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Credible Prediction in Science and Engineering

Predictions

 Computational science now provides the 
“third pillar” of scientific discovery

 Predictive computational models, enabled by 
theory and experiment, can help:

 Predict and analyze scenarios, including in 
untestable regimes

 Explore operational ranges to assess risk and 
suitability

 Design through virtual prototyping

 Test theories for complex scenarios

 Guide physical experiments

 Answer what-if? when experiments infeasible…

To make simulation credible for scientific, engineering, & policy decisions, we must:

 Ask critical questions of theory, experiments, simulation

 Use V&V and model management processes to ensure quality and rigor

 Manage uncertainties and use tools for UQ, calibration, optimization



 Uncertainty in some features of X, S, and/or A
 Sources include: inherent variability (aleatory) and ignorance (epistemic)
 Present in: model predictions and experimental observations

 Probabilistic models are one way to quantify the effects of 
uncertainty on output properties
 Based on data, theory, and/or expert opinion
 Calibration / validation of probabilistic models is possible (and necessary)

 Probabilistic representation for input and/or system description 
implies probabilistic representation for output
 predictions of system performance with quantified uncertainties

Uncertainty in Complex Systems

Input / Environment System Output / Response Threshold



 statistical variation, 
inherent randomness

 model form / accuracy

 material properties

 physics/science parameters

 manufacturing quality

 operating environment

 failure thresholds

 initial, boundary conditions; forcing

 geometry / structure / connectivity

 experimental error (measurement error, measurement bias)

 numerical accuracy (discretizations, solvers); approximation error

 human reliability, subjective judgment, linguistic imprecision
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Uncertainties in Simulation and Validation

A few uncertainties affecting computational model output/results:

The effect of these on model outputs should be integral to an 
analyst’s deliverable: best estimate PLUS uncertainty!



Example of Unit-to-Unit Variability
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Probability Basics



Random Variables: Definitions

• Let X be a random variable
– Cumulative distribution function 

(CDF)

– Probability density function 
(PDF) 

• The 3 CDFs/PDFs of X shown 
here have zero mean and unit 
variance

MATLAB code



Some Properties of Random 
Variables: Statistical Moments

• Absolute moments of X

• Central moments of X

• Comments
– For applications, we often only know some of the moments 

(statistics) of X

– X is only partially defined by its moments (a complete definition 
requires the PDF or CDF)

p = 1 gives the mean 
of X, denoted by 

p = 2 gives the variance 
of X, denoted by 2



Random Variables: 
Sample Generation

n independent samples of Gaussian random variable X
with  = 0 and  = 1 by Monte Carlo simulation



Some Commonly Used PDFs
Beta

Discrete uniform

Example: roll of a 
single die

Example: bounded 
phenomena

Normal (Gaussian) Exponential

Poisson

Example: design 
life of a light bulb

Example: 
vehicle and 
internet traffic

Geometric

Example: Coin toss



Random Variables: Modeling 
Techniques

• 20 independent samples of X
– x1, x2, …, x20

• Statistical considerations
– Method of moments

– Method of maximum likelihood

• Physical considerations
– Is X continuous or discrete?

– Is X bounded? Semi-bounded?

– Is PDF of X symmetric about x = 0?

• Other considerations
– Conservatism / ease of use

– What are the consequences / tradeoffs 
between the different models?

Tools: Matlab, Minitab, 
Excel, JMP



• Let X = (X1, X2) be a random vector

– Joint CDF

– Joint PDF

– Special case: X1 and X2 are independent 
(this is a very strong condition)

Two or More Random Variables:
Random Vectors

Gaussian CDF

Gaussian PDF



Random Vectors: 
Correlation / Covariance

• Correlation of X = (X1, X2)

• Covariance of X = (X1, X2) 

• Special case: X1 and X2 are 
uncorrelated

This does not mean X1 and 
X2 are independent!

Gaussian PDF



UQ Methods



Current DOE Mission Areas: UQ R&D and Deployment

Stockpile Stewardship (NNSA ASC)
Safety in abnormal environments

Energy (ASCR, EERE, NE CASL)
Wind turbines, nuclear reactors

Climate (SciDAC, CSSEF)
Ice sheet modeling, CISM, CESM, ISSM



Emphasis on Scalable Methods for High-fidelity UQ on HPC

Key Challenges:

• Severe simulation budget constraints (e.g., a handful of HF runs)

• Moderate to high-dimensional in random variables: O(101) to O(102)  [post KLE]

• Compounding effects:

• Mixed aleatory-epistemic uncertainties ( nested iteration)

• Requirement to evaluate probability of rare events (e.g., safety criteria)

• Nonsmooth responses ( difficulty with fast converging spectral methods)

Core UQ Capabilities:

• Sampling methods: LHS, MC, QMC, incremental

• Reliability methods: local (MV, AMV+, FORM, …), global (EGRA, GPAIS, POFDarts)

• Stochastic expansion methods: polynomial chaos, stochastic collocation

• Epistemic methods: interval estimation, Dempster-Shafer evidence

Research Thrusts:

• Compute dominant uncertainty effects despite key challenges above

• Scalable UQ foundation

• Adaptive refinement, Adjoint enhancement, Sparsity detection

• Leverage his foundation within component-based meta-iteration

• Mixed UQ incl. model form, Multifidelity UQ, Bayesian methods



Uncertainty Quantification Algorithms in DAKOTA:
New methods bridge robustness/efficiency gap

Traditional 
(at Sandia)

Production Recently 
released

Under dev
Planned

Collabs.

Sampling Latin Hypercube, 
Monte Carlo

Incremental Adaptive 
Importance

Bootstrap, 
Jackknife

FSU

Reliability Local: Mean Value, 
1st- & 2nd-order 
reliability (AMV+, 
FORM, SORM)

Global reliability 
methods (EGRA)

GPAIS, POFDarts, 
GPs with gradient-
enhancement

Recursive 
emulation, 
TGP

Local:
Notre Dame, 
Global:
Vanderbilt

Stochastic 
expansion

Polynomial chaos, 
stoch collocation 
(regression, 
tensor, sparse)

Dimension-adaptive 
p-/h-refinement, 
grad-enhancement, 
sparsity detection

Local adapt 
refinement, 

adjoint EE,
discrete vars

Stanford, 
Utah

Epistemic & 
Mixed UQ

Interval-valued/ 
2nd-order prob. 
w/nested sampling

Opt-based interval 
est, Dempster-Shafer, 
discrete model forms

Discrete 
GPs, Imprec. 
probability 

Arizona St

Bayesian Emulator based 
MCMC with QUESO, 
GPMSA

model 
selection, 
multifidelity

LANL, 
UT Austin

Other Efficient subspace 
method, Morris-
Smale topology

Rand fields / 
stoch proc,

Moment meth

NCSU, Utah, 
Cornell, 
Maryland

Adv. Deployment 

Fills Gaps

Research: Scalability, Robustness, Goal-orientation



Sampling
Starting from distributions on the uncertain input values, draw observations from each 
distribution, pair samples, and execute the model for each pairing
 ensemble of results yields distributions of the outputs

 Monte Carlo: basic random sampling

 Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)

 Quasi Monte Carlo:  Halton, Hammersley, Sobol sequences

 Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling

Sampling is not the most efficient UQ method, but is easy to implement, robust, & transparent.

N realizations of Y

Simulation 
Model

Output Distributions

N samples of X

Output 1

Output 2

Input  Distributions • sample mean and variance

• full PDF and CDF

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

30 36 42 48 54 60 66 72 78 84





N

i

iuT
N

T
1

)(
1  




N

i

i TuT
N

T
1

2
)(

1
2



Latin Hypercube Sampling
 LHS is stratified random sampling among equal probability bins for all 1-D projections of an 

n-dimensional set of samples.

 Early work by McKay and Conover

 Restricted pairing by Iman  enforce prescribed input correlations
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A possible LHS for n=2, N=5 with X1 = normal and X2 = uniform



Simple Monte Carlo Example

 Ratio of area of an inscribed circle to the area of a square



UQ Methods: Reliability



UQ with Reliability Methods:
Mean Value Method

Rough 
statistics

Linear approximation for first two moments:

Projection of moments for reliability indices:

Normality assumption:



G(u)

Reliability Index 
Approach (RIA)

Find min dist to G level curve
Used for fwd map z  p/

Performance Measure
Approach (PMA)

Find min G at  radius
Used for inv map p/ z

Nataf x  u:

Failure
region

UQ with Reliability Methods:
Most Probable Point (MPP) Search Methods



Reliability Algorithm Variations:
Sample Algorithm Performance: short column test

Note: 2nd-order PMA with prescribed p level requires (p) inversion

43 z levels 43 p levels



Solution-Verified Reliability Analysis and Design of MEMS

 Problem: MEMS subject to substantial variabilities

 Material properties, manufactured geometry, residual stresses

 Part yields can be low or have poor durability

 Data can be obtained  aleatory UQ  probabilistic methods

 Goal: account for both uncertainties and errors in design

 Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), 
adaptivity (SIERRA), nonlin mech (Aria)  MESA application

 Perform soln verification in automated, parameter-adaptive way

 Generate fully converged UQ/OUU results at lower cost

Parameter study over 
3σ uncertain variable 
range for fixed 
design variables dM*.  
Dashed black line 
denotes g(x) = Fmin(x) 
= -5.0.

• AMV2+ and FORM converge to different MPPs 
(+ and o, respectively)

• Issue: high nonlinearity leading to multiple 
legitimate MPP solns.

• Challenge: design optimization may tend to 
seek out regions encircled by the failure 
domain.  1st-order and even 2nd-order 
probability integrations can experience 
difficulty with this degree of nonlinearity. 
Optimizers can/will exploit this model 
weakness.



Efficient Global Reliability Analysis (EGRA)

True fn

GP surrogate

Expected
Improvement

From Jones, Schonlau, Welch, 1998

• Address known failure modes of local reliability methods:

– Nonsmooth: fail to converge to an MPP

– Multimodal: only locate one of several MPPs

– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs

– Mean & variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)

– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)



Efficient Global Reliability Analysis

10 samples 28 samples

explore

exploit



UQ Methods: Stochastic Expansions



Stochastic collocation: instead of estimating coefficients for 
known basis functions, form interpolants for known coefficients

• Global:  Lagrange (values) or Hermite (values+derivatives)

• Local:    linear (values) or cubic (values+gradients) splines

Sparse interpolants formed using  of tensor interpolants

Non-Intrusive Stochastic Expansions:
Polynomial Chaos and Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

using

• Estimate j using regression or numerical integration:
sampling, tensor quadrature, sparse grids, or cubature

• Tailor expansion form:
– p-refinement: anisotropic tensor/sparse, generalized sparse

– h-refinement: local bases with dimension & local refinement

• Method selection: fault tolerance, decay, sparsity, error est.
super-algebraic for num. 
integration & regression

1/sqrt(N) for LHS



Approaches for forming PCE/SC Expansions 

Random sampling: PCE Tensor-product quadrature: PCE/SC

Sparse Grid: PCE/SC Cubature: PCE

Stroud and extensions (Xiu, Cools)

 Low order PCE 
 global SA, anisotropy detection

Expectation (sampling):

– Sample w/i distribution of 

– Compute expected value of 
product of R and each j

Least squares regression:

– Sample w/i distribution of 

– Solves least squares data fit 
for all coefficients at once:

Compressive sensing

– Underdetermined systems: sparse 
basis pursuit for with L1 regularization

– Every combination of 1-D rules

– Scales as mn

– 1-D Gaussian rule of order m
 integrands to order 2m – 1

– Assuming Rj of order 2p, 
select m = p + 1

T
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S
S

G

Pascal’s triangle (2D example):

Arbitrary PDF

Gaussian i = 2  p = 1



Adaptive Collocation Methods: Generalized Sparse Grids

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

• Dimension-adaptive: anisotropic tensor/sparse grids

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy

• PCE: spectral coefficient decay rates  anisotropy

• Goal-oriented dimension-adaptive: generalized sparse grids

• PCE/SC: change in QOI induced by trial index sets on active front

(Gerstner, 2003)

Fine-grained control: 
frontier not limited by 
prescribed shape of 
index set constraint

Smolyak sparse grid
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1. Initialization: Starting from reference grid 
(often w = 0 grid), define active index sets using 
admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, 
evaluate tensor grid, form tensor expansion, 
update combinatorial coefficients, and combine 
with reference expansion. Perform necessary 
bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that 
induces largest change in statistical QOI. 

4. Update sets: If largest change > tolerance, then 
promote selected trial set from active to old and 
compute new admissible active sets; return to 2. 
If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets 
to old set, update combinatorial coefficients, and 
perform final combination of tensor expansions to 
arrive at final result for statistical QOI.



Application Deployment (CASL)

Plant A (n=4, smooth, mild anisotropy)  Plant B (n=10, discontinuous, high anisotropy)

Application: Nuclear reactor cores experience localized boiling, which leads to CRUD 
(Chalk River Unidentified Deposit).  These deposits result in undesirable power shifts 
(CIPS) within the core.  Statistics of mass evaporation (ME) rate are of interest.

Methodology: PCE/SC with uniform/adaptive refinement compared to LHS



ASCR: VAWT with Uncertain Gust Loading



Hierarchical basis:

• Improved precision in QoI increments

• Surpluses provide error estimates for 
local refinement using local/global 
hierarchical interpolants

• New error indicators under 
development that leverage both 
value and gradient surpluses

From X. Ma, 2010

From J. Jakeman, July 2010

Local Error Estimation with Hierarchical Surpluses



Extend Scalability: (Adjoint) Derivative-Enhancement

PCE:

• Linear regression including derivatives

• Gradients/Hessians  addtnl. eqns.

• Over-determined: SVD, eq-constrained LS

• Under-determined: compressive sensing
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and similar for higher-order moments

Cubic shape fns: type 1 
(value) & type 2 (gradient)

SC:

• Gradient-enhanced interpolants

• Local: cubic Hermite splines

• Global: Hermite interpolating polynomials

Nonsmooth

Smooth



Stochastic Expansions on Unstructured Grids:

Compressive Sensing
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Isotropic Anisotropic

Adaptive Basis Selection:
Compressed Sensing in High Dimensions

In high dimensions, we may only be able to consider a 2nd or 3rd degree total-order basis

What if the function is anisotropic and important coefficients correspond to p > 3?

We seek algorithms that can adaptively determine an effective basis  expanding front



UQ Methods: Epistemic



Categorization of Uncertainty

– Epistemic: uncertainty from lack of knowledge  subjective probabilistic & nonprobabilistic models

– Aka reducible, subjective, type-B, state of knowledge uncertainty

– Strict interpretation is fully reducible: in perfect state of information, collapses to constant value

– Bayesian: posterior spectrum from data-dominated to prior-dominated
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Code(s)
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Uncertainty can be categorized to be one of two different types:

– Aleatory: inherent variability with sufficient data  objective probabilistic models

– Aka irreducible, type-A, stochastic



Epistemic UQ
Epistemic UQ: one does not know enough to specify probability distributions

Sometimes referred to as subjective, reducible, or lack of knowledge uncertainty

Interval analysis

 Propagate input intervals to output intervals

 Intrusive interval methods (operation by operation propagation) have been investigated for 
several decades, but have not become mainstream (key issue: interval growth)

 Sampling methods (+ surrogate models if expensive evals) are commonly used

 Optimization methods are promising and some variants exploit data reuse

Dempster-Shafer theory of evidence

 Basic probability assignment (interval-based)

 Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals

Imprecise probability (p-boxes), Info gap, …



Core UQ Algorithms: strengths, weaknesses, research needs

Sampling (nongradient-based)

• Strengths: Simple and reliable, convergence rate is dimension-independent

• Weaknesses: N-1/2 convergence  expensive for accurate tail statistics

Local reliability (gradient-based)

• Strengths: computationally efficient, widely used, scalable to large n (w/ efficient/adjoint derivatives)

• Weaknesses: algorithmic failures for limit states with following features

• Nonsmooth: fail to converge to an MPP

• Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)

• Strengths: handles multimodal and/or highly nonlinear limit states, tailored for efficient probability estimation

• Weaknesses:

• Conditioning, nonsmoothness  ensemble emulation (recursion, discretization)

• Scaling to large n  adjoint gradient-enhancement, additional refinement bias

Stochastic expansions (typically nongradient-based)

• Strengths: functional representation, exponential convergence rates for smooth problems, best for moment est.

• Weaknesses: 

• Nonsmoothness  local h-refinement based on hierarchical error estimates

• Scaling to large n  adaptive refinement, adjoint gradient-enhancement, sparsity detection

Epistemic methods (typically nongradient-based)

• Strengths: extrema are point solutions instead of integrated quantities

• Weaknesses: high degrees of input structure (Dempster-Shafer) require many extrema
(bridging intervals and distributions breaks down as continuum is approached discretely)

• Multimodal: only locate one of several MPPs



Extra Slides



More General Probabilistic Models 
are Random in Time and/or Space

Probability density at t = 0.1

Probability density at t = 0
3 independent samples of a 
Gaussian stochastic process

• Stochastic processes can represent 
time-varying phenomena



Probability density at u = (0,1)T

Probability density at u = (1,1)T 2 independent samples of a 
Gaussian random field

• Random fields can represent 
spatially-varying phenomena

-3 0 3

More General Probabilistic Models 
are Random in Time and/or Space


