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1 Introduction and motivation

Important applications in diffusion, elasticity, fracture propagation have ben-
efitted from the introduction of nonlocal models. Phenomena, materials, and
behaviors that are discontinuous in nature have been ideal candidates for the
introduction of this framework which allows solutions with no smoothness, or
even continuity properties. This advantage is counterbalanced by the fact that
the theory of nonlocal calculus is still being developed.

In [3] the authors introduce a nonlocal framework with divergence, gra-
dient, and curl versions of nonlocal operators for which they identify duality
relationships via L? inner product topology. Integration by parts, nonlocal
Poincaré inequality

significance

The classical Helmholtz decomposition || states that for any field ...

Its numerous applications rely on duality properties, as well ...
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Emphasize that we obtain a Helmholtz decomposition for each interaction
kernel «; very useful in applications when one may want to choose different
gradients, curls, operators

The paper is organized as follows: in the next section we introduce the
nonlocal operators for which we will obtain a nonlocal version of the Helmholtz
decomposition.

2 Nonlocal vector calculus

In the analysis of the Helmholtz decomposition we use the nonlocal vector
calculus (NLVC) introduced in [3] and [4] and applied to nonlocal diffusion in
[2]. This theory is the nonlocal counterpart of the classical calculus for differ-
ential operators and allows one to study nonlocal diffusion problems in a very
similar way as we study partial differential equations (PDEs) thanks to the
formulation of nonlocal equations in a variational setting. In this work we do
not consider diffusion only, but we utilize additional nonlocal operators, e.g.
the nonlocal curl introduced in [3], to mimic the local Helmholtz decomposi-
tion. The basic concepts of the NLVC and the results relevant to this paper
are reported below.

The NLVC is based on a new concept of nonlocal fluxes between two (pos-
sibly disjoint) domains; the derivation of a nonlocal flux strictly follows the
local definition and it is based on a nonlocal Gauss theorem (the interested
reader may find the complete analysis in [3]). We define the following nonlo-
cal divergence operators acting on zero-th order, first order, and second order
tensors, respectively:

(Dac o) () = / (e, y) + ly, 2) e, y)dy,

n

(Paav)(@)i= [ (v(@.u) + v(g.2)) - ol y)dy. (1)

(Do s ®) () = / (T, ) + U(y, z)) o, y)dy,

n

where 1 : R" x R™ — R is a scalar function, v : R® x R" — R"” is a vector
function, ¥ : R® x R — R™ x R" is a matrix function, and o : R x R™ — R"
is an antisymmetric function, i.e. a(x,y) = —a(y, x).

The corresponding nonlocal gradient operators, i.e. the negative adjoint
operators, —Dg,; := —(Dai)*, acting on ith order tensors are defined as [3]

(Ga o) (®,y) := —(Dayv) (z,y) = — (v(y) — v(z)) - a(z,y),
(Ga 1) (2,y) == —(Da1u) (z,y) = — (u(y) — u(x)) a(z,y), (2)
(Ga2v) (2,y) :== —(Dayv) (z,y) = (v(y) — v(x)) ® a(z,y).

Then, as in the local case, we define the nonlocal diffusion operator L. as

— (Latt) (&) = Da, (Datu) (x) = 2 / (u() - u(y)) (a- o)dy. (3)

n
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Remark 1 For simplicity of notation in the sequel we will drop the numerical
subscripts on the operators, unless necessary for clarity, and keep only the
reference to the kernel.

Given a vector field u, we also define the nonlocal curl operator and its corre-
sponding adjoint as

(Cow) (@)= | al@.y) x (ule.y) + uly.2)) dy "
(Caw) (.9) = ale,y) x (wly) ~ w(a)).

For such operators, by substitution, we have the following result:

Co (Cow) () =— 2/n ax [(w(y) —w(z) x a|dy )
= Da,2(DZ,2W) - Da,O(DZ,OW)~

Note that, formally, this is the same expression as in the local calculus, i.e. for
a vector field r, V x (V x r) = V(V - r) + V?r, where the latter represents the
vector Laplacian.

Remark 2 We can further simplify the expression of Co, (Cw) () in (5). Plug-
ging the definitions of (4), we have

Ca (Cow) ()
:/n a(z,y) X [a(z,y) x (W(y) —w(z)) + a(y,z) x (w(z) —w(y))]dy
- / a(z,y) x [(w(y) —w(z)) x a(z,y) + (w(z) — w(y)) x a(y,z)] dy

_ 9 / _ala,y) x [(wly) — (@) x a(@,y)] dy

Notice that for any vector a, b and c, we have the following identify for cross
product

ax(bxc)=b(a’c)—c(a’b)=b(a’c) - (c®a)b

where T' denotes transpose.
So, applying it to Co (CAw) () further yields

Ca (Cow) (2)

=2 [ ((@8a) (wly) - wie) - (wly) - wia) @)y,

where a is short hand notation of a(x,y).
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Fig. 1 Interaction domain configuration in a two-dimensional setting.

Given an open subset 2 C R", the corresponding interaction domain is defined
as
2r:={yeR"\ 2 suchthat a(x,y)#0 forsomexe 2} (7)

so that {27 consists of those points outside of {2 that interact with points in (2,
see Figure 1 for a two-dimensional configuration. For simplicity, we now focus
on the divergence definition in (1), and report important variational results.
Corresponding to that divergence operator we define the action of the nonlocal
interaction operator No(v): R"® — R on v by

Na(v) () :=— /Qun (v(z,y) +v(y, o) alzy)dy forxe . (8)

Note the main difference between local and nonlocal: in the former case the
flux out of a domain is given by a boundary integral whereas in the latter
case is given by a volume integral. With D, and N, defined as in (1) and (8),
respectively, we have the nonlocal Gauss theorem [3]

/ Do(v)dx = | Na(v)de. 9)
7 o2

Next, let u(x) and v(z) denote scalar functions; then, the divergence theorem
above implies the generalized nonlocal Green’s first identity [3)

/U’Da(Da*u) dx — / / Da*v-Da*udydw:/vNa(Da*u) dz. (10)
2 NUN QU2 2
In [3], one can find further results for the nonlocal divergence operator D,
including a nonlocal Green’s second identity, as well as analogous results for
nonlocal gradient and curl operators. In addition, in the same paper, further
connections are made between the nonlocal operators and the corresponding
local operators.

3 Nonlocal Helmholtz decomposition
3.1 Existence and uniqueness of the decomposition

The following proposition is an auxiliary result for the main decomposition
theorem.
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Proposition 1 Let a be a antisymmetric kernel, o € L?(£2U 27 x 2 U £2r)
and suppose Aq : L?(2) — L%(§2) is a positive or negative semidefinite sym-
metric linear operator such that ker(Aeq) C ker(CL), then the system

Aaw =v

is well-posed iff
v = Cqf,

for some wvector field £ € L*(£2).
Proof The necessary condition can be simply proved by the fact that ||
Rng(Aq)t = Rng(A%L)* = ker(Aq) C ker(CE) = Rng(Ca )™t

where Rng denotes the range of linear operator and L signifies orthocomple-
mentation. This immediately concludes the following

Rng(Aa) O Rng(Ca).
The sufficient condition is straightforward.

Theorem 1 For each two-point vector function u(z,y) € L*(2 x ), there
ezist unique @ : R™ — R and w : R™ — R" such that

u(z,y) = (Gay) (z,y) + (Cow)(z, y), (11)
provided either set of volume constraints are satisfied:

— Dirichlet (BC) o(x) =0 on I
— Neumann (BC) Na(Ga(®)) =0 on I' and compatibility condition; unique-
ness

Proof We proceed by showing the existence of ¢, followed by w.

A. Find potential ¢.
We apply D, to both sides of (11) and get

(Da)(@) =(Da (Ga) ) () + (Da(Cow)) ()
=(Pa (Ga®) ) (@) = = (Da (Dip) ) (@) = (Lay) (@),

where D, (Ciw) = 0. With appropriate volume constraints, ¢ exists and is
unique.

B. Find w.
We apply Cq to both sides of (11) and get

(Can)(x) =(Ca (Gar9) ) () + (Ca(Cow)) (x)
=~ (Ca (Daip))(®) + (Ca(Cow))(x) = (Ca(Cow))(x)

=— 2/Rn ax [(w(y) —w(z)) x aldy
——2 [ (wly) - wl@)(a ey +2 [ (@sa)(wly) - w@)dy.

n
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where Cq (Do) = 0.
We prove the well-posedness of the following equation

2 [ (wly) - wi@) (@ ajdy+2 | (awa)(wly) - wl@)dy = (Cav)(a)

(12)
with arbitrary u(z,y) : R” x R™ — R" given.
In the operator form, given u, we seek for w satisfying

Ca(Ciw) = Cqu.
The corresponding weak solution w satisfies:
(Cal(Cow), V) 2@ny = (CaW, V) [2(Rr);, V€ Va, (13)

where V,, is some proper function space that the solution w lives in.
Notice that, by the definition of adjoint, we have that

<Ca (C;’;VV)7 V>L2(Rn) = <C;VV7 C;V>L2(Rn XR”)?

and
<(Call), V>L2(]R“) = (u, C;(V)>L2(Rn XxR™) -

Hence, we can first define a bilinear operator B(-,) for w
.B(V\’7 W) = <(C:;W)7 (C:;W)>L2(]Rn XR")'

B(:,-) is not coercive because K¢: := kernel (C,) is not trivial. More specifi-
cally, its rank is equal to the one of K¢x = span{a}.

Therefore, we will restrict our function space to be V := L*(R")/Kc: .
Then on this function space )V, we have the coercivity of B:

B(w,w) = ((Caw), (CoW))r2(rnxrn) > W2

with ||w|? := B(w,w).
Therefore, the weak PDE (13) becomes: find w € V,, such that

((Caw), (CaV)) L2 xrry = (U, (CLV)) L2 (RrxRr)s YV € Va. (14)

Because for an arbitrary given v € L2(R™ x R"), (u, (C5V)) L2 (mn xRy de-
fines a bounded linear functional with respect to any v € V. Therefore, apply
the Lax-Milgram theorem, we have the existence and uniqueness of the solu-
tion to (14). If the instead of Va4, we search our solution in the space of L?(R"™),
then we have the solution w = w + z with z € Kes .
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3.2 Convergence to the local limit

In this section we study the limit of the operators involved in the decomposition
as the extent of nonlocal interactions vanishes. To this end, we consider kernels
with support on a ball or radius e, called horizon or interaction radius, and
we study the convergence behavior as e — 0. We assume that « satisfies the
following properties for all x € (2.

Y(x,y) =0 y € B.(z)
(15)
Y(@.y) = yE B (x).

For simplicity and clearness in the exposition, we consider an integrable con-
stant kernel 7 = « - «, such that

r—-Yy
al@y) = [ ¥ (@ € Be(a), (16)
We study the limiting behavior of the operators in A. and B., L, and Co(Co™)
respectively. While the limit of the nonlocal Laplacian £, has been widely
studied [], no results have been proved on the limit of Co(Co™); thus, we
proceed by analyzing the integral in (6). First, we note that the first term
is exactly the Laplacian operator, for which we already know that

Low(x) = Aw(z) + O(e).

More specifically, the first component of the vector Laplacian (the other two
are obtained in the same way) is given by

47
—Low () = _1_555(w1,w1w1 + Wi zpa, + wl,ﬂcaws) + HOT.

Thus, we analyze the second term in (6), i.e. [5, a® a(w(y) —w(x)) dy. We
expand the integrand: for any vector v € R?, we have

a%v% + a1aev2 + a3V V3
a@ov = | vV + a%v% + aoi3v2v3

Q3011 + a3V + agvlvg

Due to symmetry, we only study the first component; we have

2 / [02 (w1 () — w1 (@) + a10a(ws() — wa(@)) + ar0s(ws(y) — wa(w))] dy =

Rll
I+1I+111.
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We analyze each term separately.

— )2
r=2 [0 )~ (o)
Rn

= h—%wm — Wi\
=2 [ (@ +h) — w (@) dh

= 2/ sz (Vw; (x) -h+ %thzwl(w)h + HOT)dh
R

It can be shown that, due to symmetry, the first derivative term has no con-

tribution, in fact, the integral is 0. We analyze the term with the Hessian:

B2 1

2 T 2 —th2 1(z)hdh

h2
|h|2 (h%wl 11 + 2h1h2w1 yL1IT2 + 2h1h3w1 s 13

+ h3W1 zyay + 2hoh3W1 2yws + hAWL 25z, ) dh

=A+B+C+D+E+F

We treat each term separately. It can be shown that B = C = E = 0; further-

more
AT . 4dr dm .
= %E w17I1$17 D - 7_55 w1 ,L2X2) F - %8 w1 ,L3T3*

Applying a similar procedure to 11 and 111, we have the following:
I+ I1T+111

4m . dr o 4dr
= 256 w1 ,T1T1 + %E wl,wzwz + 7_58 wlA,EgiEg +

Am 4 8T
=gt Awn + == V(V - w).

In summary, the first component of Cq, (Co*W)(x) is given by

T 5 8m

5
%E w2,x193y -+ %E W3,z 23

871'5

(C (Ca W))1 75

[(V(V-w) = Awy) — Awy | + mOT

= §5 [Vx (VXW)—A’UH} + HOT

Note that this is not consistent with the first component of the local operator
V x (V x w)(x) which reads

(Vx(Vxw)), =V(V-w)— Auwy,

ie. KCa(Ca™Ww) — V x (V x w) — Aw, where k = %'
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3.3 Geometrical aspects
3.4 Connection to Du&Mengesha

In [6], the well-posedness of the linearized peridynamics equilibrium system

- / Cy — o) (w(y) — w(z))dy = b(z), (17)
Bs(z)N$2

is established for 6 > 0, where w(x) denotes a displacement field, and where
b(x) is a given loading force density function and C(&) is the micromodulus
tensor defined by

p(1€])

€3]
The functions p and Fj are given radial functions and their properties deter-
mine the well-posedness of (17). We mention the works of [6] and others for
well-posedness theory in the case where Fy = 0, although [7] argues that the
condition Fj = 0 is too restrictive for equations of motion for bond-based ma-
terials. Moreover, equation (17) defines a non-local boundary value problem
with Drichlet-type volumetric boundary conditions and approaches the Navier
equations of elasticity with Poisson ration 1/4 as § — 0. Well-posedness is
studied in the function space

C¢) =2 E®E&+ 2R (€L (18)

(w(y) —w(=))| dydz < s

S(2)={weL*2:R% ; //p(\y—:cD‘y:z
Q0 y
(19)
See [3] and references therein, particularly for Sobolev scale stuff.
We can reformulate (12) to (17) by selecting appropriate a. Particularly,

we are interested in the prototype kernels

=. 21U
-y

where § = ((d) > 0. By letting & = & — y, the formulations (12) and (17)
agree and a simple calculation finds

mwzéﬁ:wm» (20)

For reference, the simple calculation is included below but can be removed
if necessary. Consider the tensor

a®RQoa—o-al
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Letting £ = = — y, we have

. x-y T —y (z—y) (z—y)
e ISl P e R v E TR
B £-€
= epam s O e |
1 B
:@|E| Pe €+ €I

= (€€ ® € + FullEDT = 5C€).

This concludes the simple calculation.

The identity (20) implies that the results in [6, see Thims 4.2 & 4.5] cannot
be used to obtain unique solutions to (12) for a given u. That is, the results of
Du-Mengesha apply in two scenarios. The first requires Fy € L, (R?) while

loc

1€12p(&) € L} .(RY). This would require 8 < d+2, while simultaneously having
B < d. In the Sobolev scale, we take 8 = d + 2s, for s € (0,1), hence this
scenario is not fruitful. The second requires Fjy to have zero mean value and
for p € L{ (R?) and does not apply to the work presented here. Therefore,

loc
the results from Theorems 1 and 1 lift previous restrictions mentioned in [7].

Remark 8 Note that the assumption |£]?p(&) € L}, .(R?) is a simplification of
the requirement that

82

lim ——— =0.

E—>0 2 d
Lﬂﬂap@>e

3.5 Connection to graph theory

In this section we will make connections with Hodge decompositions on graphs;
see Lemma 1 in [1] which generalized the proof given in [5].

In graph theory, points are represented by vertices and two-point functions
are weights on a graph. Define operators on graphs to obtain

Lemma 1 (Lemma 1 [1]) Given a vector field on a graph v = (vij)uj)er
with v(i,j) = —v(j, i) and a measure p ... there exists a unique

4 Example

We will give an example of a decomposition with an application. For an integro-
differential equation perform the decomposition, show how it works in finding
the solution, or performing other analysis.
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4.1 Matrix analysis with 3D results

In this section we aim to provide an illustration of the existence of solution w in
Theorem 1 when n = 3. Here we denote a(x,y) = (a1(x,y), a2(x,y), a3(X,¥)),
w(x) = (w1(x), wa(x), w3(x)), and v(x) = (v1(x),v2(x),v3(x)), where «; :
R3 x R? — R are antisymmetric functions, w; : R* — R and v; : R? — R are
scalar functions, ¢ = 1,2, 3. To show well-posedness of (12), we can rewrite its
left hand side:

2 [ (W) - wie)(a- )ty +2 [ (ama)(wiy) - wie))dy

(@3 + a3) + (w2(y) — wa(x)) s + (ws(y) — wz(x))oras
g — (wa(y) — wa(®))(af + a3) + (w3(y) — wz(x))aeas | dy
a1z + (w2 (y) — wa(x))azas — (wy(y) — ws(x))(af + a3)

- 2/}1@ w(y) —w(z))A(x,y)dy

4,
T
.~
SIS
—~—~
SSS
L
cEE
NS

a%—{—a% —Q1y —O0s
A=| —ajas a%—i—a% —aoQ3
-3 —Q203 a%—!—a%

is a symmetric matrix function. When apply a test function v(x) to the above
function and integrate, since A is symmetric,

/n /n (w(y) — w(z))A(x,y)v" (x)dydz :/n /n (w(x) — w(y))Aly, x)v" (y)dzdy
=" / . / (wy) = w(@) Al y)v! (y)dyda,

which yields

[(2 ] v - wi) e aay 2 [ (oo a(wly) - wiz))dy) v7 (e
——2 [ [ (wly) - wl@) Aley)VT (x)dyda
[ [ (wly) - w@) AGx.y)(v(y) - v(x)) dyda

That means, the bilinear operator B(-,-) can be explicitly expressed as

Bw.v) = [ [ (wly) - w@) Ax y)(v(y) ~ vix) Tdyde. (21)

Note that B(w,w) = 0 if and only if w(y)—w(x) = C(a1(x,y), a2(x,y), as(x,y)).

Therefore, Ker(B) :={w: B(w,w) =0} = {w: w(y)—w(x) = C(a1(x,y), a2(x,y), as(x,¥))},
and we can define the cosets of w on the quotient space of Ker(B) and asso-

ciated norm:

2 o : 2 o —
IS ey 1= _inf | BOw 4+ ¥ w %) = Blw,w). (22
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On the other hand, for a given two-point vector function u(x, y) = (ui(x,y), us(x, y), us(x, y)),
after applying the test function, with the antisymmetric property of o the right
hand side of (12) can be similarly written as

/,L /n e y (33, y) + l.l(y7 :B)) V(X)dydm
= — 5 /" /n a(m,y) X (u(fc,y) + u(y,;[:)) : (V(y) _ V(X))dyda:

Here we note that when v € Ker(B),

(€)== [ [ ale.y) x (a(@y) + u(y.2) - alz.y)dyde =0,
We can therefore define right hand side as a functional on the quotient space:

F([v]) = ((Can), [v]) = ((Can),v). (23)

To apply the Lax-Milgram theorem and show the well-posedness of the
variational problem B([w], [v]) = ((Cqu), [v]), it suffices to show the coervicity
and boundedness of the operator B(w,v):

Lemma 2
V[ul, [v] € L?/Ker(B), B([u], [v]) < Ci[|[u]l|z2/kerm)IVIIL2/Ker(m),  (24)
V[u] € L?/Ker(B), B([ul, [u]) > Co||[u]l|72/ker(m)» (25)
for two constants C1,Cy > 0.

Proof Note that for each x, y, the matrix A is a symmetric matrix and can
be diagonalized:

a% +a§ —10y —Q1Q3

A=| —oqas a% —|—oz§ —ai3
—Q Qi3 —Qo0g a% —l—a%
0 0 0
=S |00+ a2+ a3 0 5%
0 0 a? +a3+ a3
=SAS™!,

where S(x,y) is an orthogonal matrix function. For (24), with Holder’s in-
equality we have

Bl v) =Bav) = | / n u(@)) SAST (v(y) - v(x))” dyda

(/ AS Sf! o) ([ LI

=V B(w,u)B(v,v) = |[u]l|2/kerm) IV]l| 2/ Ker(B)-

1/2
z))SVA ‘ dydsc)
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Here we note that

0 0
Vai + a3+ a3 0
0 Va2 + a3 + ol

is well-defined. On the other hand, with the definition of the ||[-]||z2/ker(B)
norm we can show (25). We have then finished the proof.

0
VA= 10
0

5 Numerical tests

In this section, we validate the nonlocal Helmholtz decomposition by testing
a manufactured example. We focus on the functions whose domains belong to
R? and later are embedded into R3. More precisely, let

’

x = (x1,x2,0) and y= (yl,yg,())/ € 12,

where (2 is a subset of R? and is embedded into R®. The two-point vector
function u : 2 x 2 — R3, the one-point scalar function ¢ : 2 — R, and the
one-point vector function w : 2 — R? C R? (that is, the range of w could be
embedded into R?). Hence, according to the definitions of nonlocal operators
(2) and (4) we have

0
(Gap)(®,y): 2 x N —R> and (Ciw):2x02— [0
R
These test functions of ¢ and w are chosen to be
2 0
ole):=x7 and w:i=|[ 5], (26)
L3
and the nonlocal kernel a(x,y) is chosen to be
1 y—=
a(z,y) = By —a]
Consequently, for G, we get
2 _,2
-1 y—=x 1 (@1 — 1) (21— y1)
Ga)(@,y) = 5575 v — | (yi —ai) = Ty — x| —(z} - Z/%O)(xz —y2)

For CZw, it gives

o

1
(Cw) (@, y) = g
52y — 2| \ () - 21)(s3 - 23)
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The proposed u(x,y) = Gop + CLw is equal to

1 —(xi —yi)(wl — 1) .
u(z,y) = Py —a _(élfl—_x?ﬁzg%a—_x%) , (27)

Now for given u in (27), we will follow the proof of Theorem 1 to solve for the
pair ¢ and w defined in (26).

1. Find ¢. The corresponding nonlocal equation is,

2
waw@ﬁ=—f—/ (@ — )y — @l dy, in 2
§3/2 Bs(x) ! '

volumetric Dirichlet B.C. for ¢,

where dy is restricted on the plane R2.
2. Find w. The corresponding nonlocal equation is,

2 2 y—x y—x
—=3 (w(y) —w(z))dy + dy
% JBs(@) 8 Jpy) ly — | ly — 2|
1 2 2
—(y1 — 1) (y2 — x2)(y5 — x5)dy
Ammw_wﬁl (o2 - 2) (05 — 23)
—— 2,2 2
3/2 ———(y1 —x1)%(y5 — x3)dy
6 Bs() |y—:1:\( 1 1) ( 2 2
0
L 2 2
(1 — z1)(y2 — 22)(y2 — 23)dy
_ Bs(x) ly — x| w0
8%/2 1 Ko _ 2 ’ ’
(1 —21)"(y3 — x3)dy

Bs(x) - ly — x|
volumetric Dirichlet B.C. for w,

where dy is again restricted on the plane R2.

5.1 Convergence of nonlocal to local

We also test the asymptotic convergence of nonlocal to local when § goes to
zero. The nonlocal and domain settings remain the same the previous one, and
the manufactured solutions for local limit are set to be the followings

0
oo(x) =5 and wy(z):= |z} |, (28)
0
hence the local limiting solution of u is
0
w(x) == V(pe)(x) + V x (w)(x) = 4:5% . (29)
4ay

Therefore, the benchmark problem for nonlocal solutions ¢ and w is
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1. Find ¢. The corresponding nonlocal equation is

(Lay)(x) = 1223, in 02,

volumetric Dirichlet B.C. for ¢. (30)
2. Find w. The corresponding nonlocal equation is
0
Co (Ciw) () = 1203:% , in £2, (31)

volumetric Dirichlet B.C. for w.
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