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Why are we interested in 
GaAsSb/InGaAs heterostructures?

Type II staggered offset 

 Allows energies less than 
constituent band gaps to 
be achieved

Large spin orbit energy

 Potential for electron spin 
polarization through spin-
orbit coupling
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What is the challenge? Achieving 
abrupt profiles

 In and Sb are known to 
have slower response for 
both accumulation and 
desorption

 Imposed on this is the 
chemistry of the deposition 
process
 Temperature drives source 

molecule decomposition

 Results in compressive 
InSb-rich and tensile 
GaAs-rich interface layers 
can dominate properties
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Outline

 Experimental details

 Ideal heterostructure characteristics
 X-ray diffraction simulations

 Non-ideal interfaces
 X-ray diffraction results

 InGaAs going to GaAsSb

 GaAsSb going to InGaAs

 Conclusions
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Growth details

 Grow structure using 60 Torr MOVPE 
in H2

 InP buffer: TMIn and PH3 at 620C
 Growth rate = 12 nm/min with V/III = 150

 AlInAs: TMIn, TMAl, and AsH3

 Growth rate = 24 nm/min with V/III = 70 
at 660C

 Temperature = 530 to 570C

 InGaAs: TMGa, TMIn, AsH3

 Growth rate = 22 nm/min with V/III = 92

 GaAsSb: TEGa, TMSb, and AsH3

 Growth rate = 12 nm/min with V/III = 7, 
TMSb/AsH3 = 3.7
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Structure and analysis details
1) MQW with cap

 XRD

 Symmetric (004) /2 scans

 Interpreted with dynamic 
simulations

 Room temperature PL

 Taken with FTIR system using 
1550 nm excitation and InSb
detector

2) Quantum well channel

 XTEM 

 high resolution
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Simulations of ideal MQW

 Lattice matched 
InGaAs/GaAsSb have 
few features
 Weak +/- 1 satellites are 

associated with small strain 
( < 50 ppm)

 Strain introduces 
expected features
 +3000 ppm for InGaAs

 +1000 ppm for GaAsSb
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Initial MQWs - nonidealities
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 MQW is in tension

 Graded GaAsSb layer varies 
from GaAs to GaAs0.44Sb0.56

 Additional non-monotonic 
intensity envelope observed at 
higher angle
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TMSb/AsH3 dosing of InGaAs surface

 Investigated P1 from 3 to 24 s
 Found 12 s worked well

 Dosing reduces, but doesn’t 
eliminate strain
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TMSb/AsH3 dosing of InGaAs surface

 Investigated P1 from 3 to 24 sec
 Found 12 s worked well

 Dosing reduces, but doesn’t 
eliminate strain
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XTEM on QW channel structure

 Using optimized 
TMSb/AsH3 purge

 High resolution images 
are sensitive to difference 
in electron phase
 Phase differences can be 

caused by strain

 Concluded that tensile 
layer is on opposite side 
of GaAsSb
 GaAs-rich interface
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PL on MQWs

 Samples grown at 
520⁰C show 3+ μm 
emission
 Wavelength inconsistent 

with thicknesses and 
compositions

 Attribute to interfacial 
InAsSb dominating 
recombination

 Samples grown at 
550⁰C emit at 2 μm
 Shoulder at 2.4 μm

 Found 570⁰C was too 
warm for bulk GaAsSb
growth 12
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Further strain reduction – InAs layers

 Grow thin layers of InAs on 
top of GaAsSb
 0.1 nm optimal 
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XTEM on improved structure

 InAs growth eliminates 
transition at GaAsSb to 
InGaAs interface
 Small contrast between 

InGaAs and GaAsSb
consistent with matched 
compositions

 Contrast consistent with mass 
density
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PL on InAs interface layer series

 Slight red-shift as 
thickness of InGaAs is 
increased

 Linewidth decreases 
with addition of InAs
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Conclusions

 InGaAs/GaAsSb represent a challenging system to achieve 
ideal heterostructures

 Sb-incorporation limits abruptness going from InGaAs to 
GaAsSb

 PL dominated by interfaces
 Low band gap InAsSb dominates PL at low growth temperatures

 Higher growth temperatures improves optical properties

 In-incorporation limits abruptness going from GaAsSb to 
InGaAs

 PL characteristics are improved by optimized interfaces

16


