— Aleatory: inherent variability with sufficient data = objective probabilistic models
— Aka irreducible, type-A, stochastic

Input
Distributions

> B>

—

Simulation
Code(s)

& Output
|:> Distributions

— Epistemic: uncertainty from lack of knowledge - subjective probabilistic & nonprobabilistic models
— Aka reducible, subjective, type-B, state of knowledge uncertainty

— Strict interpretation is fully reducible: in perfect state of information, collapses to constant value
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— Bayesian: posterior spectrum from data-dominated to prior-dominated




Epistemic UQ ) i
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Epistemic UQ: one does not know enough to specify probability distributions
Sometimes referred to as subjective, reducible, or lack of knowledge uncertainty

Interval analySiS f—lnput 4 Simulation [ [ output ] ]
I Intervals ] - Code(s) - Intervals
. . . [—]
= Propagate input intervals to output intervals _

= |ntrusive interval methods (operation by operation propagation) have been investigated for
several decades, but have not become mainstream (key issue: interval growth)

= Sampling methods (+ surrogate models if expensive evals) are commonly used
= Optimization methods are promising and some variants exploit data reuse

Dempster-Shafer theory of evidence 10

= Basic probability assignment (interval-based) "“11

= Solve opt. problems (currently sampling-based)
to compute belief/plausibility for output intervals
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Sampling (nongradient-based)
e Strengths: Simple and reliable, convergence rate is dimension-independent
e Weaknesses: N'V/2 convergence = expensive for accurate tail statistics
Local reliability (gradient-based)
e Strengths: computationally efficient, widely used, scalable to large n (w/ efficient/adjoint derivatives)
e Weaknesses: algorithmic failures for limit states with following features
e Nonsmooth: fail to converge to an MPP * Multimodal: only locate one of several MPPs
e Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP
Global reliability (typically nongradient-based)
e Strengths: handles multimodal and/or highly nonlinear limit states, tailored for efficient probability estimation
e Weaknesses:
e Conditioning, nonsmoothness - ensemble emulation (recursion, discretization)
e Scaling to large n - adjoint gradient-enhancement, additional refinement bias
Stochastic expansions (typically nongradient-based)
» Strengths: functional representation, exponential convergence rates for smooth problems, best for moment est.
* Weaknesses:
* Nonsmoothness - local h-refinement based on hierarchical error estimates
e Scaling to large n -> adaptive refinement, adjoint gradient-enhancement, sparsity detection
Epistemic methods (typically nongradient-based)
» Strengths: extrema are point solutions instead of integrated quantities

* Weaknesses: high degrees of input structure (Dempster-Shafer) require many extrema
(bridging intervals and distributions breaks down as continuum is approached discretely)
I EEEEEEEE—————————
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are Random in Time and/or Space
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time-varying phenomena
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}i More General Probabilistic Models

are Random in Time and/or Space

Probability density at u = (1,1)!

Gaussian random field
Sample #1 Sample #2
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» Random fields can represent
spatially-varying phenomena
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