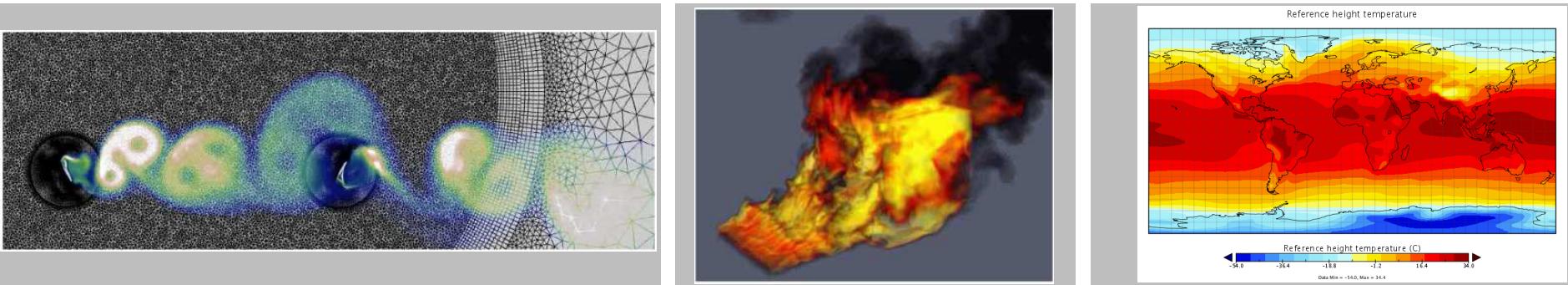


Exceptional service in the national interest

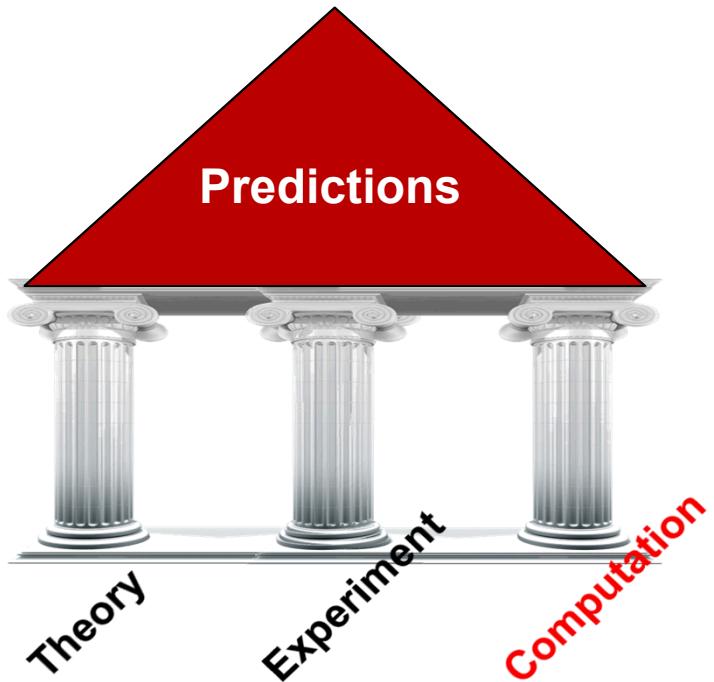


Introduction to Uncertainty Analysis

Michael S. Eldred, Richard V. Field
Sandia National Laboratories, Albuquerque, NM

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Credible Prediction in Science and Engineering



- Computational science now provides **the “third pillar” of scientific discovery**
- **Predictive computational models**, enabled by theory and experiment, can help:
 - Predict and analyze scenarios, including in untestable regimes
 - Explore operational ranges to assess risk and suitability
 - Design through virtual prototyping
 - Test **theories** for complex scenarios
 - Guide physical **experiments**
- *Answer what-if? when experiments infeasible...*

To make simulation credible for scientific, engineering, & policy decisions, we must:

- Ask critical questions of theory, experiments, simulation
- Use V&V and model management processes to ensure quality and rigor
- Manage uncertainties and use tools for UQ, calibration, optimization

Uncertainty in Complex Systems

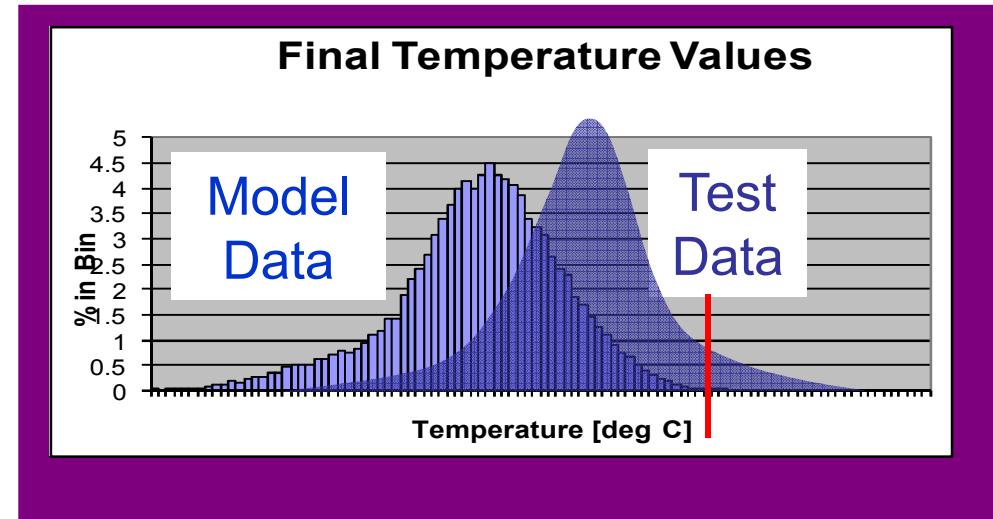


- Uncertainty in some features of X , S , and/or A
 - Sources include: **inherent variability (aleatory)** and **ignorance (epistemic)**
 - Present in: **model predictions** and **experimental observations**
- Probabilistic models are one way to quantify the effects of uncertainty on output properties
 - Based on data, theory, and/or expert opinion
 - Calibration / validation of probabilistic models is possible (and necessary)
- Probabilistic representation for input and/or system description implies probabilistic representation for output
→ **predictions of system performance with quantified uncertainties**

Uncertainties in Simulation and Validation

A few uncertainties affecting computational model output/results:

- statistical variation, inherent randomness
- model form / accuracy
- material properties
- physics/science parameters
- manufacturing quality
- operating environment
- failure thresholds
- initial, boundary conditions; forcing
- geometry / structure / connectivity
- experimental error (measurement error, measurement bias)
- numerical accuracy (discretizations, solvers); approximation error
- human reliability, subjective judgment, linguistic imprecision

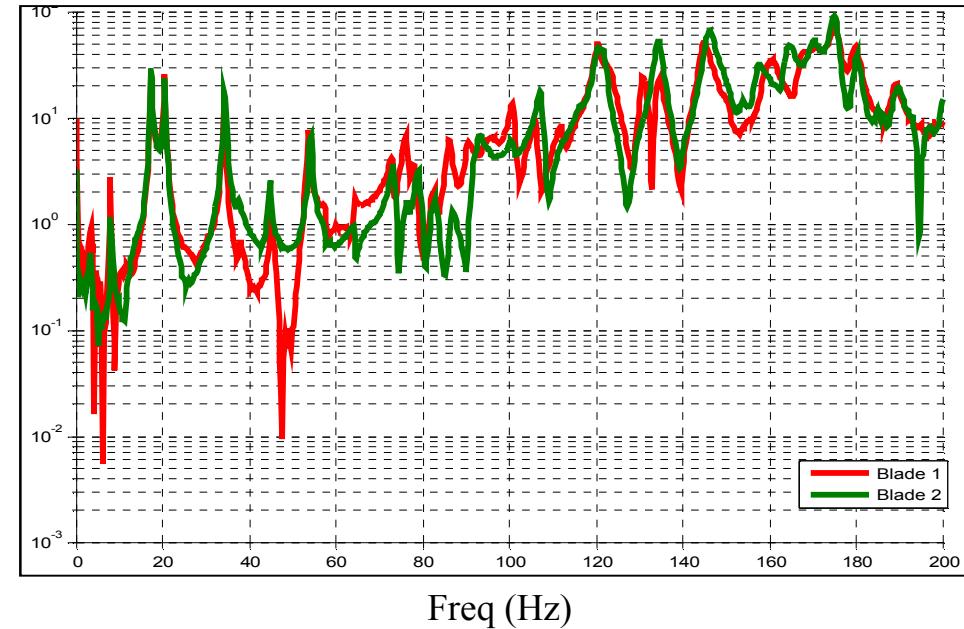


The effect of these on model outputs should be integral to an analyst's deliverable: *best estimate PLUS uncertainty!*

Example of Unit-to-Unit Variability

Wind turbine blade

Response FRFs of two “identical” blades



Probability Basics

Random Variables: Definitions

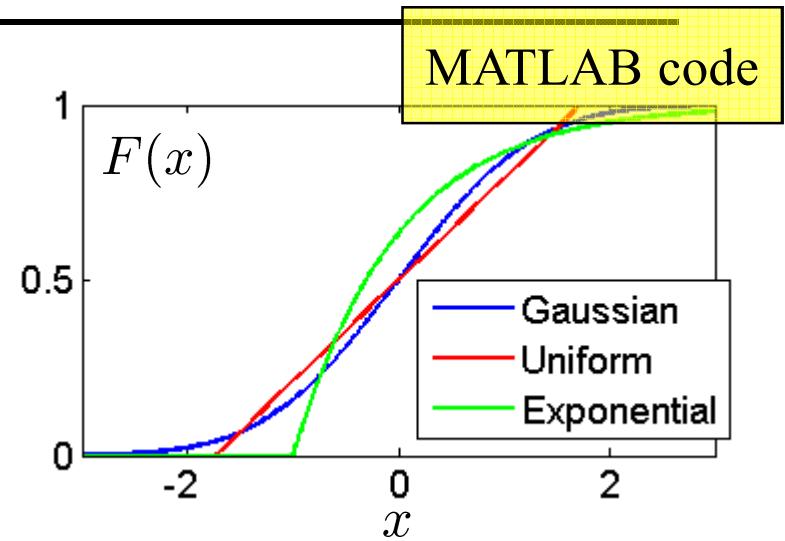
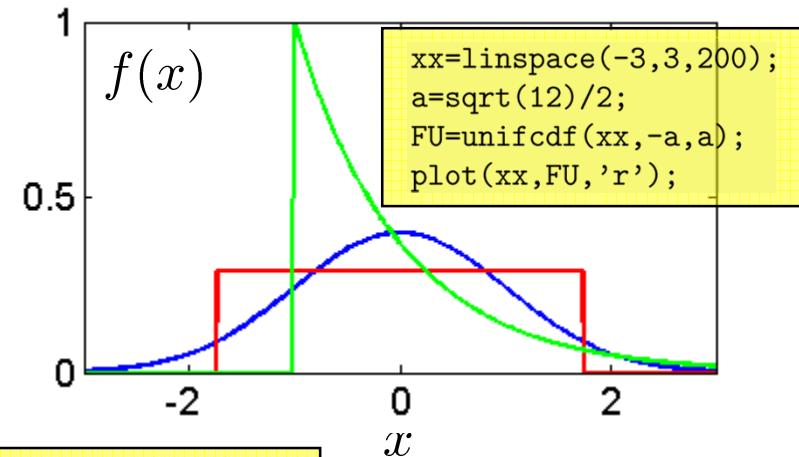
- Let X be a random variable
 - Cumulative distribution function (CDF)

$$F(x) = \Pr(X \leq x), \quad -\infty < x < \infty$$

- Probability density function (PDF)

$$f(x) = \frac{d}{dx} F(x)$$

- The 3 CDFs/PDFs of X shown here have zero mean and unit variance



```
fU=unifpdf(xx,-a,a);  
plot(xx,fU,'r');
```


Some Properties of Random Variables: Statistical Moments

- Absolute moments of X

$$E[X^p] = \int_{-\infty}^{\infty} x^p f(x) dx, \quad p \geq 1$$

$p = 1$ gives the mean of X , denoted by μ

- Central moments of X

$$E[(X - \mu)^p] = \int_{-\infty}^{\infty} (x - \mu)^p f(x) dx$$

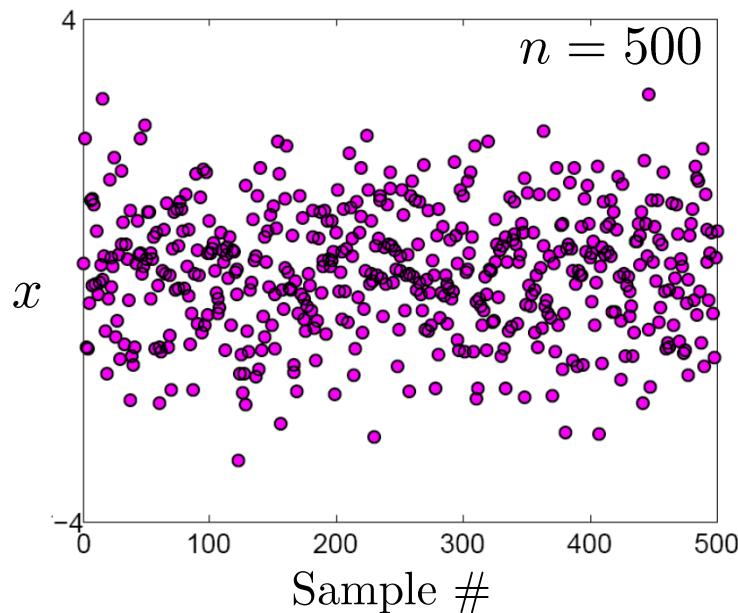
$p = 2$ gives the variance of X , denoted by σ^2

- Comments

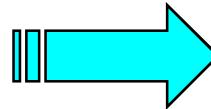
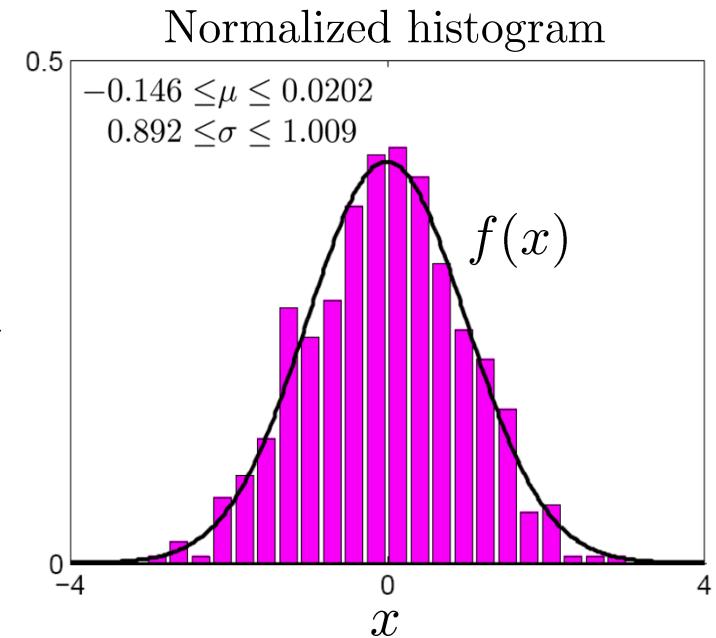
- For applications, we often only know some of the moments (statistics) of X
- X is only partially defined by its moments (a complete definition requires the PDF or CDF)

Random Variables: Sample Generation

n independent samples of Gaussian random variable X
with $\mu = 0$ and $\sigma = 1$ by Monte Carlo simulation

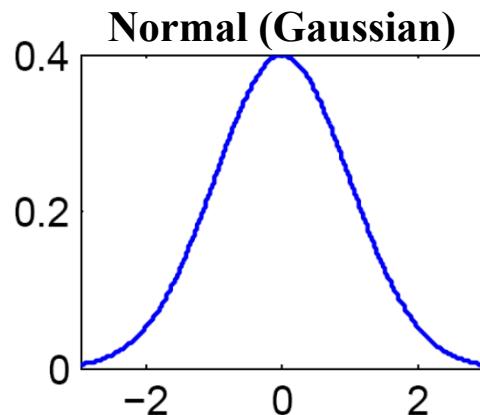
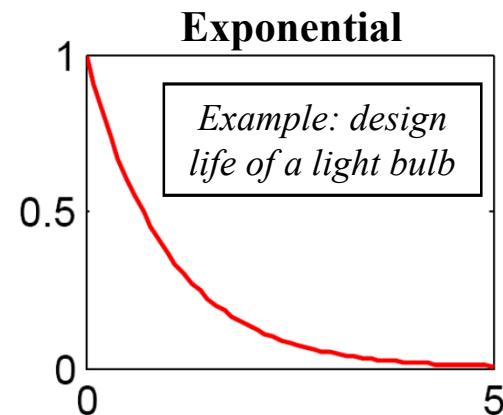
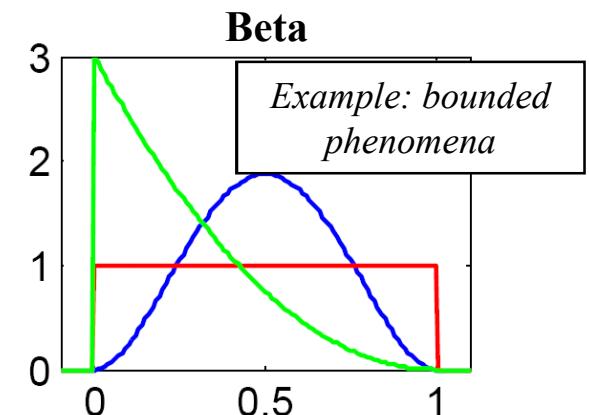
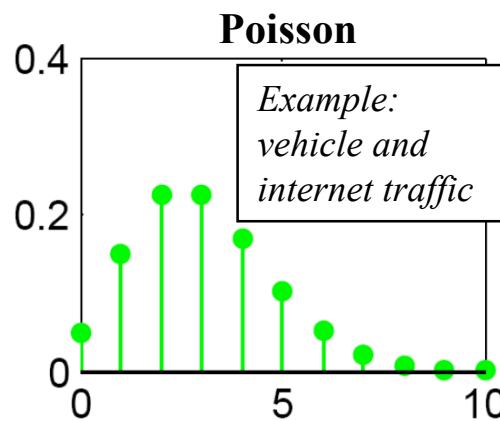
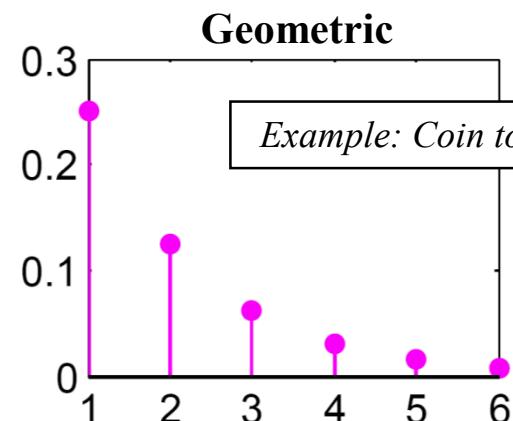
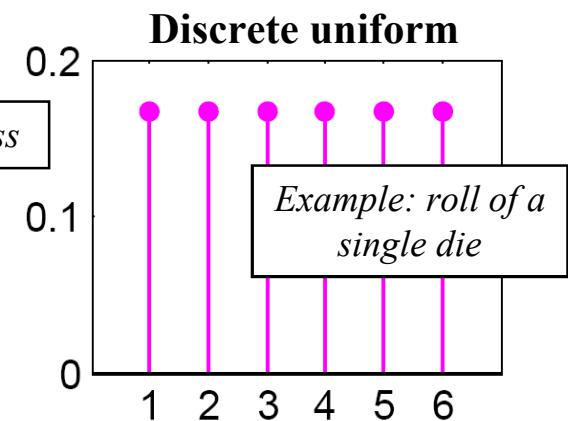


```
x=randn(500,1);  
plot([1:500],x);
```



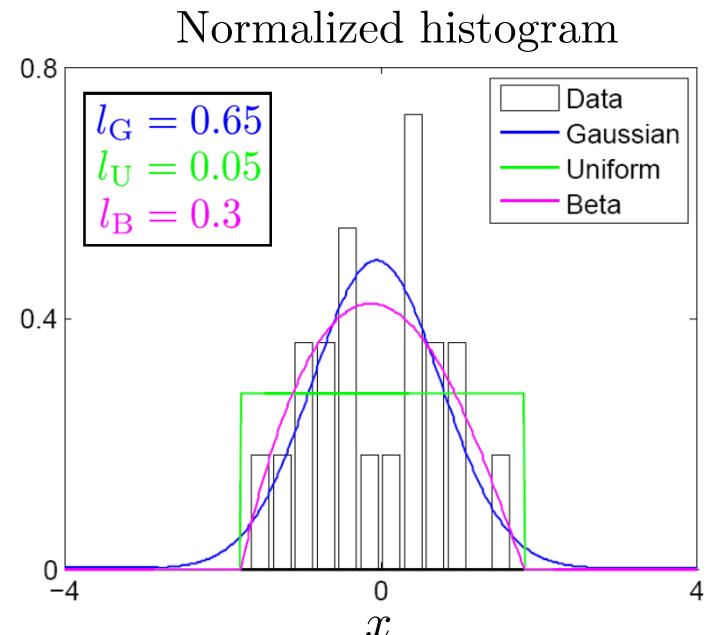
```
hist(x,25);hold  
xx=linspace(-4,4,250);  
f=normpdf(xx,0,1);  
plot(xx,f)
```


Some Commonly Used PDFs



Random Variables: Modeling Techniques

- 20 independent samples of X
 - x_1, x_2, \dots, x_{20}
- Statistical considerations
 - Method of moments
 - Method of maximum likelihood
- Physical considerations
 - Is X continuous or discrete?
 - Is X bounded? Semi-bounded?
 - Is PDF of X symmetric about $x = 0$?
- Other considerations
 - Conservatism / ease of use
 - What are the consequences / tradeoffs between the different models?



```
[thN1,thN2]=normfit(x);  
1G=prod(normpdf(x,thN1,thN2));
```

Tools: Matlab, Minitab,
Excel, JMP

Two or More Random Variables: Random Vectors

- Let $X = (X_1, X_2)$ be a random vector
 - Joint CDF

$$F(x_1, x_2) = \Pr(X_1 \leq x_1 \cap X_2 \leq x_2)$$

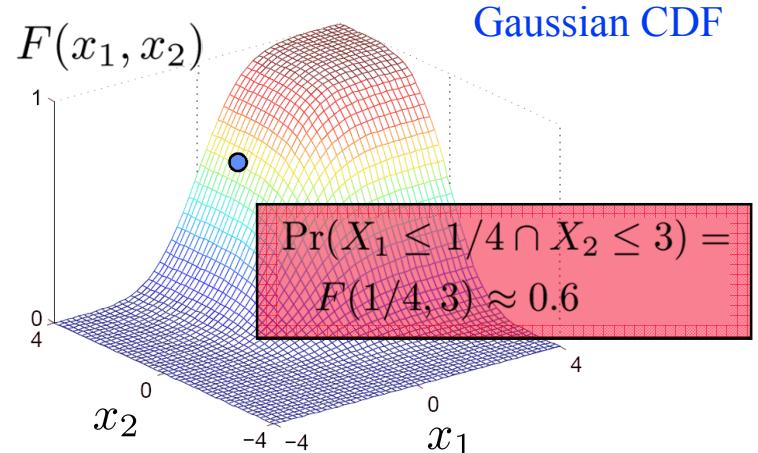
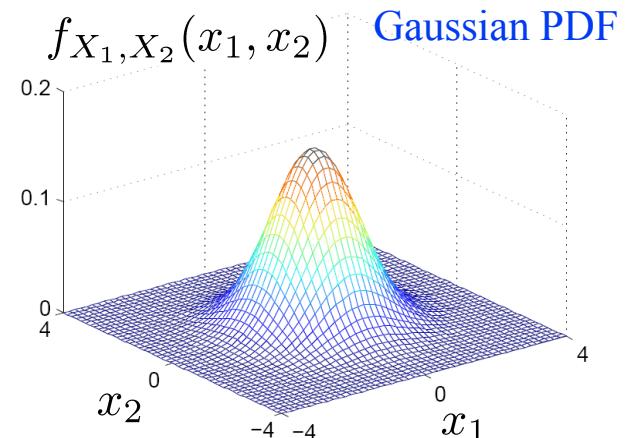
- Joint PDF

$$f_{X_1, X_2}(x_1, x_2) = \frac{\partial^2}{\partial x_1 \partial x_2} F(x_1, x_2)$$

- Special case: X_1 and X_2 are independent
(this is a very strong condition)

$$f_{X_1, X_2}(x_1, x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2)$$

$$\Pr(X_1 \leq 1/4 \cap X_2 \leq 3) = \Pr(X_1 \leq 1/4) \cdot \Pr(X_2 \leq 3)$$



Random Vectors: Correlation / Covariance

- Correlation of $X = (X_1, X_2)$

$$\text{Corr}(X_1, X_2) = \text{E}[X_1 X_2]$$

- Covariance of $X = (X_1, X_2)$

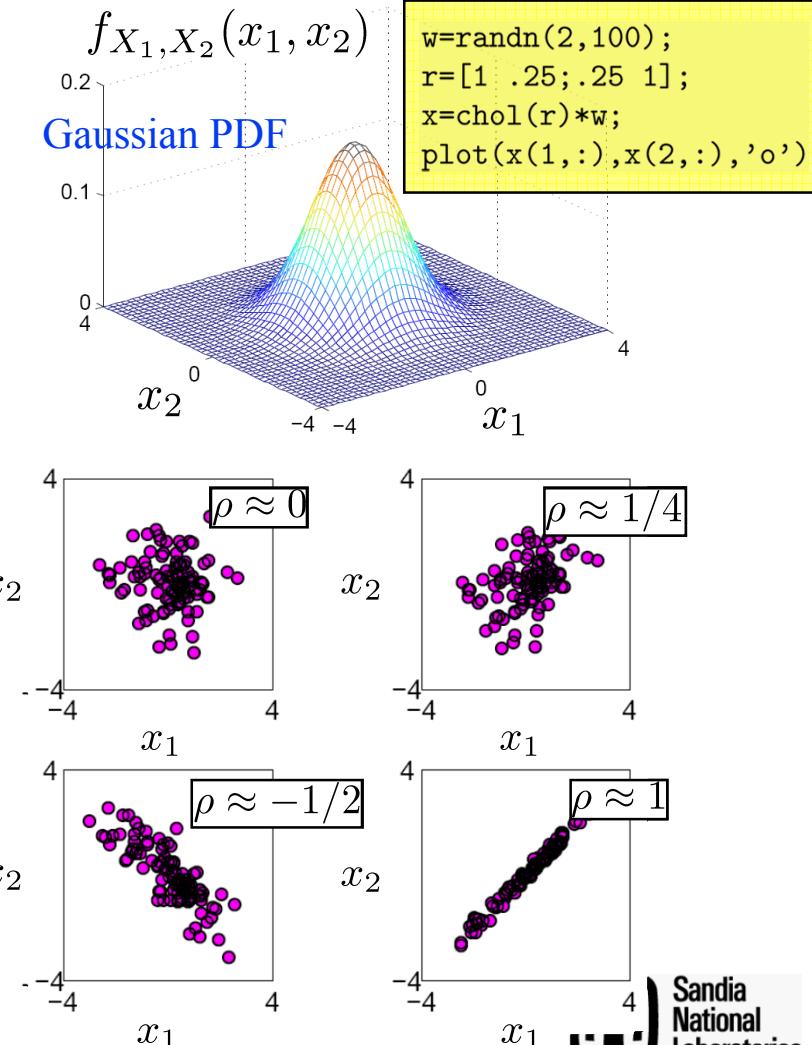
$$\text{Cov}(X_1, X_2) = \text{E}[(X_1 - \mu_1)(X_2 - \mu_2)]$$

$$\rho = \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Cov}(X_1, X_1) \cdot \text{Cov}(X_2, X_2)}}$$

- Special case: X_1 and X_2 are uncorrelated

$$\text{Cov}(X_1, X_2) = 0$$

This does not mean X_1 and X_2 are independent!

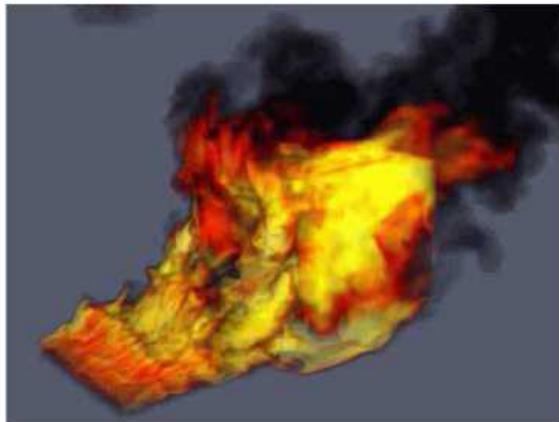


UQ Methods

Current DOE Mission Areas: UQ R&D and Deployment

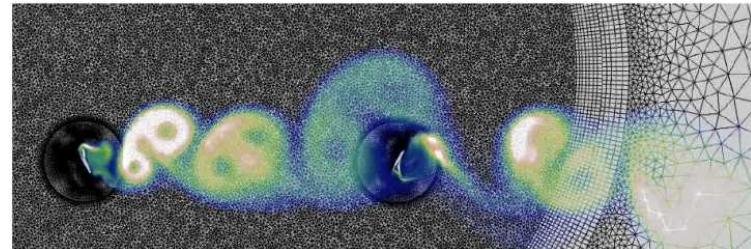
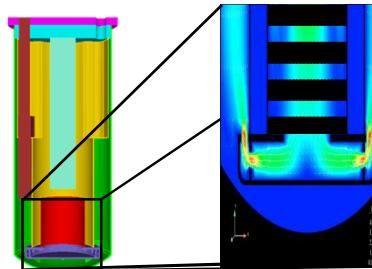
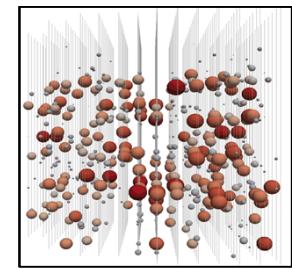
Stockpile Stewardship (NNSA ASC)

Safety in abnormal environments



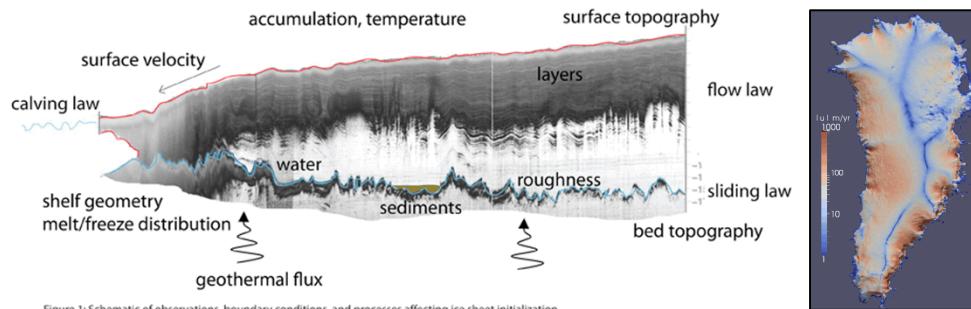
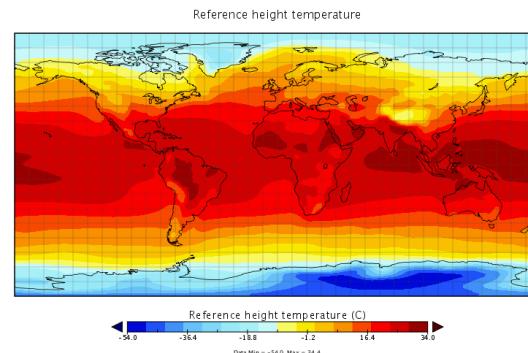
Energy (ASCR, EERE, NE CASL)

Wind turbines, nuclear reactors



Climate (SciDAC, CSSEF)

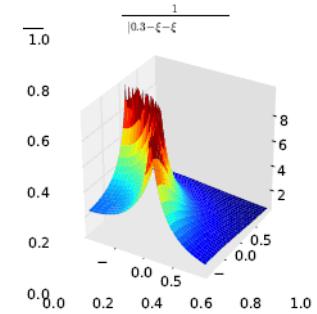
Ice sheet modeling, CISM, CESM, ISSM



Emphasis on Scalable Methods for High-fidelity UQ on HPC

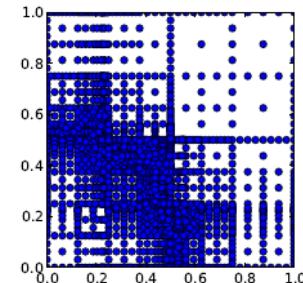
Key Challenges:

- Severe simulation budget constraints (e.g., a handful of HF runs)
- Moderate to high-dimensional in random variables: $O(10^1)$ to $O(10^2)$ [post KLE]
- Compounding effects:
 - Mixed aleatory-epistemic uncertainties (\rightarrow nested iteration)
 - Requirement to evaluate probability of rare events (e.g., safety criteria)
 - Nonsmooth responses (\rightarrow difficulty with fast converging spectral methods)



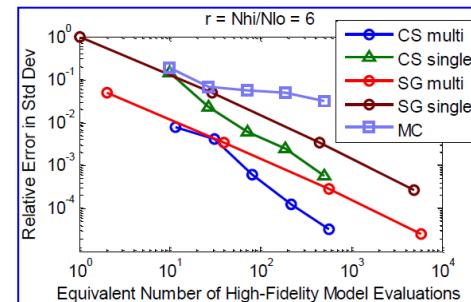
Core UQ Capabilities:

- Sampling methods: LHS, MC, QMC, incremental
- Reliability methods: local (MV, AMV+, FORM, ...), global (EGRA, GPAIS, POFDarts)
- Stochastic expansion methods: polynomial chaos, stochastic collocation
- Epistemic methods: interval estimation, Dempster-Shafer evidence



Research Thrusts:

- Compute dominant uncertainty effects despite key challenges above
- Scalable UQ foundation
 - Adaptive refinement, Adjoint enhancement, Sparsity detection
- Leverage his foundation within component-based meta-iteration
 - Mixed UQ incl. model form, Multifidelity UQ, Bayesian methods



Uncertainty Quantification Algorithms in DAKOTA:

New methods bridge robustness/efficiency gap

	Traditional (at Sandia)	Production	Recently released	Under dev Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Incremental	Adaptive Importance	Bootstrap, Jackknife	FSU
Reliability	<i>Local:</i> Mean Value, 1st- & 2nd-order reliability (AMV+, FORM, SORM)	<i>Global</i> reliability methods (EGRA)	GPAIS, POFDarts, GPs with gradient- enhancement	Recursive emulation, TGP	<i>Local:</i> Notre Dame, <i>Global:</i> Vanderbilt
Stochastic expansion		Polynomial chaos, stoch collocation (regression, Adv. Deployment	Dimension-adaptive p-h-refinement, grad-enhancement, sparsity detection	Local adapt refinement, adjoint EE, discrete vars	Stanford, Utah
Epistemic & Mixed UQ	Interval-valued/ 2nd-order prob. w/nested sampling		Opt-based interval est, Dempster-Shafer, discrete model forms	Discrete GPs, Imprec. probability	Arizona St
Bayesian			Emulator based MCMC with QUESO, GPMSA	model selection, multifidelity	LANL, UT Austin
Other			Efficient subspace method, Morris- Smale topology	Rand fields / stoch proc, Moment meth	NCSU, Utah, Cornell, Maryland

Research: Scalability, Robustness, Goal-orientation

Adv. Deployment

Fills Gaps

Sampling

Starting from distributions on the uncertain input values, draw observations from each distribution, pair samples, and execute the model for each pairing

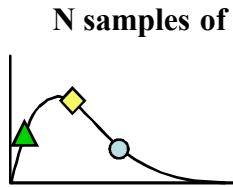
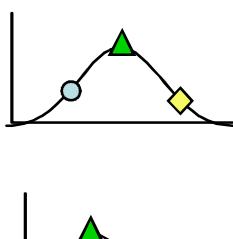
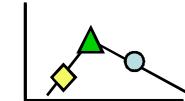
→ *ensemble of results yields distributions of the outputs*

- Monte Carlo: basic random sampling
- Pseudo Monte Carlo: Latin Hypercube Sampling (LHS)
- Quasi Monte Carlo: Halton, Hammersley, Sobol sequences
- Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling

Sampling is not the most efficient UQ method, but is easy to implement, robust, & transparent.

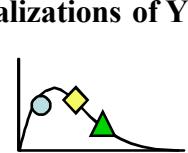
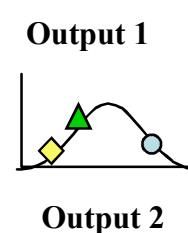
Input Distributions

N samples of X

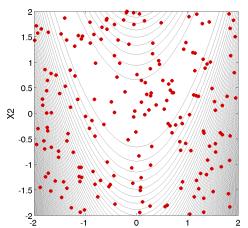


Output Distributions

N realizations of Y



Simulation Model

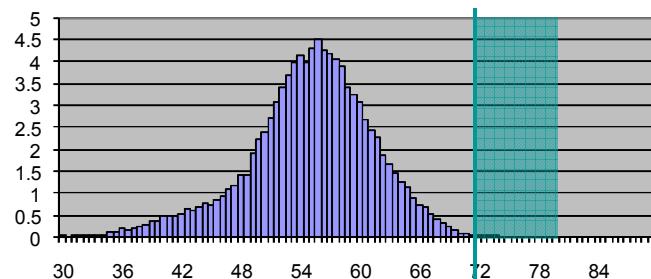


• sample mean and variance

$$\bar{T} = \frac{1}{N} \sum_{i=1}^N T(u^i)$$

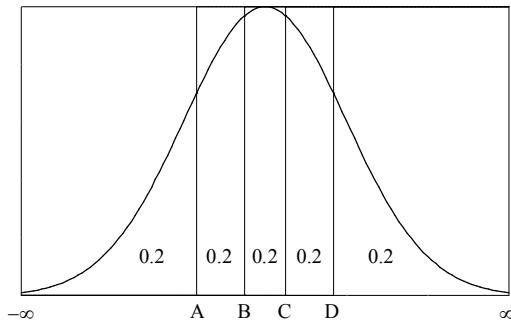
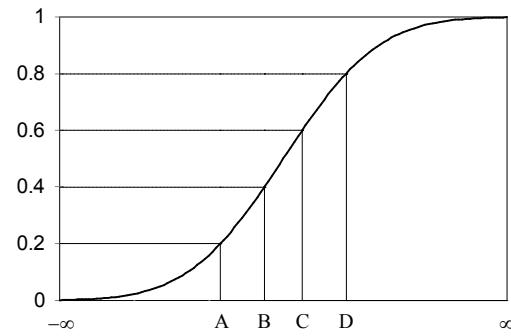
$$T_{\sigma^2} = \frac{1}{N} \sum_{i=1}^N [T(u^i) - \bar{T}]^2$$

• full PDF and CDF



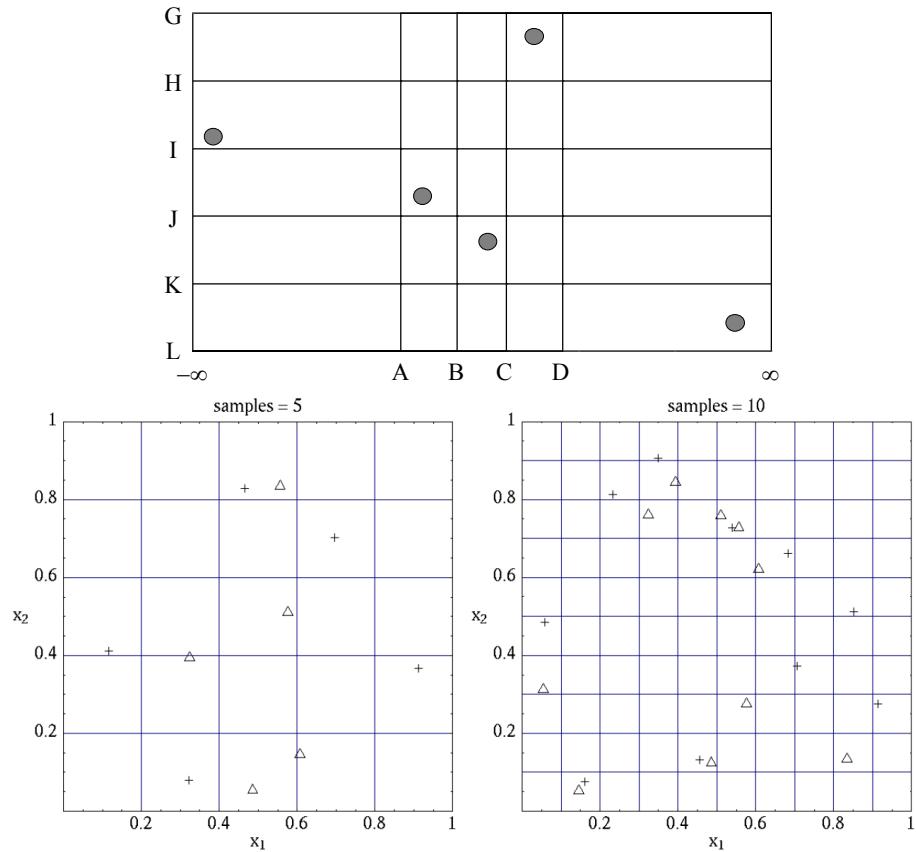
Latin Hypercube Sampling

- LHS is stratified random sampling among equal probability bins for all 1-D projections of an n -dimensional set of samples.
 - Early work by McKay and Conover
 - Restricted pairing by Iman → enforce prescribed input correlations



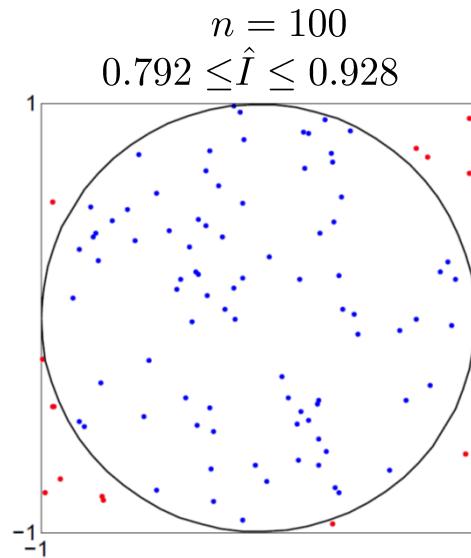
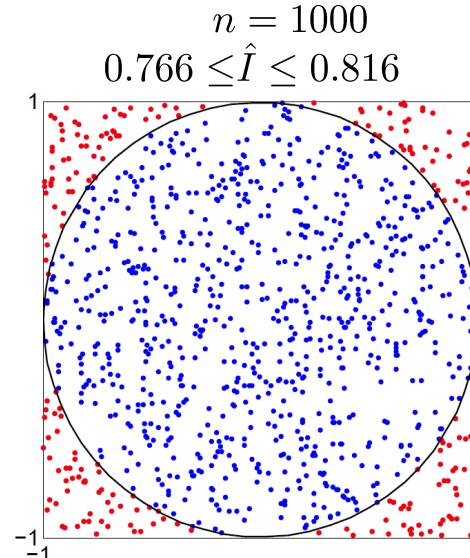
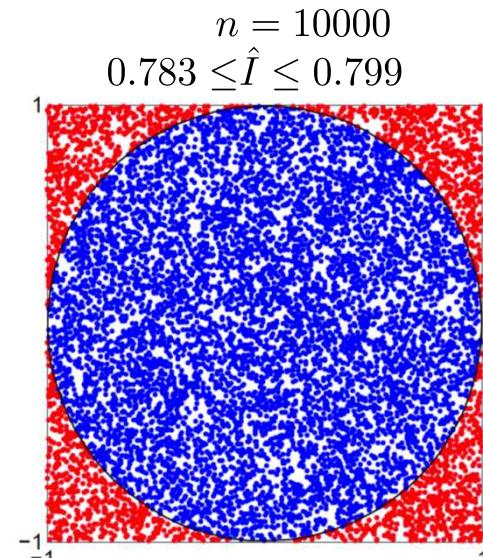
Intervals Used with a LHS of Size $N = 5$ in Terms of the PDF and CDF for a Normal Random Variable

A possible LHS for $n=2$, $N=5$ with $X1 = \text{normal}$ and $X2 = \text{uniform}$



Simple Monte Carlo Example

- Ratio of area of an inscribed circle to the area of a square



$$\begin{aligned}
 I &= \frac{1}{r^2} \int_0^r \sqrt{r^2 - x^2} \, dx \\
 &= \frac{\pi}{4} \approx 0.785
 \end{aligned}$$

UQ Methods: Reliability

UQ with Reliability Methods: Mean Value Method

Linear approximation for first two moments:

$$\mu_g = g(\mu_x)$$

$$\sigma_g^2 = \sum_i \sum_j \text{Cov}(i, j) \frac{dg}{dx_i}(\mu_x) \frac{dg}{dx_j}(\mu_x)$$

Projection of moments for reliability indices:

$$\bar{z} \rightarrow p, \beta \begin{cases} \beta_{cdf} = \frac{\mu_g - \bar{z}}{\sigma_g} \\ \beta_{ccdf} = \frac{\bar{z} - \mu_g}{\sigma_g} \end{cases}$$

$$\bar{p}, \bar{\beta} \rightarrow z \begin{cases} z = \mu_g - \sigma_g \bar{\beta}_{cdf} \\ z = \mu_g + \sigma_g \bar{\beta}_{ccdf} \end{cases}$$

Normality assumption:

$$\begin{cases} p(g \leq z) = \Phi(-\beta_{cdf}) \\ p(g > z) = \Phi(-\beta_{ccdf}) \end{cases}$$

Rough
statistics

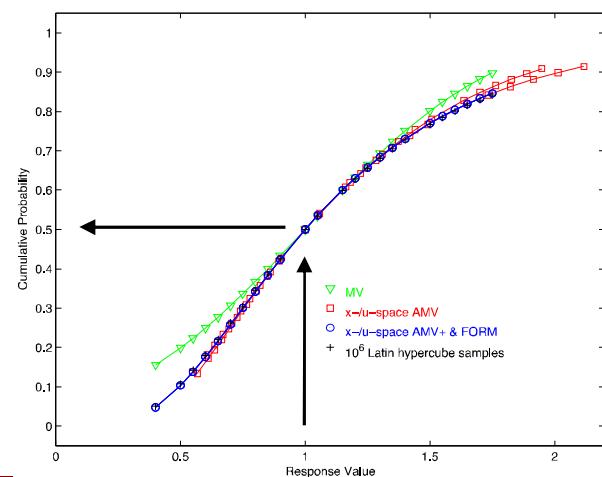
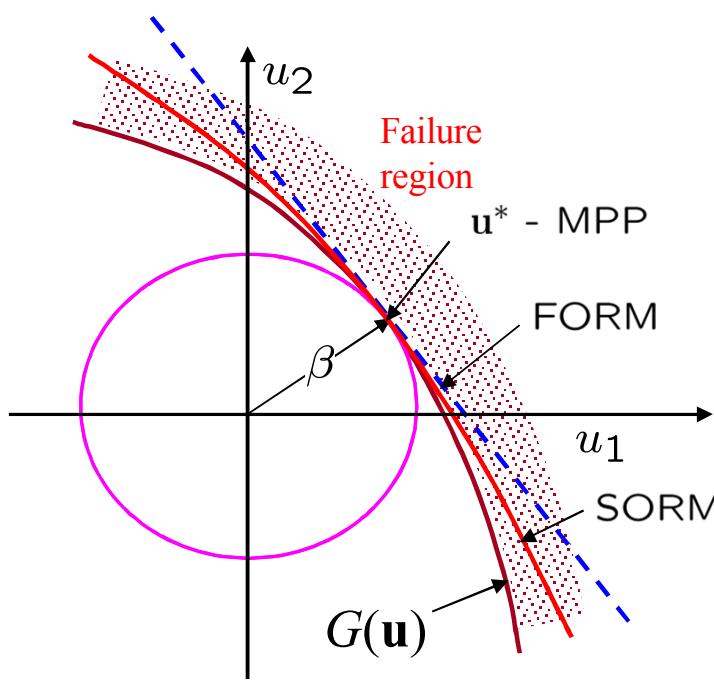
UQ with Reliability Methods:

Most Probable Point (MPP) Search Methods

Reliability Index Approach (RIA)

minimize $\mathbf{u}^T \mathbf{u}$
subject to $G(\mathbf{u}) = \bar{z}$

Find min dist to G level curve
Used for fwd map $z \rightarrow p/\beta$

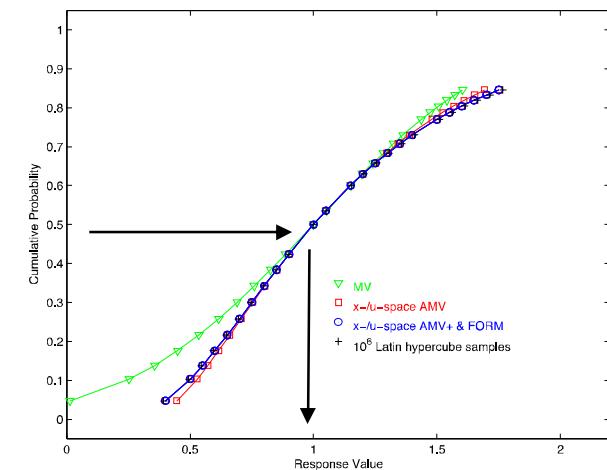


Nataf $\mathbf{x} \rightarrow \mathbf{u}$: $\Phi(z_i) = F(x_i)$
 $\mathbf{z} = \mathbf{L}\mathbf{u}$

Performance Measure Approach (PMA)

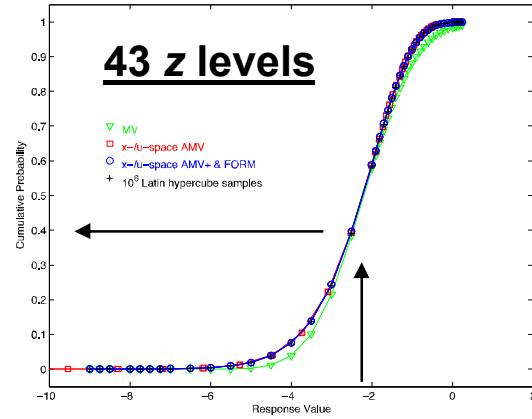
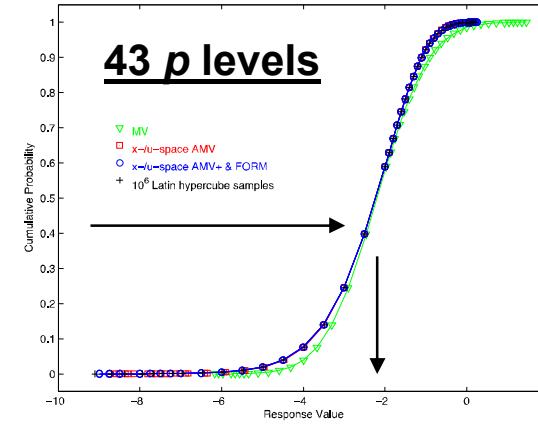
minimize $\pm G(\mathbf{u})$
subject to $\mathbf{u}^T \mathbf{u} = \bar{\beta}^2$

Find min G at β radius
Used for inv map $p/\beta \rightarrow z$



Reliability Algorithm Variations:

Sample Algorithm Performance: short column test

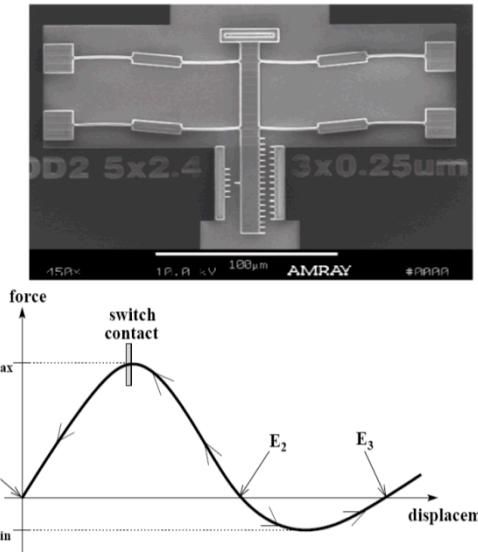


RIA Approach	SQP Function Evaluations	NIP Function Evaluations	CDF p Error Norm	Target z Offset Norm	PMA Approach	SQP Function Evaluations	NIP Function Evaluations	CDF z Error Norm	Target p Offset Norm
MVFOSM	1	1	0.1548	0.0	MVFOSM	1	1	7.454	0.0
MVSOSM	1	1	0.1127	0.0	MVSOSM	1	1	6.823	0.0
x-space AMV	45	45	0.009275	18.28	x-space AMV	45	45	0.9420	0.0
u-space AMV	45	45	0.006408	18.81	u-space AMV	45	45	0.5828	0.0
x-space AMV ²	45	45	0.002063	2.482	x-space AMV ²	45	45	2.730	0.0
u-space AMV ²	45	45	0.001410	2.031	u-space AMV ²	45	45	2.828	0.0
x-space AMV+	192	192	0.0	0.0	x-space AMV+	171	179	0.0	0.0
u-space AMV+	207	207	0.0	0.0	u-space AMV+	205	205	0.0	0.0
x-space AMV ² +	125	131	0.0	0.0	x-space AMV ² +	135	142	0.0	0.0
u-space AMV ² +	122	130	0.0	0.0	u-space AMV ² +	132	139	0.0	0.0
x-space TANA	245	246	0.0	0.0	x-space TANA	293*	272	0.04259	1.598e-4
u-space TANA	296*	278*	6.982e-5	0.08014	u-space TANA	325*	311*	2.208	5.600e-4
FORM	626	176	0.0	0.0	FORM	720	192	0.0	0.0
SORM	669	219	0.0	0.0	SORM	535	191*	2.410	6.522e-4

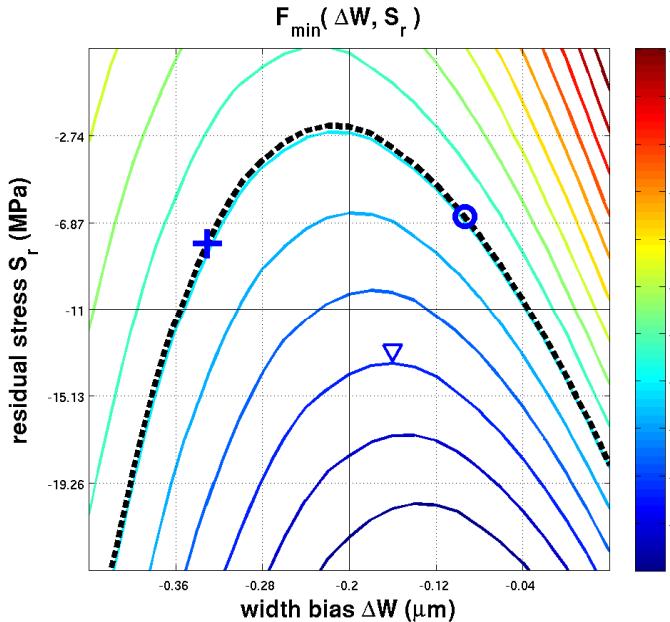
Note: 2nd-order PMA with prescribed p level requires $\beta(p)$ inversion

Solution-Verified Reliability Analysis and Design of MEMS

- Problem: MEMS subject to substantial variabilities
 - Material properties, manufactured geometry, residual stresses
 - Part yields can be low or have poor durability
 - Data can be obtained → aleatory UQ → probabilistic methods
- Goal: account for both uncertainties and errors in design
 - Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), adaptivity (SIERRA), nonlin mech (Aria) → MESA application
 - Perform soln verification in automated, parameter-adaptive way
 - Generate fully converged UQ/OUU results at lower cost



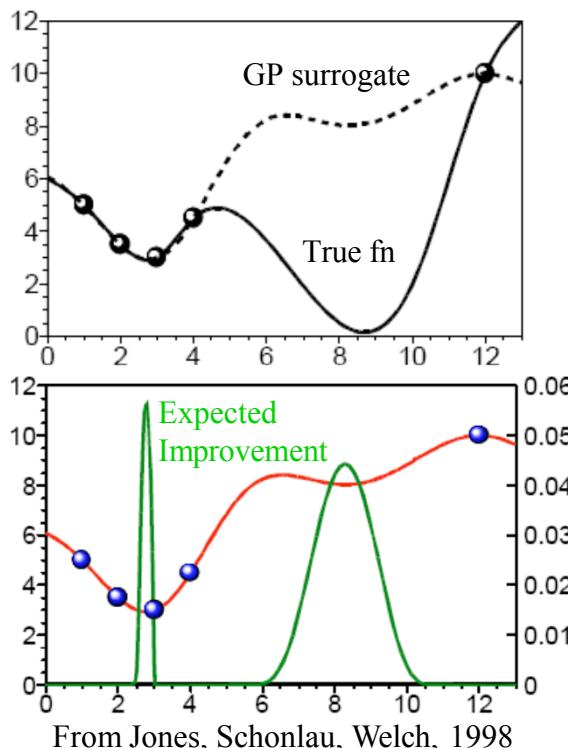
- AMV²+ and FORM converge to different MPPs (+ and o, respectively)
- Issue: high nonlinearity leading to multiple legitimate MPP solns.
- Challenge: design optimization may tend to seek out regions encircled by the failure domain. 1st-order and even 2nd-order probability integrations can experience difficulty with this degree of nonlinearity. Optimizers can/will exploit this model weakness.



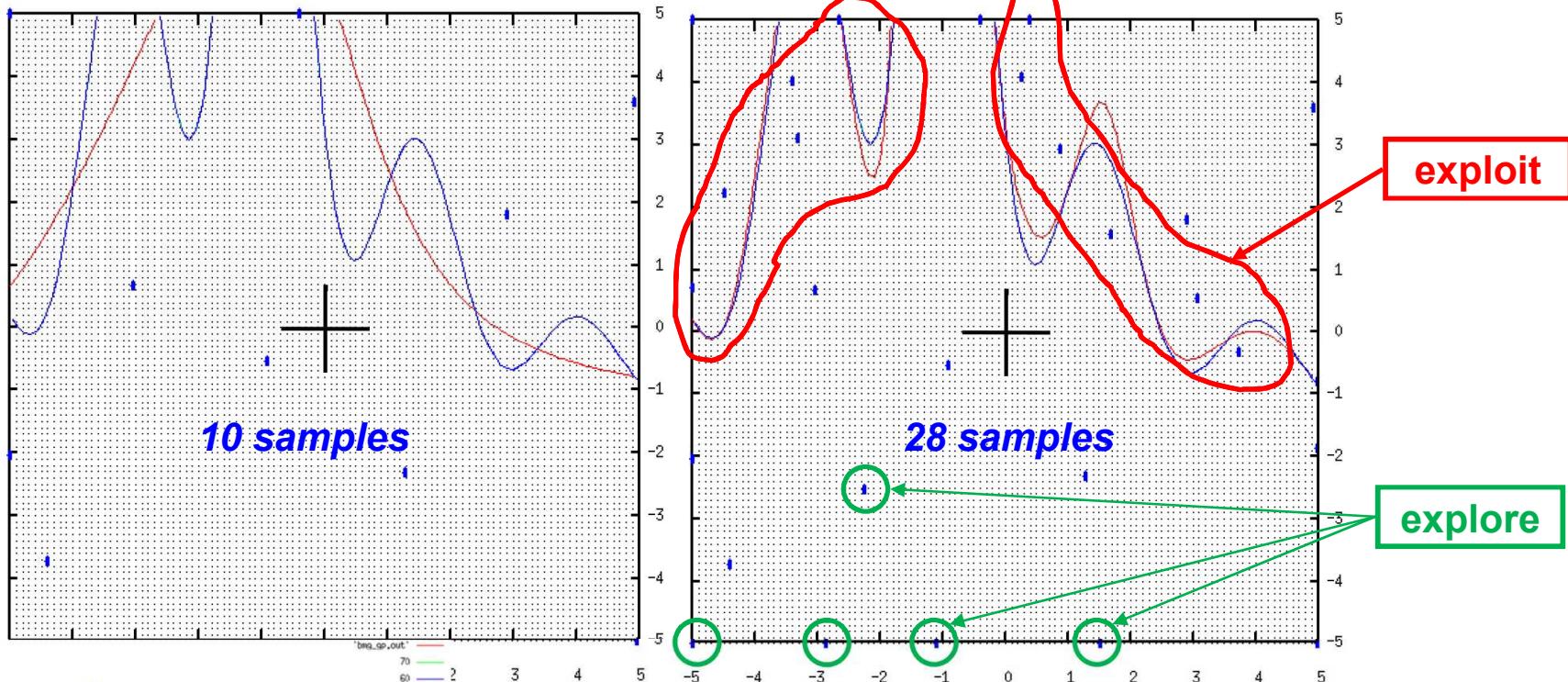
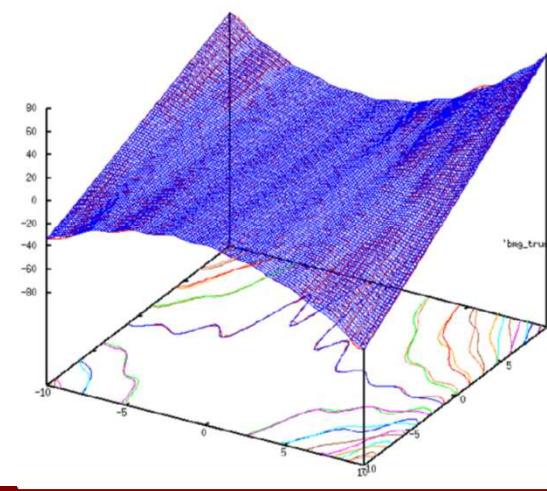
Parameter study over 3σ uncertain variable range for fixed design variables d_M^* . Dashed black line denotes $g(x) = F_{min}(x) = -5.0$.

Efficient Global Reliability Analysis (EGRA)

- Address known failure modes of local reliability methods:
 - Nonsmooth: fail to converge to an MPP
 - Multimodal: only locate one of several MPPs
 - Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
- Based on EGO (surrogate-based global opt.), which exploits special features of GPs
 - Mean & variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
 - Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)



Efficient Global Reliability Analysis



Reliability method	Function evaluations	First-order p_f (% error)	Second-order p_f (% error)	Sampling p_f (% error, avg. error)
No approximation	70	0.11797 (277.0%)	0.02516 (-19.6%)	—
x space AMV ² +	26	0.11797 (277.0%)	0.02516 (-19.6%)	—
u space AMV ² +	26	0.11777 (277.0%)	0.02516 (-19.6%)	—
u space TANA	131	0.11797 (277.0%)	0.02516 (-19.6%)	—
LHS solution	10 k	—	—	0.03117 (0.385%, 2.847%)
LHS solution	100 k	—	—	0.03126 (0.085%, 1.397%)
LHS solution	1 M	—	—	0.03129 (truth, 0.339%)
x space EGRA	35.1	—	—	0.03134 (0.155%, 0.433%)
u space EGRA	35.2	—	—	0.03133 (0.136%, 0.296%)

UQ Methods: Stochastic Expansions

Non-Intrusive Stochastic Expansions: Polynomial Chaos and Stochastic Collocation

Polynomial chaos: spectral projection using orthogonal polynomial basis fns

$$R = \sum_{j=0}^{\infty} \alpha_j \Psi_j(\xi)$$

using

$$\begin{aligned} \Psi_0(\xi) &= \psi_0(\xi_1) \psi_0(\xi_2) = 1 \\ \Psi_1(\xi) &= \psi_1(\xi_1) \psi_0(\xi_2) = \xi_1 \\ \Psi_2(\xi) &= \psi_0(\xi_1) \psi_1(\xi_2) = \xi_2 \\ \Psi_3(\xi) &= \psi_2(\xi_1) \psi_0(\xi_2) = \xi_1^2 - 1 \\ \Psi_4(\xi) &= \psi_1(\xi_1) \psi_1(\xi_2) = \xi_1 \xi_2 \\ \Psi_5(\xi) &= \psi_0(\xi_1) \psi_2(\xi_2) = \xi_2^2 - 1 \end{aligned}$$

Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	Hermite $H_{\alpha}(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

- Estimate α_j using regression or numerical integration: sampling, tensor quadrature, sparse grids, or cubature

$$\alpha_j = \frac{\langle R, \Psi_j \rangle}{\langle \Psi_j^2 \rangle} = \frac{1}{\langle \Psi_j^2 \rangle} \int_{\Omega} R \Psi_j \varrho(\xi) d\xi$$

Stochastic collocation: instead of estimating coefficients for known basis functions, form interpolants for known coefficients

- Global:** Lagrange (values) or Hermite (values+derivatives)
- Local:** linear (values) or cubic (values+gradients) splines

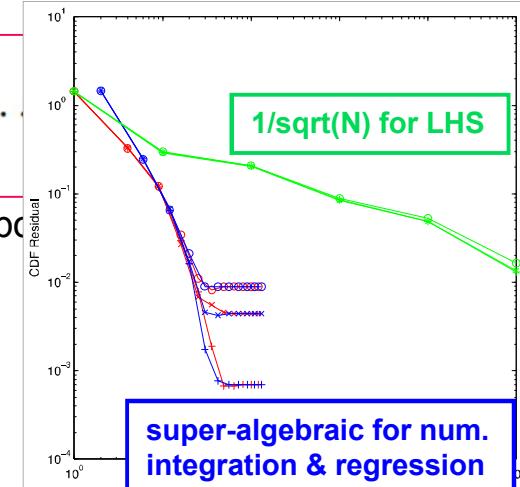
$$L_j = \prod_{\substack{k=1 \\ k \neq j}}^m \frac{\xi - \xi_k}{\xi_j - \xi_k}$$

$$R(\xi) \cong \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} r(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}) (L_{j_1}^{i_1} \otimes \dots \otimes L_{j_n}^{i_n})$$

Sparse interpolants formed using Σ of tensor interpolants

- Tailor expansion form:**
 - p-refinement: anisotropic tensor/sparse, generalized sparse
 - h-refinement: local bases with dimension & local refinement
- Method selection:** fault tolerance, decay, sparsity, error est.

$$R(\xi) \cong \sum_{j=1}^{N_p} r_j L_j(\xi)$$



Approaches for forming PCE/SC Expansions

Random sampling: PCE

Expectation (sampling):

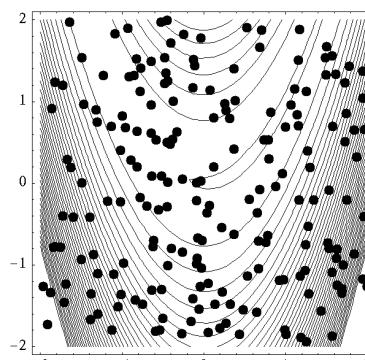
- Sample w/i distribution of ξ
- Compute expected value of product of R and each Ψ_j

Least squares regression:

- Sample w/i distribution of ξ
- Solves least squares data fit for all coefficients at once:

Compressive sensing

- Underdetermined systems: sparse basis pursuit for with L1 regularization



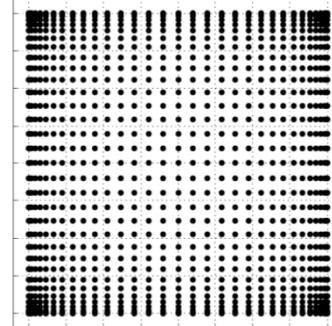
$$\Psi \alpha = R$$

Tensor-product quadrature: PCE/SC

$$\mathcal{U}^i(f)(\xi) = \sum_{j=1}^{m_i} f(\xi_j^i) w_j^i$$

$$\mathcal{Q}^n f(\xi) = (\mathcal{U}^{i_1} \otimes \cdots \otimes \mathcal{U}^{i_n})(f)(\xi) = \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} f(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}) (w_{j_1}^{i_1} \otimes \cdots \otimes w_{j_n}^{i_n})$$

- Every combination of 1-D rules
- Scales as m^n
- 1-D Gaussian rule of order m
→ integrands to order $2m - 1$
- Assuming $R \Psi_j$ of order $2p$,
select $m = p + 1$

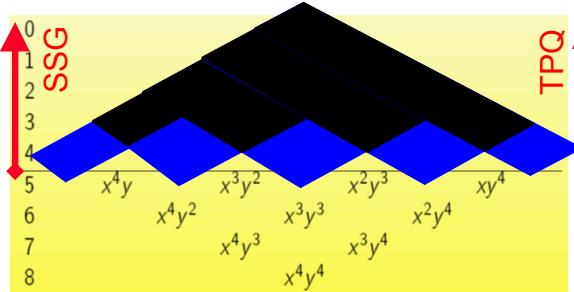
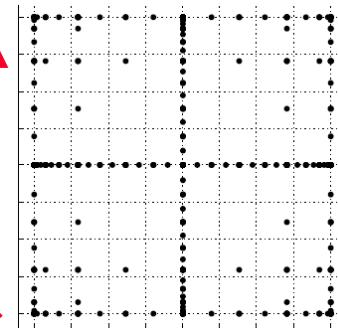


Sparse Grid: PCE/SC

$$\mathcal{A}(w, n) = \sum_{|\mathbf{i}| \leq w+n} (\Delta^{i_1} \otimes \cdots \otimes \Delta^{i_n})$$

$$\mathcal{A}(w, n) = \sum_{w+1 \leq |\mathbf{i}| \leq w+n} (-1)^{w+n-|\mathbf{i}|} \binom{n-1}{w+n-|\mathbf{i}|} \cdot (\mathcal{U}^{i_1} \otimes \cdots \otimes \mathcal{U}^{i_n})$$

Pascal's triangle (2D example):

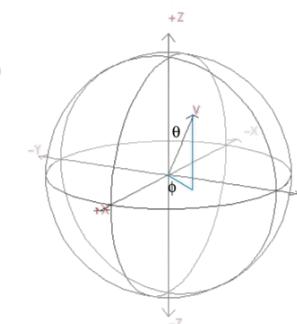


Cubature: PCE

Stroud and extensions (Xiu, Cools)

→ Low order PCE

→ global SA, anisotropy detection



Gaussian $i = 2 \rightarrow p = 1$

$$x_{k,2r-1} = \sqrt{2} \cos \frac{2r k \pi}{n+1}, \quad x_{k,2r} = \sqrt{2} \sin \frac{2r k \pi}{n+1}$$

Arbitrary PDF

$$t^{(k)} = \frac{1}{\gamma} [\sqrt{\gamma c_1} x^{(k)} - \delta]$$

Adaptive Collocation Methods: Generalized Sparse Grids

Polynomial order (p -) refinement approaches:

- **Uniform:** isotropic tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - *Assess convergence:* L^2 change in response covariance
- **Dimension-adaptive:** anisotropic tensor/sparse grids
 - **PCE/SC:** variance-based decompos. \rightarrow total Sobol' indices \rightarrow anisotropy
 - **PCE:** spectral coefficient decay rates \rightarrow anisotropy
- **Goal-oriented dimension-adaptive:** generalized sparse grids
 - **PCE/SC:** change in QOI induced by trial index sets on active front

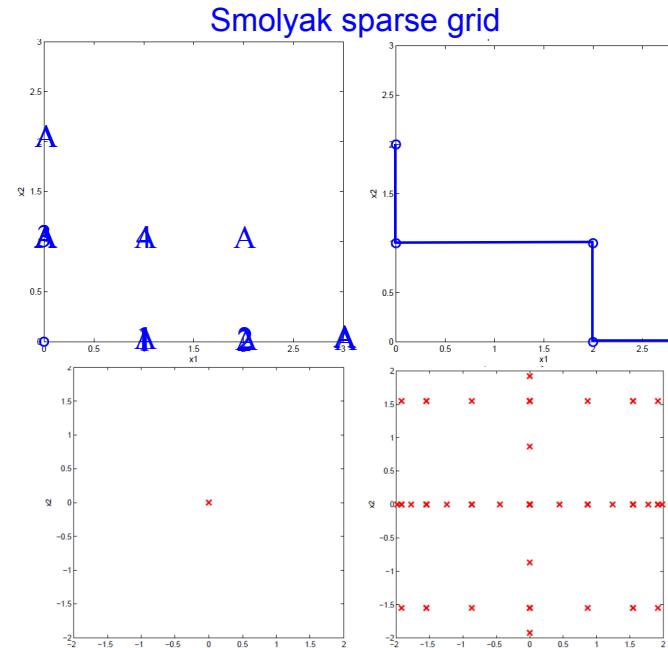
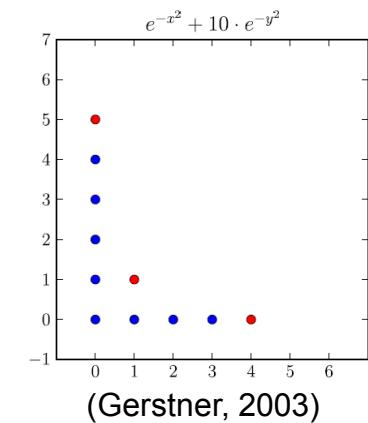
1. Initialization: Starting from reference grid (often $w = 0$ grid), define active index sets using admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, evaluate tensor grid, form tensor expansion, update combinatorial coefficients, and combine with reference expansion. Perform necessary bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that induces largest change in statistical QOI.

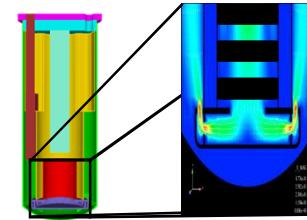
4. Update sets: If largest change $>$ tolerance, then promote selected trial set from active to old and compute new admissible active sets; return to 2. If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to old set, update combinatorial coefficients, and perform final combination of tensor expansions to arrive at final result for statistical QOI.



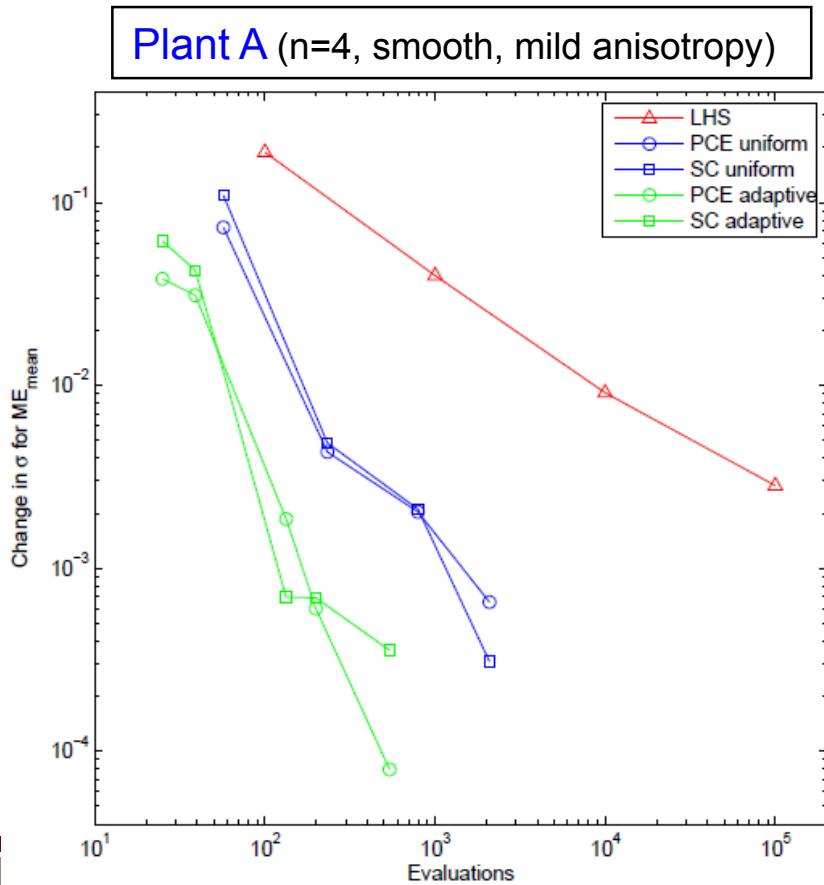
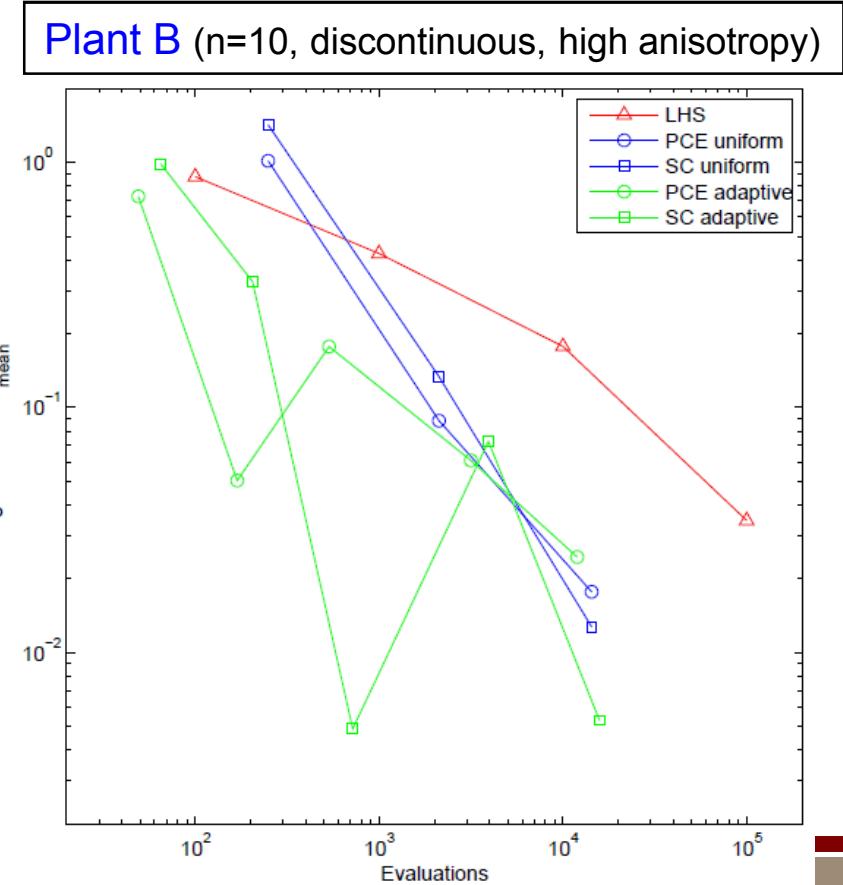
**Fine-grained control:
frontier not limited by
prescribed shape of
index set constraint**

Application Deployment (CASL)

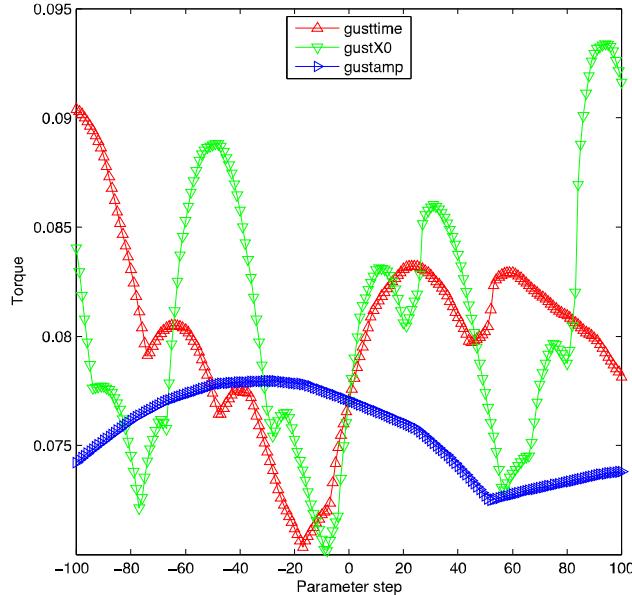
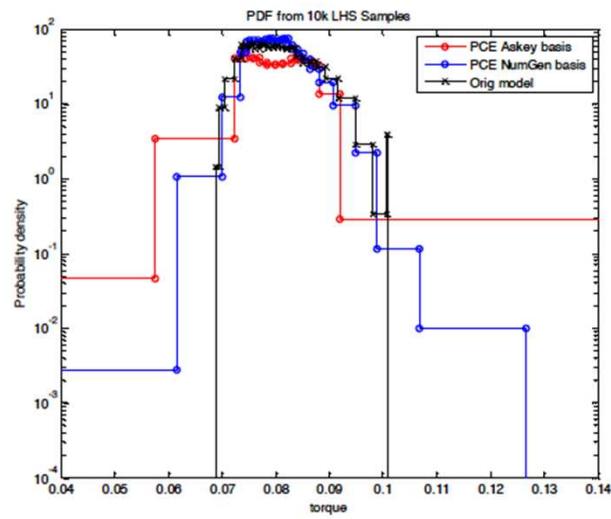
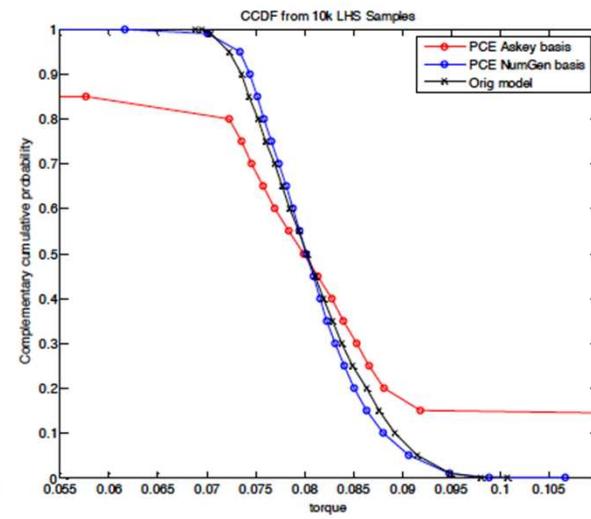
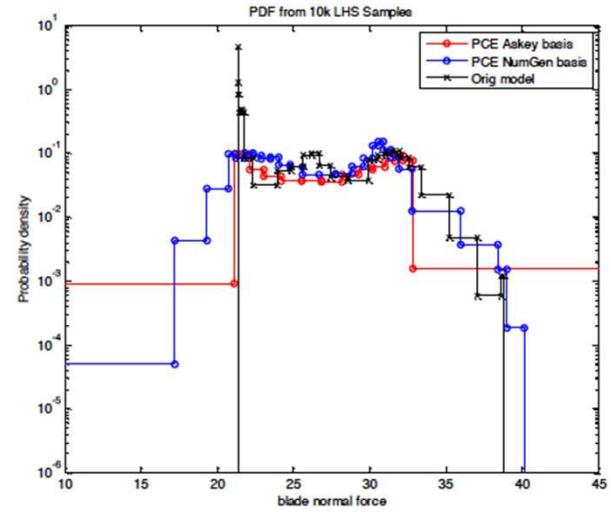
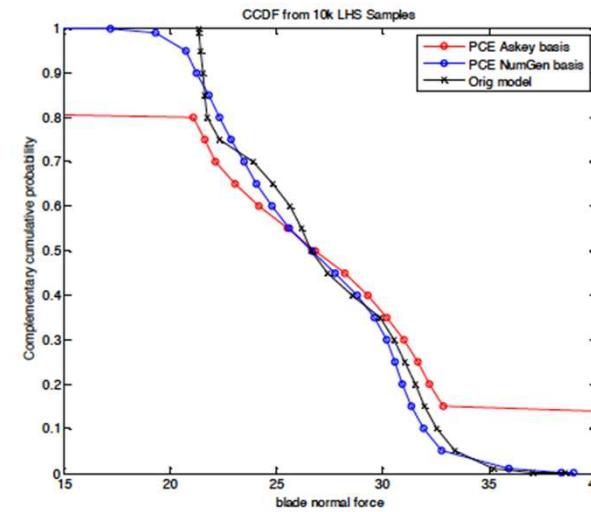


Application: Nuclear reactor cores experience localized boiling, which leads to CRUD (Chalk River Unidentified Deposit). These deposits result in undesirable power shifts (CIPS) within the core. Statistics of mass evaporation (ME) rate are of interest.

Methodology: PCE/SC with uniform/adaptive refinement compared to LHS



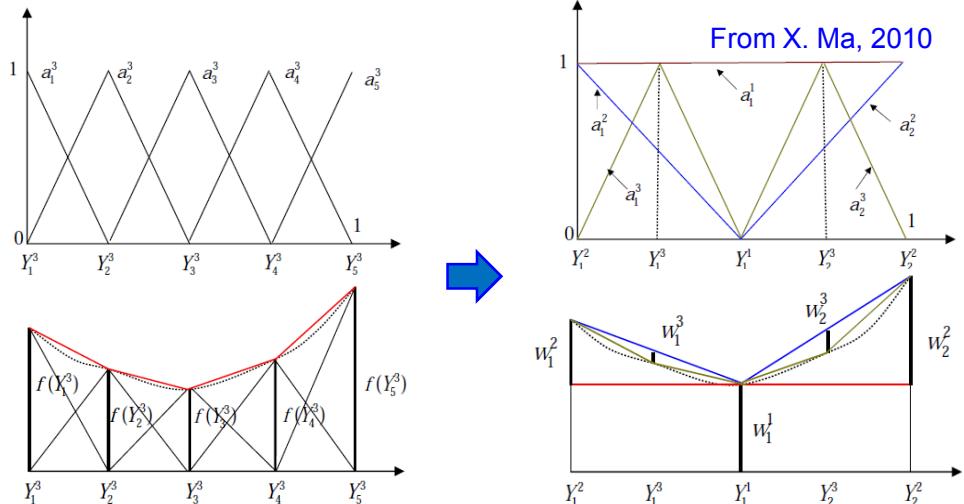
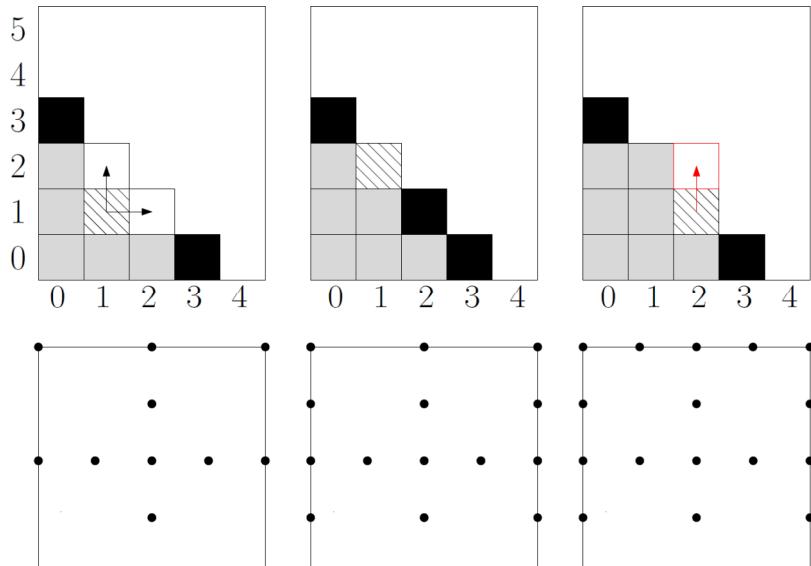
ASCR: VAWT with Uncertain Gust Loading



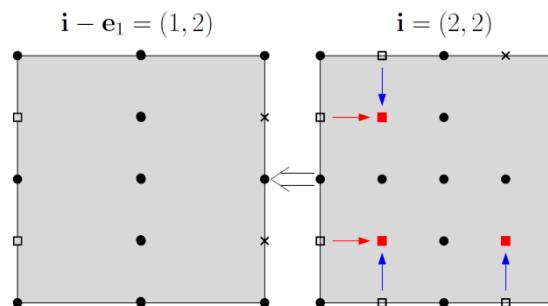
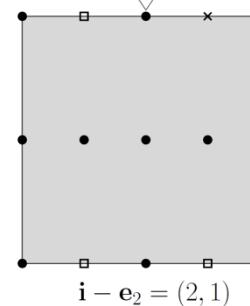
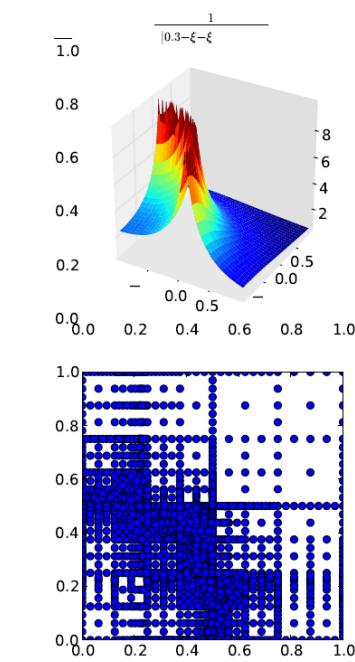
Local Error Estimation with Hierarchical Surpluses

Hierarchical basis:

- Improved precision in QoI increments
- Surpluses provide error estimates for local refinement using local/global hierarchical interpolants
- New error indicators under development that leverage both value and gradient surpluses



From J. Jakeman, July 2010



Extend Scalability: (Adjoint) Derivative-Enhancement

PCE:

- **Linear regression including derivatives**
 - Gradients/Hessians \rightarrow addtnl. eqns.
 - Over-determined: SVD, eq-constrained LS
 - Under-determined: compressive sensing

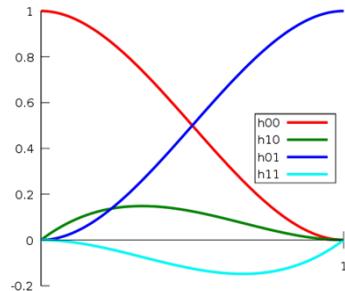
$$\begin{bmatrix} \vdots & \vdots & \vdots \\ \pi_{0,j}(\vec{\xi}_i) & \pi_{1,j}(\vec{\xi}_i) & \cdots & \pi_{P,j}(\vec{\xi}_i) \\ \frac{\partial \pi_{0,j}}{\partial \xi_1}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_1}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_1}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \pi_{0,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \begin{pmatrix} \vec{u}^{(m,j)} \\ \vec{u}^{(m+1,j)} \\ \vdots \\ \vec{u}^{(m+n_\xi,j)} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \vec{u}_i \\ \frac{\partial \vec{u}_i}{\partial \xi_1} \\ \vdots \\ \frac{\partial \vec{u}_i}{\partial \xi_{n_\xi}} \\ \vdots \end{pmatrix}$$

SC:

- **Gradient-enhanced interpolants**
 - Local: cubic Hermite splines
 - Global: Hermite interpolating polynomials

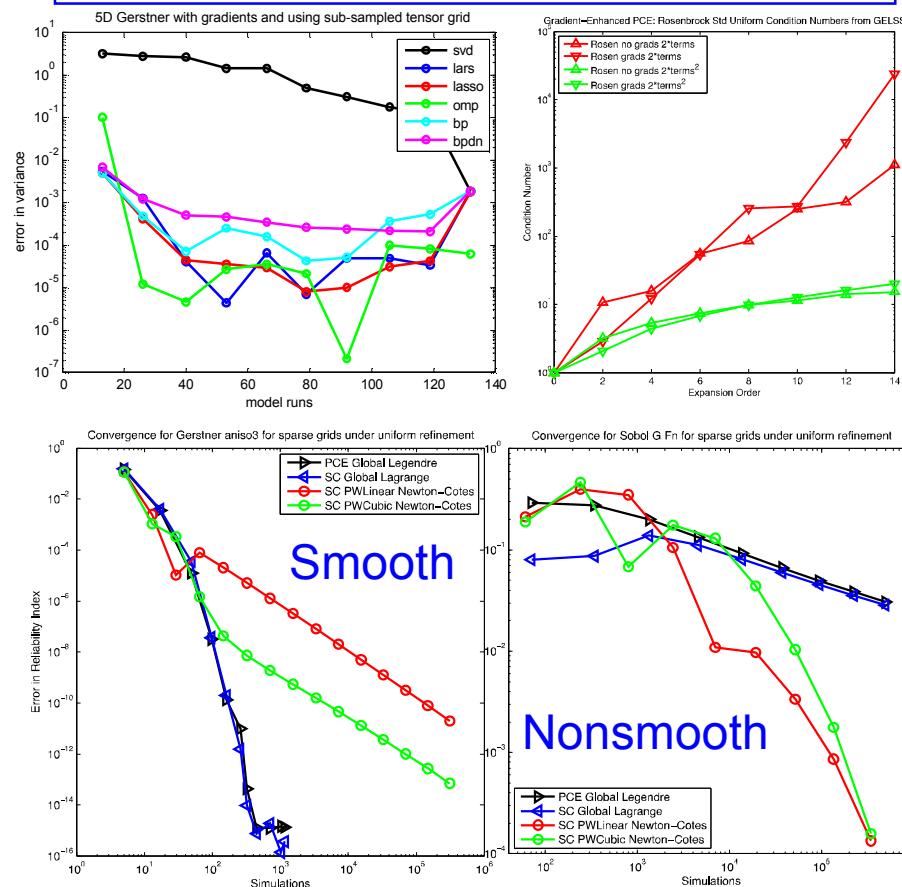
$$f = \sum_{i=1}^N f_i H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_1} H_i^{(2)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_2} H_i^{(1)}(x_1) H_i^{(2)}(x_2) H_i^{(1)}(x_3) + \sum_{i=1}^N \frac{df_i}{dx_3} H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(2)}(x_3)$$

Cubic shape fns: type 1 (value) & type 2 (gradient)



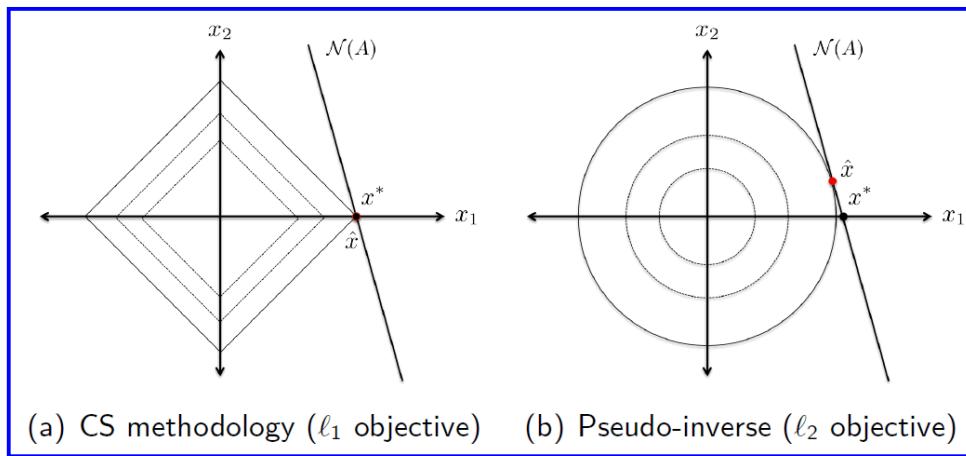
$$\mu = \sum_{i=1}^N f_i w_i^{(1)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_1} w_i^{(2)} w_i^{(1)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_2} w_i^{(1)} w_i^{(2)} w_i^{(1)} + \sum_{i=1}^N \frac{df_i}{dx_3} w_i^{(1)} w_i^{(1)} w_i^{(2)}$$

and similar for higher-order moments



Stochastic Expansions on Unstructured Grids: Compressive Sensing

$$\begin{bmatrix} f(\mathbf{x}^{(1)}) \\ f(\mathbf{x}^{(2)}) \\ \vdots \\ f(\mathbf{x}^{(N)}) \end{bmatrix} = \begin{bmatrix} 1 & \phi_2(\mathbf{x}^{(1)}) & \phi_2(\mathbf{x}^{(1)}) & \dots & \phi_P(\mathbf{x}^{(1)}) \\ 1 & \phi_1(\mathbf{x}^{(2)}) & \phi_2(\mathbf{x}^{(2)}) & \dots & \phi_P(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \phi_1(\mathbf{x}^{(N)}) & \phi_2(\mathbf{x}^{(N)}) & \dots & \phi_P(\mathbf{x}^{(N)}) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_P \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$



or in matrix notation

$$\mathbf{b} = \mathbf{Ax} + \varepsilon$$

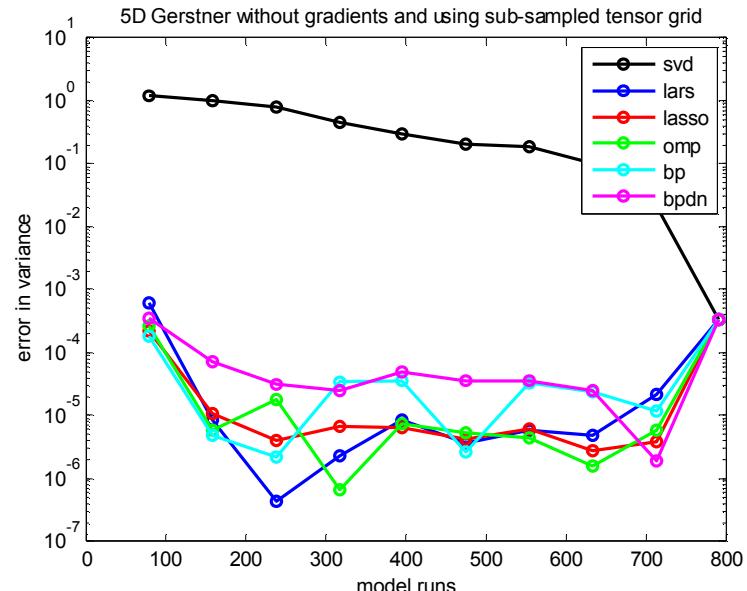
and find the **minimum norm solution**

$$\min_{\mathbf{x}} \|\mathbf{Ax} - \mathbf{b}\|_2$$

or (more recently) **find a sparse solution**

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ such that } \|\mathbf{Ax} - \mathbf{b}\|_2 \leq \varepsilon$$

Structured or unstructured grids
Value-based or gradient-enhanced



BP

$$\mathbf{c} = \arg \min \|\mathbf{c}\|_{\ell^1} \text{ such that } \Phi \mathbf{c} = \mathbf{y}$$

BPDN and OMP

$$\mathbf{c} = \arg \min \|\mathbf{c}\|_{\ell^1} \text{ such that } \|\Phi \mathbf{c} - \mathbf{y}\|_{\ell^2} \leq \varepsilon$$

LASSO and LARS

$$\mathbf{c} = \arg \min \|\Phi \mathbf{c} - \mathbf{y}\|_{\ell^2}^2 \text{ such that } \|\mathbf{x}\|_{\ell^1} \leq \tau$$

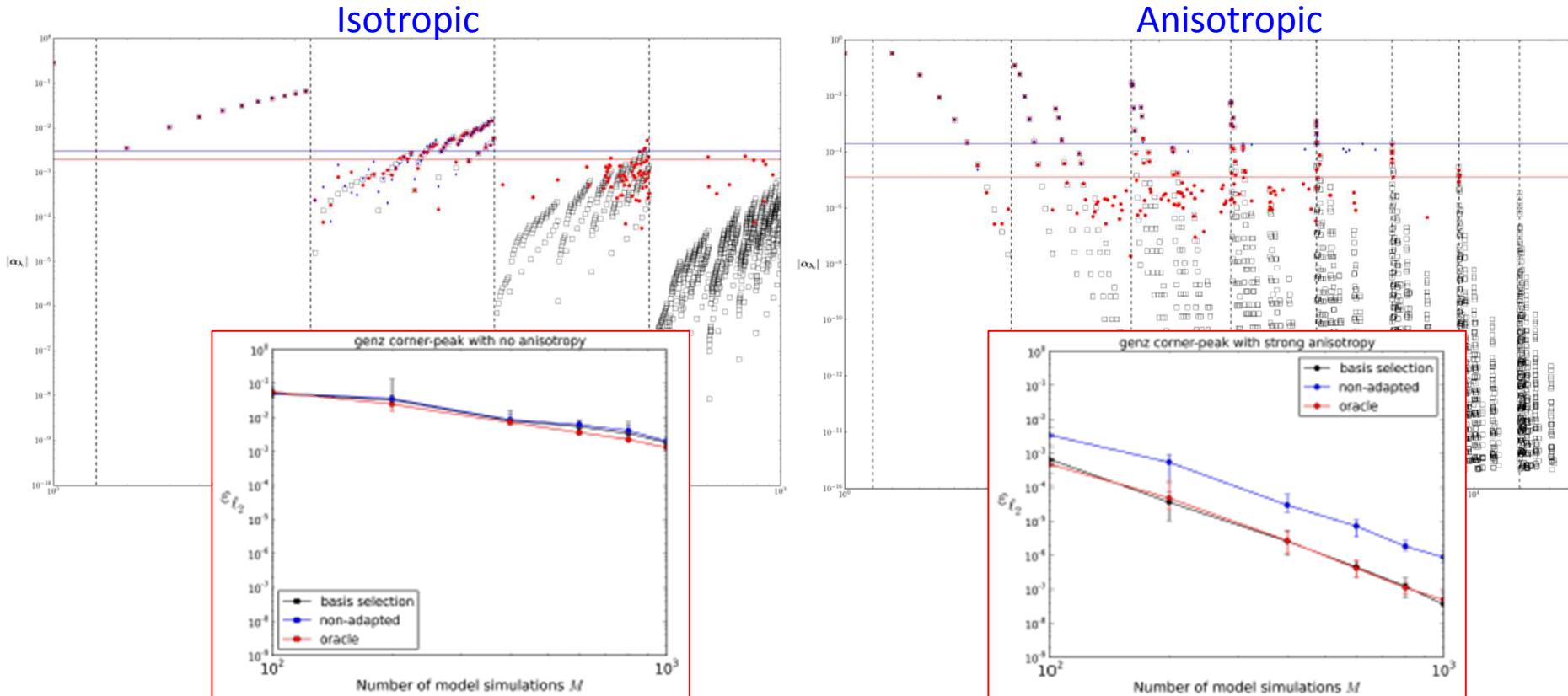
Adaptive Basis Selection: Compressed Sensing in High Dimensions

In high dimensions, we may only be able to consider a 2nd or 3rd degree total-order basis

p	3	4	5
$A_{3,1}^{40}$	12,341	135,751	1,221,759

What if the function is anisotropic and important coefficients correspond to $p > 3$?

We seek algorithms that can adaptively determine an effective basis \rightarrow **expanding front**

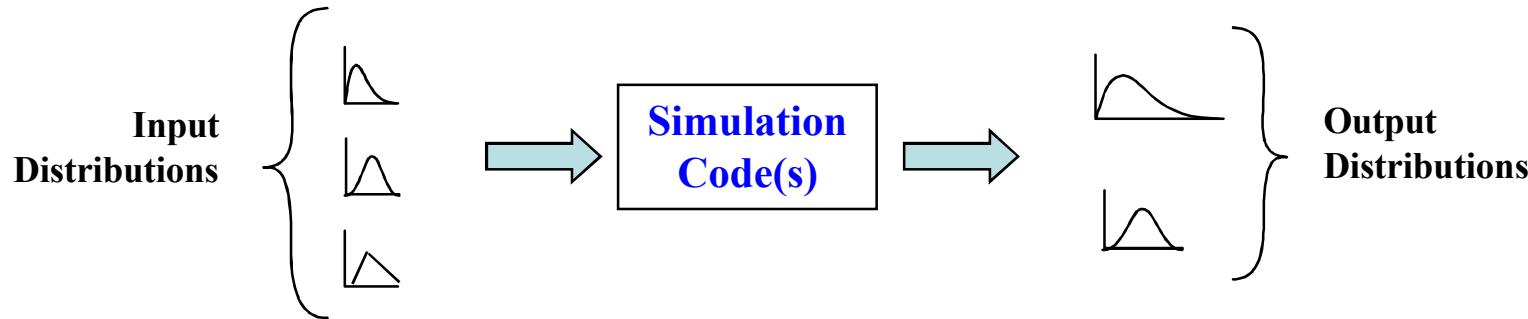


UQ Methods: Epistemic

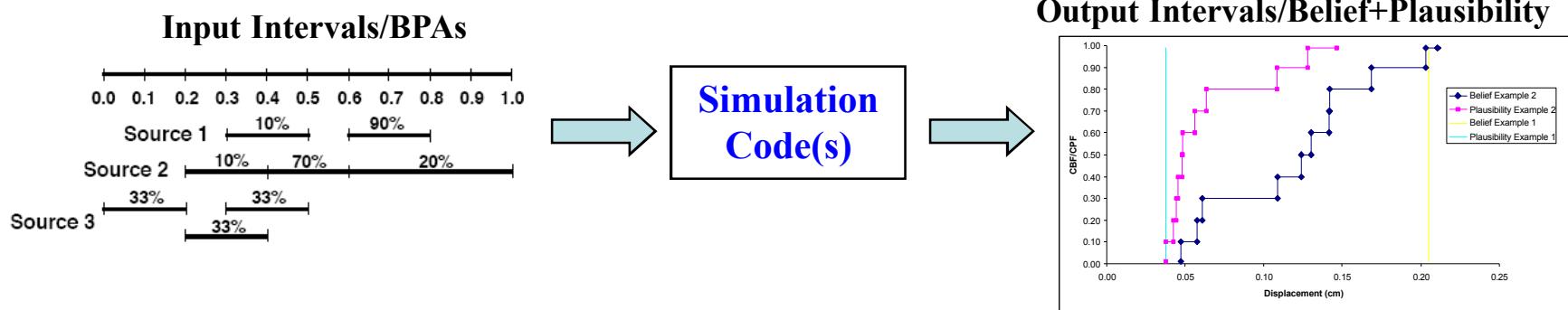
Categorization of Uncertainty

Uncertainty can be categorized to be one of two different types:

- **Aleatory:** inherent variability with sufficient data → objective probabilistic models
 - Aka irreducible, type-A, stochastic



- **Epistemic:** uncertainty from lack of knowledge → subjective probabilistic & nonprobabilistic models
 - Aka reducible, subjective, type-B, state of knowledge uncertainty
 - Strict interpretation is fully reducible: in perfect state of information, collapses to *constant value*



- Bayesian: posterior spectrum from data-dominated to prior-dominated

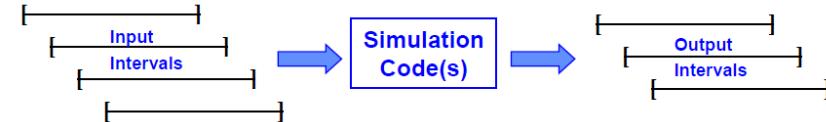
Epistemic UQ

Epistemic UQ: one does not know enough to specify probability distributions

Sometimes referred to as subjective, reducible, or lack of knowledge uncertainty

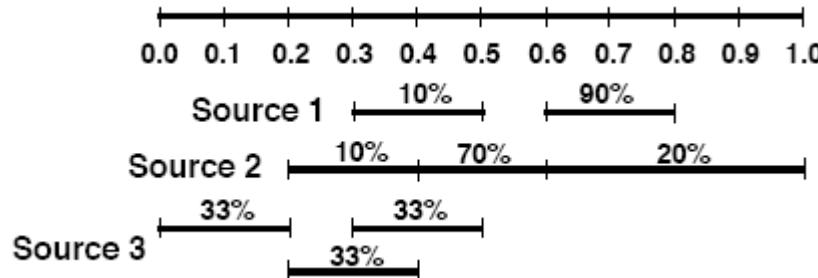
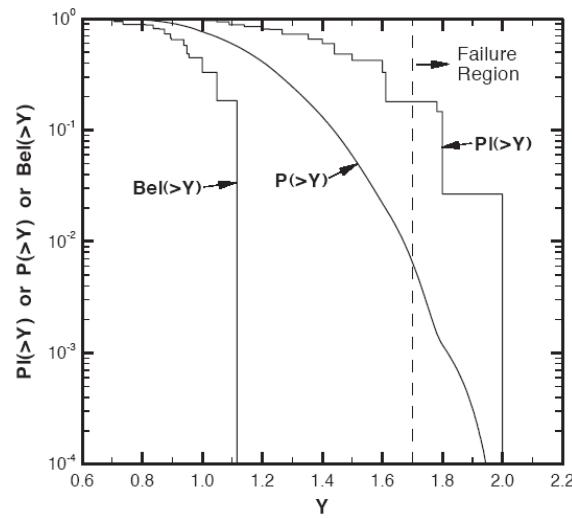
Interval analysis

- Propagate input intervals to output intervals
- Intrusive interval methods (operation by operation propagation) have been investigated for several decades, but have not become mainstream (key issue: interval growth)
- Sampling methods (+ surrogate models if expensive evals) are commonly used
- Optimization methods are promising and some variants exploit data reuse



Dempster-Shafer theory of evidence

- Basic probability assignment (interval-based)
- Solve opt. problems (currently sampling-based) to compute belief/plausibility for output intervals



Imprecise probability (p-boxes), Info gap, ...

Sampling (nongradient-based)

- **Strengths:** Simple and reliable, convergence rate is dimension-independent
- **Weaknesses:** $N^{-1/2}$ convergence \rightarrow expensive for accurate tail statistics

Local reliability (gradient-based)

- **Strengths:** computationally efficient, widely used, scalable to large n (w/ efficient/adjoint derivatives)
- **Weaknesses:** algorithmic failures for limit states with following features
 - Nonsmooth: fail to converge to an MPP
 - Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP
 - Multimodal: only locate one of several MPPs

Global reliability (typically nongradient-based)

- **Strengths:** handles multimodal and/or highly nonlinear limit states, tailored for efficient probability estimation
- **Weaknesses:**
 - Conditioning, nonsmoothness \rightarrow ensemble emulation (recursion, discretization)
 - Scaling to large n \rightarrow adjoint gradient-enhancement, additional refinement bias

Stochastic expansions (typically nongradient-based)

- **Strengths:** functional representation, exponential convergence rates for smooth problems, best for moment est.
- **Weaknesses:**
 - Nonsmoothness \rightarrow local h-refinement based on hierarchical error estimates
 - Scaling to large n \rightarrow adaptive refinement, adjoint gradient-enhancement, sparsity detection

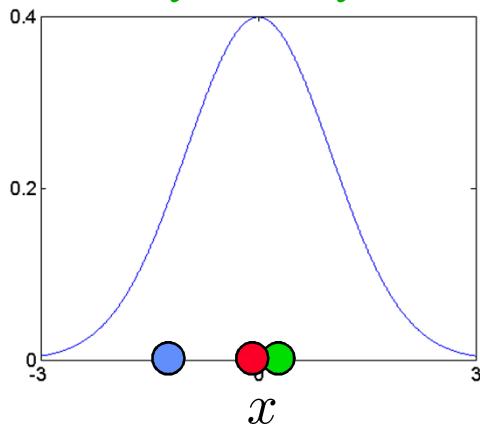
Epistemic methods (typically nongradient-based)

- **Strengths:** extrema are point solutions instead of integrated quantities
- **Weaknesses:** high degrees of input structure (Dempster-Shafer) require many extrema (bridging intervals and distributions breaks down as continuum is approached discretely)

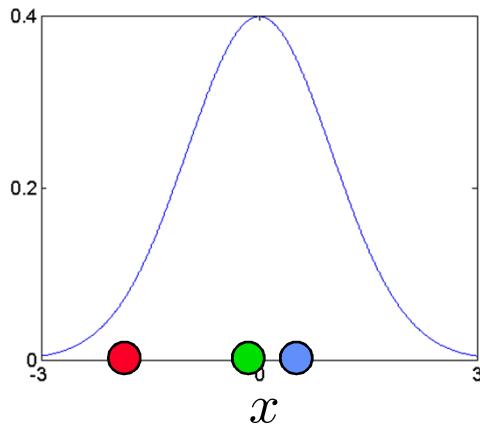
Extra Slides

More General Probabilistic Models are Random in Time and/or Space

Probability density at $t = 0$



Probability density at $t = 0.1$



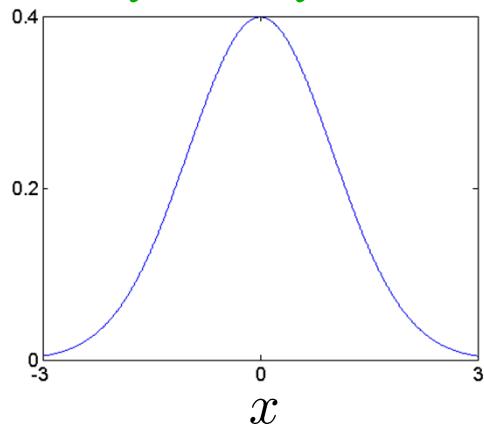
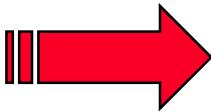
3 independent samples of a Gaussian stochastic process



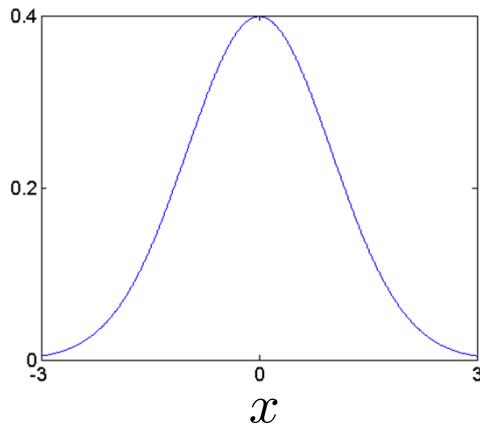
- Stochastic processes can represent time-varying phenomena

More General Probabilistic Models are Random in Time and/or Space

Probability density at $\mathbf{u} = (1,1)^T$

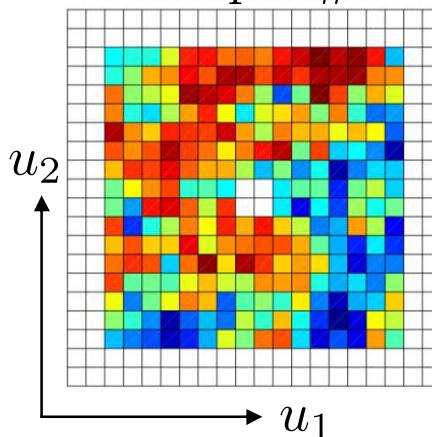


Probability density at $\mathbf{u} = (0,1)^T$

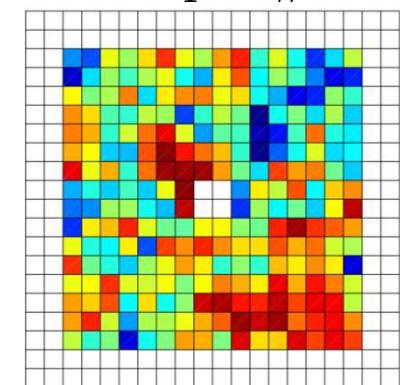


2 independent samples of a Gaussian random field

Sample #1



Sample #2



$X(u_1, u_2)$

- Random fields can represent spatially-varying phenomena