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Outline
• Why nanowire and nanotube laser?

• GaN nanotube lasers fabrication
– Top-down two-step etch process

• Experimental demonstration of lasing by optical pumping
– Light-light curve

– Lasing spectra

– Image of end-facet emission

• Rectangular cross-sectional GaN nanowire laser

• Summary
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Nanowire lasers – potential light sources for on-
chip applications

• Nanowire lasers
Optically or electrically pumped

Semiconductor material – gain medium

Cleaved facet – Fabry-perot cavity
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• Advantages
Compact size

– Desired for on-chip application

– Low power requirement 

Coherent emission

– High spectral purity

Strain relaxation

– Reduce defect

GaN

InGaN

3µm



Nanotube lasers

• Nanotubes: hollow geometry 
– Optofluidic

– Bio sensing

• Nanotube lasers: engineering the lasing emission: 

Annular emission
– Atom trapping

– Stimulated emission depletion (STED) microscopy

• Why GaN?
– III-Nitride materials cover the entire visible and partial near-IR range
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No GaN nanotube laser has been reported.

Prof. Ya-Hong Xie’s group website. http://www.seas.ucla.edu/smrl/GaN.html



GaN Nanotube Lasers Fabrication – Top-down 
two-step etch process
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GaN film growthEBL Patterning and PMMA Lift-offICP dry etchAZ400K wet etch

Li, Qiming, et al. Optics express 19.25 (2011): 25528-25534.

Li, Qiming, et al. Optics express 20.16 (2012): 17873-17879.

Details of the process, see



Fabricated GaN nanotube
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• Length: 4µm

• Outer Diameter: 1.3µm

• Thickness: 150nm

Hexagonal opening

Can we get lasing?



Experimental Setup
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Pump laser:
Nd:YAG laser @266nm
Pulse duration: 400 ps
Rep rate: 10 kHz
Tunable spot size: >1µm

As fabricated on Sapphire



Far-field microscopic CCD images
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 Uniform intensity over the entire tube
 Spontaneous emission

 No interference fringe
 Incoherent emission

 High intensity at both ends
 Strongly guided emission

 Interference fringe
 Spatially coherent emission

Lower peak pump power density (1800kW/cm2) Higher peak pump power density (4900kW/cm2)
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Lasing Spectra and L-L Curve
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Threshold pump density = 4600kW/cm2

FWHM decreases to 0.13nm as the 
nanotube laser is pumped above threshold

FWHM is limited by the resolution of the 
spectrometer 0.0 2.0x10
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Polarization of the lasing emission
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CCD images of the lasing emission
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CCD image shows an annular shape emission.

Potential applications:
– Atom trapping
– STED microscopy

Nanowire lasers with other cross-sections?



Polarization of lasing from
traditional cylindrical nanowire lasers

12

Elliptical polarization Random angle of major axis

Xu H. Controlled Lasing in Gallium Nitride Nanowires[D]. THE 
UNIVERSITY OF NEW MEXICO, 2013.



Previous work of polarization control

13

Xu H. Controlled Lasing in Gallium Nitride Nanowires[D]. THE 
UNIVERSITY OF NEW MEXICO, 2013.

Free Standing Wire

Wire on Au substrate

Polarization control

 On-chip Communication

 Backlighting for display

GaN nanwire

 Isotropy in c-plane
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Cylindrical nanowire laser
D=300nm

Rectangular nanowire laser
450nm * 70nm
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SEM images of rectangular cross-sectional 
GaN nanowire lasers
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Length: 430 – 450nm
Width: 100 – 150nm
Height: 4µm



Polarization of lasing from 
rectangular cross-sectional nanowire lasers
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Summary

• Fabricated top-down GaN nanotube

• First experimental demonstration of lasing from GaN
nanotube by optical pumping

• Optical property engineering
– Annular shape lasing emission from GaN nanotube lasers

– Linear polarization from rectangular cross-sectional nanowire lasers

• Future work
– Reduce the size of the GaN nanotube lasers
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• Backup Materials

chyli@unm.edu 18



Mode spacing of the nanotube laser

chyli@unm.edu 19
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Mode spacing of the nanotube laser

• Whispering gallery mode

Mode spacing:

chyli@unm.edu 20
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GaN nanotube lasers show Fabry-Perot Mode lasing.



Mode spacing of the nanotube laser
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• Longitudinal Mode
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Polarization of the lasing emission

• Electric field intensity of the 1st-5th transverse modes 
of the GaN nanotube laser

chyli@unm.edu 22

“Linear-like” polarization Circular polarization



Polarization of the lasing emission
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Future work

• Reduce the size of the GaN nanotube lasers

– Reduce number of optical modes
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Nanotube lasers

• Nanotubes: hollow geometry 
– Optofluidic

– Bio sensing

• Nanotube lasers: engineering the far-field of the lasing emission: 

Annular far-field
– Atom trapping

– Stimulated emission depletion (STED) spectroscopy

• Recent work on micro/nano tube lasers
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• No GaN nanotube laser has been 
reported.

Dong, Hongxing, et al. The Journal of Physical Chemistry C 114.41 (2010): 
17369-17373.

Yoon, Seok Min, et al. ACS nano 5.4 (2011): 2923-2929.

100 -200nm


