SANDIA REPORT

SAND2019-1967
Unlimited Release
Printed February 22, 2019

SST-GPU: An Execution-Driven
CUDA Kernel Scheduler and
Streaming-Multiprocessor
Compute Model

M. Khairy, M. Zhang, R. Green, and T. Rogers

Accelerator Architecture Lab

Purdue University

West Lafayette, IN 47907

khairy2011@gmail.com, zhan2308@purdue.edu, rgreen.dev@gmail.com, timrogers@purdue.edu

S.D. Hammond, R.J. Hoekstra, and C. Hughes
Center for Computing Research

Sandia National Laboratories

Albuquerque, NM 87185

{sdhammo, rjhoeks, chughes} @sandia.gov

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2019-1967
Unlimited Release
Printed February 22, 2019

SST-GPU: An Execution-Driven
CUDA Kernel Scheduler and Streaming-Multiprocessor
Compute Model

M. Khairyl, M. Zhangl, R. Green!,
S. Hammond?, R.J. Hoekstra?, T. Rogersl, and C. Hughes2
' AALP Research Group, Purdue University, West Lafayette, IN 47907
2Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185

Abstract

Programmable accelerators have become commonplace in modern computing systems. Advances
in programming models and the availability of massive amounts of data have created a space for
massively parallel acceleration where the context for thousands of concurrent threads are resident
on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several mas-
sively parallel computing cores. The design of future supercomputers relies on an ability to model
the performance of these massively parallel cores at scale.

To address the need for a scalable, decentralized GPU model that can model large GPUs, chiplet-
based GPUs and multi-node GPUs, this report details the first steps in integrating the open-source,
execution driven GPGPU-Sim into the SST framework. The first stage of this project, creates two
elements: a kernel scheduler SST element accepts work from SST CPU models and schedules it
to an SM-collection element that performs cycle-by-cycle timing using SSTs MemHierarchy to
model a flexible memory system.

Acknowledgment

We would like to thank Gwen Voskuilen for her help with MemHierarchy and recommenda-
tions on debugging problems with the NIC and interconnect. We would also like to thank Arun
Rodrigues and Scott Hemmert for their support and help in defining the scope of the project.

Contents

1 Introduction

2 Scheduler Component

3 Streaming-Multiprocessor Component
4 Conclusion

References

13

17

18

List of Figures

1.1

2.1

2.2

3.1

3.2

High-level CPU/GPU interactionmodel 7
SST Element architecture for kernel/CTA scheduler and SMs components 11
Centralized GPU Scheduler component, 11
SST Link and IPCTunnels for functional model support...................... 13
Timing and memory model for SMs component 14

Chapter 1

Introduction

With the rise of General-Purpose Graphics Processing Unit (GPGPU) computing and compute-
heavy workloads like machine-learning, compute accelerators have become a necessary compo-
nent in both high-performance supercomputers and datacenter-scale systems. The first exascale
machines are expected to heavily leverage the massively parallel compute capabilities of GPUs or
other highly parallel accelerators [4]. As the software stack and programming model of GPUs and
their peer accelerators continue to improve, there is every indication that this trend will continue.
As a result, architects that wish to study the design of large-scale systems will need to evaluate
the effect their techniques have using a GPU model. However, the focus of all publicly available
cycle-level simulators like GPGPU-Sim [2] is on single-node performance. In order to truly study
the problem at scale, a parallelizable, multi-node GPU simulator is necessary.

Command/
Response

CPU Model GPU Model

’ CPU Model k}:yl GPU Model

PCle/NVLINK
CPU Memory GPU Memory} L Shared CPU/GPU Memory ’

Figure 1.1: High-level CPU/GPU interaction model

Figure 1.1 depicts the current CPU/GPU model co-processor model. On the left is the common
high-performance, discrete GPU configuration, where the CPU and GPU have separate memory
spaces and are connected via either PCle or a high-bandwidth link, like NVLink. The right shows
the APU model where the CPU and GPU share the same memory. Note that in even in the discrete
memory case, modern memory translation units allow the CPU and GPU to share the same address
space, although the memories themselves are discrete.

In this report we will detail a model that is capable of simulating both discrete and unified
memory spaces by leveraging the MemHeirarchy interface in SST [5]. This report details our
efforts to integrate the functional and streaming multiprocessor core models from the open-source
simulator GPGPU-Sim into SST.

This page intentionally left blank.

Chapter 2

Scheduler Component

The first step in integrating GPGPU-Sim into SST is to handle the interaction with an SST
CPU component. Since GPUs today function solely as co-processors, functionally executing
GPU-enabled binaries requires the CPU to initialize and launch kernels of work to the GPU. In
our model, the GPU is constructed out of two discrete SST components — a scheduler and a SM
block [1]. When CUDA functions are called from the CPU component, they are intercepted and
translated into messages that are sent over SST links to the GPU (along with the associated pa-
rameters). Table 2.1 enumerates the CUDA API calls currently intercepted and sent to the GPU
elements. These calls are enough to enable the execution of a number of CUDA SDK kernels,
DoE proxy apps as well as a collection of Kokkos Unit tests. Table 2.2 lists the number of Kokkos
unit tests that pass with our current implementation of SST-GPU, which is about 60%. There is
ongoing work with the PTX parser to increase the number of running kernels.

Table 2.1: Intercepted CUDA API Calls Forwarded to GPU Model

__cudaRegisterFatBinary

__cudaRegisterFunction

cudaMalloc
cudaMemcpy
cudaConfiqgureCall
cudaSetupArgument
cudaFree

cudaLaunch

cudaGetLastError

__cudaRegisterVar
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

Aside from the basic functional model provided by GPU-SST, an initial performance model
has also been developed. Figure 2.1 details the overall architecture. A CPU component (Ariel
in the initial implementation) is connected via SST links to 2 GPU components: the SMs, which
implement the timing and functional model for the GPU cores, and a centralized kernel and CTA
scheduler (GPUSched). When CUDA calls are intercepted from the CPU, messages are sent to
both the SMs and the GPU scheduler. Messages related to memory copies and other information
necessary to populate the GPU functional model are sent directly to the SMs element, since the
functional model for executing the GPU kernels lives inside the SMs element. Calls related to
enqueuing kernels for execution are sent to the GPU scheduler element, which co-ordinates the

9

Table 2.2: Functionally Passing Kokkos Unit Tests

Kernel Name
abs_double
abs_mv_double
asum_double
axpby_double
axpby_mv_double
axpy_double
axpy-mv_double
dot_double
dot_mv_double
mult_double
mult_-mv_double
nrm]_double
nrm]_mv_double
nrm2_double
nrm2_mv_double
nrm2_squared_double
nrm2_squared_mv_double
nrminf_double
nrminf_mv_double
reciprocal double
reciprocal_mv_double
scal_double
scal_mv_double
sum_double
sum_mv_double
update_double
update_mv_double
gemv_double
gemm_double
sparse_spgemm_double_int_int_TestExecSpace
sparse_spadd_double_int_int_TestExecSpace
sparse_gauss_seidel_double_int_int_TestExecSpace
sparse_block_gauss_seidel_double_int_int_TestExecSpace
sparse_crsmatrix_double_int_int_TestExecSpace
sparse_blkcrsmatrix_double_int_int_TestExecSpace
sparse_replaceSumIntoLonger_double_int_int_TestExecSpace
sparse_replaceSumInto_double_int_int_TestExecSpace
sparse_graph_color_double_int_int_TestExecSpace
sparse_graph_color_d2_double_int_int_TestExecSpace
common_ArithTraits
common_set_bit_count
common_ffs
batched_scalar_serial_set_double_double
batched_scalar_serial_scale_double_double
batched_scalar_serial_gemm_nt_nt_double_double
batched_scalar_serial_gemm_t_nt_double_double
batched_scalar_serial_gemm_nt_t_double_double
batched_scalar_serial_gemm_t_t_double_double
batched_scalar_serial_trsm_1_1_nt_u_double_double
batched_scalar_serial_trsm_l_1_nt_n_double_double
batched_scalar_serial trsm_l_u_nt_u_double_double
batched_scalar_serial _trsm_I_u_nt_n_double_double
batched_scalar_serial_trsm_r_u_nt_u_double_double
batched_scalar_serial_trsm_r_u_nt_n_double_double
batched_scalar_serial lu_double
batched_scalar_serial_gemv_nt_double_double
batched_scalar_serial_gemv_t_double_double
batched_scalar_serial _trsv_l_nt_u_double_double
batched_scalar_serial trsv_1_nt_n_double_double
batched_scalar_serial _trsv_u_nt_u_double_double
batched_scalar_serial_trsv_u_nt_n_double_double
batched_scalar_team_set_double_double
batched_scalar_team_scale_double_double
batched_scalar_team_gemm_nt_nt_double_double
batched_scalar_team_gemm_t_nt_double_double
batched_scalar_team_gemm_nt_t_double_double
batched_scalar_team_gemm_t_t_double_double
batched_scalar_team_trsm_l_l_nt_u_double_double
batched_scalar_team_trsm_1_1_nt_n_double_double
batched_scalar_team_trsm_l_u_nt_u_double_double
batched_scalar_team_trsm_l_u_nt_n_double_double
batched_scalar_team_trsm_r_u_nt_u_double_double
batched_scalar_team_trsm_r_u_nt_n_double_double
batched_scalar_team_lu_double
batched_scalar_team_gemv_nt_double_double
batched_scalar_team_gemv_t_double_double

10

GPGPU-Sim GPGPU-Sim/SST

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
FAILED
FAILED
FAILED
FAILED
OK
OK
OK
OK
OK
OK
FAILED
FAILED
FAILED

FAILED

FAILED
OK
OK
OK
OK
OK
OK
OK
OK
FAILED
OK
FAILED
OK
FAILED
OK
OK
OK
OK
FAILED
OK
FAILED
OK
OK
OK
OK
OK
OK
OK
FAILED
OK
FAILED
OK
FAILED
OK
OK
OK

OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
PREVIOL

PREVIOU

PREVIOL
PREVIOU
OK
OK
OK
OK
OK
OK
PREVIOLU
PREVIOLU

PREVIOUS FAII

PREVIOU
PREVIOL
PREVIOL
PREVIO1
PREVIOL
PREVIOL
PREVIOLU
PREVIOU
PREVIOL
PREVIOU
PREVIOLU
OK
FAILED
OK

OK

OK

OK

OK

OK
PREVIOL
OK
PREVIOL
OK
PREVIOU
FAILED
OK

OK
FAILED
PREVIOU
FAILED
PREVIOLU
FAILED
OK

OK

OK

OK

OK

OK
PREVIOLU
OK
PREVIOL
OK
PREVIOU
FAILED
OK

OK

S FAILED
S FAILED
S FAILED
S FAILED

JS FAIL
S FAIL

D
D
D
D

JS FAIL
S FAILED
S FAILED
S FAILED
S FAILED
S FAILED
S FAILED
S FAILED
S FAILED
S FAILED
S FAILED

S FAILED

S FAILED

S FAILED

S FAILED

S FAILE

)

S FAILED

S FAILED

S FAILED

launching of CTAs on the SMs, e.g. cudaConfigureCall and cudaLaunch.

Command link

SMs Element

GPUSched
Element

Launch
command

CTA Launch
commands

Figure 2.1: SST Element architecture for kernel/CTA scheduler and SMs components

As CTAs complete on the SMs, messages are sent back to the GPU scheduler element, which
pushes new work to the SMs from enqueued kernels as needed. Memory copies from the CPU to
GPU address space are handled on a configurable page-size granularity, similar to how conven-
tional CUDA unified memory handles the transfer of data from CPU to GPU memories.

GPUSched Element

Kernel Queue

SM Map Table

CTA Finish

- Command

CTA Launch
Command

Launch Command

Tick Signal

Figure 2.2: Centralized GPU Scheduler component

The centralized GPU scheduler receives kernel launch commands from the CPU, then issues
CTA launch commands to the SMs. The scheduler also receives notifications from the SMs when
the CTAs finish. The reception of kernel launch and CTA complete notifications are independent,
therefore we designed a different handler for each type of message. Figure 2.2 shows the design
of the centralized kernel and CTA Scheduler. The kernel handler listens to calls from a CPU com-
ponent and pushes kernel launch information to the kernel queue when it receives kernel configure
and launch commands. The SM map table contains CTA slots for each of the SMs, which is re-
served when launching a CTA and released when a message indicating that a CTA has finished
is received from the SMs. The scheduler clock ticks trigger CTA launches to SMs, when space is
available and there is a pending kernel. On every tick, the scheduler issues a CTA launch command

11

for currently unfinished kernels if any CTA slot is available or tries to fetch a new kernel launch
from kernel queue. The CTA handler also waits for SMs to reply the CTA finish message, so that
CTA slots in the SM map table may be freed.

12

Chapter 3

Streaming-Multiprocessor Component

To support the GPGPU-Sim functional model, a number of the simulator’s overloaded CUDA
Runtime API calls were updated. A number of functions that originally assumed the application
and simulator were within same address space now support them being decoupled. Initialization
functions, such as __cudaRegisterFatBinary, now take paths to the original application to obtain
the PTX assembly of CUDA kernels.

4K

Application
Data Transfer Tunnel

IPCTunnel

E API Calls u

Ariel CPU Link
Model ACKs

IPCTunnel

SMs Element

GPUSched
Element

Figure 3.1: SST Link and IPCTunnels for functional model support

Supporting the functional model of GPGPU-Sim also requires transferring values from the
CPU application to the GPU memory system. This is solved by leveraging the inter-process com-
munication tunnel framework from SST-Core, as shown in 3.1. Chunks of memory are transferred
from the CPU application to the GPU memory system at the granularity of a page (4KiB). The
transfer of pages is a blocking operation, therefore all stores to the GPU memory system must be
completed before another page is transferred or another API call is processed.

To model GPU performance, the memory system of the public GPGPU-Sim is completely re-
moved. Instead, all accesses to GPU memory are sent though SST links to the MemHierarchy
interface. As Figure 3.2 shows, a multi-level cache hierarchy is simulated with the shared L2

13

sliced between different memory partitions, each with its own memory controller. Several backend
timing models have been configured and tested, including SimpleMem, SimpleDRAM, Timing-
DRAM, and CramSim [3]; CramSim will be used to model the HBM stacks in the more detailed
performance models. We have created an initial model for the GPU system similar to that found in
an Nvidia Volta. The configuration for the GPU, CramSim and Network components is shown in
Listing 3.1.

Command link

SMs Element

GPUSched
Element

Launch
: command

CTALaUNCh | = = m e e e e e e e e e e e e e e m =
commands |

—— = = = = = e = = = e = e e e = e o]

Figure 3.2: Timing and memory model for SMs component

I_Mem Hierarchy I Mem Hierarchy

14

Listing 3.1: Sample SST-GPGPU Configuration

[CPU]

clock: 2660MHz
num_cores: 1
application: ariel
max_reqgs_cycle: 3

[ariel]
executable: ./vectorAdd
gpu_enabled: 1

[Memory]

clock: 200MHz
network_bw: 96GB/s
capacity: 16384MiB

[Network]
latency: 300ps
bandwidth: 96GB/s
flit_size: 8B

[GPU]

clock: 1200MHz

gpu_cores: 80
gpu_l2_parts: 32
gpu_l2_capacity: 192KiB
gpu_cpu_latency: 23840ps
gpu_cpu_bandwidth: 16GB/s

[GPUMemory]
clock: 1GHz
network_bw: 32GB/s
capacity: 16384MiB
memControllers: 2
hbmStacks: 4
hbmChan: 4
hbmRows: 16384

[GPUNetwork]

latency: 750ps
bandwidth: 4800GB/s
linkbandwidth: 37.5GB/s
flit_size: 40B

15

This page intentionally left blank.

Chapter 4

Conclusion

This report has detailed the first phase of the SST-GPU project, where the execution-driven
functional and performance model of a GPU had been integrated SST. Initial results demonstrate
significant coverage of applications. The next phase of the project will focus on further disaggre-
gating the GPU to enable truly scaled GPU performance in a multi-process MPI simulation.

17

This page intentionally left blank.

References

[1] Volta v100 white paper. Technical report, Nvidia, 2017.

[2] Tor M. Aamodt, Wilson W. L. Fung, Inderpreet Singh, Ahmed El-Shafiey, Jimmy Kwa, Tayler
Hetherington, Ayub Gubran, Andrew Boktor, Tim Rogers, Ali Bakhoda, and Hadi Jooybar.
Gpgpu-sim 3.x manual. http://gpgpu- sim.org/manual/index.php/Main, June 2016.

[3] Michael B. Healy and Seokin Hong. Cramsim: Controller and memory simulator. In Proceed-
ings of the International Symposium on Memory Systems, MEMSYS ’17, pages 83-85, New
York, NY, USA, 2017. ACM.

[4] Timothy Prickett Morgan. The roadmap ahead for exascale hpc in the us.
https://www.nextplatform.com/2018/03/06/roadmap-ahead-exascale-hpc-us, March 2018.

[5] Arun Rodrigues, Richard Murphy, Peter Kogge, and Keith Underwood. The structural simu-
lation toolkit: A tool for bridging the architectural/microarchitectural evaluation gap. Internal
Report SAND2004-6238C, 2004.

[6] Christian Trott, Mark Hoemmen, Mehmet Deveci, and Kyungjoo Kim. Kokkos c++ perfor-
mance portability programming ecosystem: Math kernels - provides blas, sparse blas and graph
kernels. https://github.com/github/open-source-survey, 2019.

19

DISTRIBUTION:

e —

MS 1318
MS 1319
MS 1319
MS 1319
MS 0899

Robert J. Hoekstra, 01422

Simon D. Hammond, 01422

Arun F. Rodrigues, 01422

Gwendolyn R. Voskuilen, 01422
Technical Library, 9536 (electronic copy)

20

21

v1.40

@ Sandia National Laboratories

22

